Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/74596

TitleStable and convergent finite difference schemes on nonuniformtime meshes for distributed-order diffusion equations
Author(s)Morgado, M. Luísa
Rebelo, Magda
Ferrás, Luís Jorge Lima
KeywordsDistributed-order derivatives
Finite differences
Diffusion equations
Nonuniform meshes
Stability
Convergence
Issue dateAug-2021
PublisherMDPI
JournalMathematics
Abstract(s)In this work, stable and convergent numerical schemes on nonuniform time meshes are proposed, for the solution of distributed-order diffusion equations. The stability and convergence of the numerical methods are proven, and a set of numerical results illustrate that the use of particular nonuniform time meshes provides more accurate results than the use of a uniform mesh, in the case of nonsmooth solutions.
TypeArticle
URIhttps://hdl.handle.net/1822/74596
DOI10.3390/math9161975
ISSN2227-7390
e-ISSN2227-7390
Publisher versionhttps://www.mdpi.com/2227-7390/9/16/1975
Peer-Reviewedyes
AccessOpen access
Appears in Collections:CMAT - Artigos em revistas com arbitragem / Papers in peer review journals

Files in This Item:
File Description SizeFormat 
mathematics-09-01975.pdf316,67 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID