Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/79329

Registo completo
Campo DCValorIdioma
dc.contributor.authorRibeiro, Sofiapor
dc.contributor.authorCarvalho, Ana M.por
dc.contributor.authorFernandes, Emanuel Moutapor
dc.contributor.authorGomes, Manuela E.por
dc.contributor.authorReis, R. L.por
dc.contributor.authorBayon, Yvespor
dc.contributor.authorZeugolis, Dimitrios I.por
dc.date.accessioned2022-08-12T08:35:03Z-
dc.date.available2022-08-13T06:00:27Z-
dc.date.issued2021-02-
dc.date.submitted2021-01-
dc.identifier.citationRibeiro S., Carvalho A. M., Fernandes E. M., Gomes M. E., Reis R. L., Bayon Y., Zeugolis D. I. Development and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation rate, Acta Biomaterialia, Vol. 121, pp. 303-315, doi:10.1016/j.actbio.2020.11.026, 2021por
dc.identifier.issn1742-7061por
dc.identifier.urihttps://hdl.handle.net/1822/79329-
dc.description.abstractAlthough it has been repeatedly indicated the importance to develop implantable devices and cell culture substrates with tissue-specific rigidity, current commercially available products, in particular cell culture substrates, have rigidity values well above most tissues in the body. Herein, six resorbable polyester films were fabricated using compression moulding with a thermal presser into films with tailored stiffness by appropriately selecting the ratio of their building up monomers (e.g. lactide, glycolide, trimethylene carbonate, dioxanone, ε-caprolactone). Typical NMR and FTIR spectra were obtained, suggesting that the fabrication process did not have a negative effect on the conformation of the polymers. Surface roughness analysis revealed no apparent differences between the films as a function of polymer composition. Subject to polymer composition, polymeric films were obtained with glass transition temperatures from -52 °C to 61 °C; contact angles in water from 81 ° to 94 °; storage modulus from 108 MPa to 2,756 MPa and loss modulus from 8 MPa to 507 MPa (both in wet state, at 1 Hz frequency and at 37 °C); ultimate tensile strength from 8 MPa to 62 MPa, toughness from 23 MJ/m3 to 287 MJ/m3, strain at break from 3 % to 278 %, macro-scale Young's modulus from 110 MPa to 2,184 MPa (all in wet state); and nano-scale Young's modulus from 6 kPa to 15,019 kPa (in wet state). With respect to in vitro degradation in phosphate buffered saline at 37 °C, some polymeric films [e.g. poly(glycolide-lactide) 30 / 70] started degrading from day 7 (shortest timepoint assessed), whilst others [e.g. poly(glycolide-co-ε-caprolactone) 10 / 90] were more resilient to degradation up to day 21 (longest timepoint assessed). In vitro biological analysis using human dermal fibroblasts and a human monocyte cell line (THP-1) showed the potential of the polymeric films to support cell growth and controlled immune response. Evidently, the selected polymers exhibited properties suitable for a range of clinical indications.por
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie, grant agreement no. 676338; the Widespread: Twinning, grant agreement no. 810850; and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement no. 866126. This work was also supported by Science Foundation Ireland, Career Development Award, grant agreement no. 15/CDA/3629 and Science Foundation Ireland/European Regional Development Fund, grant agreement no. 13/RC/2073. We would also like to thank Darlene Nebinger, Danielle Lord and Oswaldo Fabian from Medtronic North Haven, USA, for all their technical/experimental support.por
dc.language.isoengpor
dc.publisherElsevier 1por
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/676338/EU-
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/810850/EU-
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/866126/EU-
dc.rightsopenAccesspor
dc.subjectBiodegradable polyesterspor
dc.subjectSubstrate stiffnesspor
dc.subjectPhysicochemical propertiespor
dc.subjectDermal fibroblast responsepor
dc.subjectIn vitro immune responsepor
dc.titleDevelopment and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation ratepor
dc.typearticle-
dc.peerreviewedyespor
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1742706120306796por
dc.commentshttp://3bs.uminho.pt/node/20442por
oaire.citationStartPage303por
oaire.citationEndPage315por
oaire.citationVolume121por
dc.date.updated2022-08-12T08:12:43Z-
dc.identifier.doi10.1016/j.actbio.2020.11.026por
dc.identifier.pmid33227488por
dc.subject.wosScience & Technologypor
sdum.journalActa Biomaterialiapor
Aparece nas coleções:3B’s - Artigos em revistas/Papers in scientific journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
20442-1-s20-s1742706120306796-main-2.pdf2,8 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID