Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/87443

TítuloProcessing and structural health monitoring of a composite overwrapped pressure vessel for hydrogen storage
Autor(es)Rocha, Helena Cristina Lopes
Antunes, Paulo
Lafont, Ugo
Nunes, J. P.
Palavras-chaveComposite overwrapped pressure vessel
Structural health monitoring
Process monitoring
Fibre bragg grating sensor
Hydrogen storage
Barely visible impact damage
Burst pressure
Cyclic pressure test
Carbon fibre reinforced polymer composite
Data7-Nov-2023
EditoraSAGE Publications
RevistaStructural Health Monitoring
Resumo(s)A process and Structural Health Monitoring system was implemented on a Composite Overwrapped Pressure Vessel (COPV) for hydrogen storage at 350 bar to be used in a fuel-cell system of an Unmanned Aerial Vehicle. This work reports the embedment strategy of optical fibre Bragg grating (FBG) sensors to monitor the full life cycle of the vessel, consisting of an aluminium liner and a wound carbon fibre reinforced polymer composite overwrap. A FBG sensing array, bonded on the aluminium liner circumferential section, was covered with a localised unidirectional prepreg composite tape, enabling composite winding and curing monitoring. The sensing array strategy allowed to detect and locate Barely Visible Impact Damage resulting from drop-weight impact tests, based on the ratio of the residual strain amplitude between FBG sensor pairs. Errors as small as 17 mm and up to 56 mm were determined between the predicted and ‘real’ impact locations. To simulate the real-life operational pressure charging and discharging cycles, the COPV was subjected to cycling testing at different pressure ranges. The FBG sensors were able to monitor a total of 20 980 pressure cycles, revealing a linear response to the applied pressure, and remained operational after COPV failure. Furthermore, the FBG sensing array was able to detect the residual plastic strain caused in the aluminium liner by the autofrettage process that the COPV was subjected to prior to pressure cycling, at 600 bar for 2 min, to improve its fatigue performance. This manuscript also reports the COPV structural design by Finite Element Modelling (FEM), its manufacturing process and burst pressure testing for the FEM analysis validation. A small difference of 0.7% was found between the simulated and experimental determined burst pressure of 1061+-26 bar.
TipoArtigo
URIhttps://hdl.handle.net/1822/87443
DOI10.1177/14759217231204242
ISSN1475-9217
Arbitragem científicayes
AcessoAcesso aberto
Aparece nas coleções:IPC - Artigos em revistas científicas internacionais com arbitragem

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
rocha-et-al-2023-processing-and-structural-health-monitoring-of-a-composite-overwrapped-pressure-vessel-for-hydrogen.pdfversão publicada6,86 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID