Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/57416

TitleOn the periodic orbits, shadowing and strong transitivity of continuous flows
Author(s)Bessa, Mário
Torres, M. J.
Varandas, Paulo
KeywordsGluing orbit property
Shadowing
Periodic orbits
Issue dateOct-2018
PublisherElsevier
JournalNonlinear Analysis
Abstract(s)We prove that chaotic flows (i.e. flows that satisfy the shadowing property and have a dense subset of periodic orbits) satisfy a reparametrized gluing orbit property similar to the one introduced in [7]. In particular, these are strongly transitive in balls of uniform radius. We also prove that the shadowing property for a flow and a generic time-t map, and having a dense subset of periodic orbits hold for a C0-Baire generic subset of Lipschitz vector fields, that generate continuous flows. Similar results also hold for C0-generic homeomorphisms and, in particular, we deduce that chain recurrent classes of C0-generic homeomorphisms have the gluing orbit property.
TypeArticle
URIhttp://hdl.handle.net/1822/57416
DOI10.1016/j.na.2018.06.002
ISSN0362-546X
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0362546X18301536
Peer-Reviewedyes
AccessRestricted access (UMinho)
Appears in Collections:CMAT - Artigos em revistas com arbitragem / Papers in peer review journals

Files in This Item:
File Description SizeFormat 
BTV.pdf
  Restricted access
278,57 kBAdobe PDFView/Open    Request a copy!

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID