Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/66381

Registo completo
Campo DCValorIdioma
dc.contributor.authorPina, Sandra Cristina Almeidapor
dc.contributor.authorRibeiro, Viviana Pintopor
dc.contributor.authorMarques, Catarina F.por
dc.contributor.authorMaia, F. Raquelpor
dc.contributor.authorSilva, Tiago H.por
dc.contributor.authorReis, R. L.por
dc.contributor.authorOliveira, Joaquim M.por
dc.date.accessioned2020-08-07T10:35:05Z-
dc.date.available2020-08-07T10:35:05Z-
dc.date.issued2019-06-
dc.identifier.citationPina S., Ribeiro V. P., Marques C. F., Maia F. R., Silva T. H., Reis R. L., Oliveira J. M. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications, Materials, Vol. 12, Issue 11, pp. 1824, doi:10.3390/ma12111824, 2019por
dc.identifier.issn1996-1944por
dc.identifier.urihttps://hdl.handle.net/1822/66381-
dc.description.abstractDuring the past two decades, tissue engineering and the regenerative medicine field have invested in the regeneration and reconstruction of pathologically altered tissues, such as cartilage, bone, skin, heart valves, nerves and tendons, and many others. The 3D structured scaffolds and hydrogels alone or combined with bioactive molecules or genes and cells are able to guide the development of functional engineered tissues, and provide mechanical support during in vivo implantation. Naturally derived and synthetic polymers, bioresorbable inorganic materials, and respective hybrids, and decellularized tissue have been considered as scaffolding biomaterials, owing to their boosted structural, mechanical, and biological properties. A diversity of biomaterials, current treatment strategies, and emergent technologies used for 3D scaffolds and hydrogel processing, and the tissue-specific considerations for scaffolding for Tissue engineering (TE) purposes are herein highlighted and discussed in depth. The newest procedures focusing on the 3D behavior and multi-cellular interactions of native tissues for further use for in vitro model processing are also outlined. Completed and ongoing preclinical research trials for TE applications using scaffolds and hydrogels, challenges, and future prospects of research in the regenerative medicine field are also presented.por
dc.description.sponsorshipThis research was funded by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (NORTE-01-0145-FEDER-000023) and by the Portuguese Foundation for Science and Technology ((M-ERA-NET/0022/2016), Transitional Rule DL 57/2016 (CTTI-57/18-I3BS(5)), and (IF/01285/2015)).por
dc.language.isoengpor
dc.publisherMDPIpor
dc.rightsopenAccesspor
dc.subjectBiomaterialspor
dc.subjectBiopolymerspor
dc.subjectBioprintingpor
dc.subjectHydrogelspor
dc.subjectInorganic Materialspor
dc.subjectPorous structurespor
dc.subjectRegenerative medicinepor
dc.subjectScaffoldspor
dc.subjectTissue engineeringpor
dc.titleScaffolding strategies for tissue engineering and regenerative medicine applicationspor
dc.typearticle-
dc.peerreviewedyespor
dc.relation.publisherversionhttps://www.mdpi.com/1996-1944/12/11/1824por
dc.commentshttp://3bs.uminho.pt/node/19854por
oaire.citationIssue11por
oaire.citationVolume12por
dc.date.updated2020-08-06T14:31:57Z-
dc.identifier.eissn1996-1944por
dc.identifier.doi10.3390/ma12111824por
dc.subject.wosScience & Technologypor
sdum.journalMaterialspor
Aparece nas coleções:3B’s - Artigos em revistas/Papers in scientific journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
19854-materials-12-01824 (3).pdf5,13 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID