Utilize este identificador para referenciar este registo: http://hdl.handle.net/1822/36930

TítuloQuaternionic Heisenberg groups as naturally reductive homogeneous spaces
Autor(es)Ferreira, Ana Cristina
Agricola, Ilka
Storm, Reinier
Palavras-chaveQuaternionic Heisenberg groups
naturally reductive homogeneous spaces
generalized Killing spinors
EditoraWorld Scientific Publishing
RevistaInternational Journal of Geometric Methods in Modern Physics
Resumo(s)In this paper, we describe the geometry of the quaternionic Heisenberg groups from a Riemannian viewpoint. We show, in all dimensions, that they carry an almost 3- contact metric structure which allows us to define the metric connection that equips these groups with the structure of a naturally reductive homogeneous space. It turns out that this connection, which we shall call the canonical connection because of its analogy to the 3-Sasaki case, preserves the horizontal and vertical distributions and even the quaternionic contact (qc) structure of the quaternionic Heisenberg groups. We focus on the 7-dimensional case and prove that the canonical connection can also be obtained by means of a cocalibrated G2 structure. We then study the spinorial properties of this group and present the noteworthy fact that it is the only known example of a manifold which carries generalized Killing spinors with three different eigenvalues.
Versão da editorahttp://www.worldscientific.com/doi/abs/10.1142/S0219887815600075
Arbitragem científicayes
Aparece nas coleções:CMAT - Artigos com arbitragem/Papers with refereeing

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
proceeding-neutral.pdfDocumento principal138,28 kBAdobe PDFVer/Abrir  Solicitar cópia ao autor!

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis