Utilize este identificador para referenciar este registo: http://hdl.handle.net/1822/24264

TítuloA stochastic Burgers equation from a class of microscopic interactions
AutorGonçalves, Patrícia
Jara, Milton
Sethuraman, Sunder
Palavras-chaveKPZ equation
Burgers
Weakly asymmetric
Zero-range
Kinetically constrained
Equilibrium fluctuations
Speed-change
Fluctuations
Data2015
EditoraIMS
CitaçãoGonçalves, P., Jara, M., & Sethuraman, S. (2015). A stochastic burgers equation from a class of microscopic interactions. Annals of Probability, 43(1), 286-338. doi: 10.1214/13-aop878
ResumoWe consider a class of nearest-neighbor weakly asymmetric mass conservative particle systems evolving on $\mathbb{Z}$, which includes zero-range and types of exclusion processes, starting from a perturbation of a stationary state. When the weak asymmetry is of order $O(n^\gamma)$ for $1/2<\gamma\leq 1$, we show that the scaling limit of the fluctuation field, as seen across process characteristics, is a generalized Ornstein-Uhlenbeck process. However, at the critical weak asymmetry when $\gamma = 1/2$, we show that all limit points solve a martingale problem which may be interpreted in terms of a stochastic Burgers equation derived from taking the gradient of the KPZ equation. The proofs make use of a sharp `Boltzmann-Gibbs' estimate which improves on earlier bounds.
Tipoarticle
URIhttp://hdl.handle.net/1822/24264
DOI10.1214/13-aop878
ISSN0091-1798
Versão da editorahttp://www.imstat.org/aop/
Arbitragem científicayes
AcessoopenAccess
Aparece nas coleções:CMAT - Artigos com arbitragem/Papers with refereeing

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
gjs_final1.pdfDocumento Principal485,76 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis