Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/26255

TitleA FEM-based model to predict the behaviour of RC beams shear strengthened according to the NSM technique
Author(s)Barros, Joaquim A. O.
Baghi, Hadi
Dias, Salvador J. E.
Gouveia, A. Ventura
KeywordsCFRP
NSM
Shear strengthening
FEM
Material nonlinear analysis
Issue date2013
PublisherElsevier
JournalEngineering structures
Abstract(s)Experimental research has demonstrated the excellent performance of the near surface mounted (NSM) technique with carbon fibre reinforced polymer (CFRP) laminates for the shear strengthening of reinforced concrete (RC) beams. This paper presents a finite element analysis to evaluate the behaviour of RC beams shear strengthened with NSM CFRP laminates. To predict correctly the deformational and the cracking behaviour of RC elements failing in shear using a smeared crack approach, the strategy adopted to simulate the crack shear stress transfer is crucial. For this purpose, a strategy for modelling the fracture mode II was implemented in a smeared crack model already existing in the FEM-based computer program, FEMIX. This strategy is mainly based on a softening shear stress-shear strain diagram adopted for modelling the crack shear stress transfer. To assess the predictive performance of the developed model, the experimental tests carried out with a series of T cross section RC beams shear strengthened according to the NSM technique by using CFRP laminates were simulated. In this series of beams, three different percentages of CFRP laminates and, for each CFRP percentage, three inclinations for the laminates were tested: 90º, 60º and 45º. By using the properties obtained from the experimental program for the characterization of the relevant properties of the intervening materials, and deriving from inverse analysis the data for the crack shear softening diagram, the simulations carried out have fitted with high accuracy the deformational and cracking behaviour of the 2 tested beams, as well as the strain fields in the reinforcements. The constitutive model is briefly described, and the simulations are presented and analysed.
TypeArticle
URIhttp://hdl.handle.net/1822/26255
DOI10.1016/j.engstruct.2013.06.034
ISSN0141-0296
Publisher versionwww.elsevier.com/locate/engstruct
Peer-Reviewedyes
AccessOpen access
Appears in Collections:ISISE - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat 
IJ(ISI)_73.pdf3,75 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID