Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/59066

TitleViscoelastic properties of chitosan with different hydration degrees as studied by dynamic mechanical analysis
Author(s)Mano, J. F.
KeywordsBiotechnology
Chitosan
Elasticity
Materials Testing
Membranes
Temperature
Viscosity
Water
biomaterials
complex modulus
viscoelastic properties
Issue date9-Jan-2008
PublisherWiley
JournalMacromolecular Bioscience
Abstract(s)Dynamic mechanical analysis, DMA, is an adequate technique for characterizing the mechanical features of biomaterials, as one can use test conditions that can more closely simulate the physiological environments in which they are going to be applied. In this work it was possible to perform different tests on chitosan membranes using low/moderate hydration levels, as well in completely wet conditions. In the first case the data obtained at different relative humidity environments were rationalized under a time-humidity superposition principle, where a master curve for the storage modulus could be obtained along a wide range of frequencies. The temperature dependence of the shift factors exhibited a curvature opposite to that expected by the WLF equation, and is consistent with relaxation dynamics behavior below the glass transition. Temperature scans above room temperature in both dry and wet conditions did not reveal strong variations in the viscoelastic properties. It was possible to follow in real time the water uptake in an initially-dry membrane. During the initial strong and fast decrease of the storage modulus the loss factor exhibited a peak that should correspond to the occurrence of the glass transition resulting from the plasticization effect of water. Upon equilibration the loss factor reached similar values as for the dry material (tandelta approximately equal to 0.5). The viscoelastic characterization reported in this work for chitosan may be useful in the use of such material for a variety of biomedical applications.
TypeArticle
URIhttps://hdl.handle.net/1822/59066
DOI10.1002/mabi.200700139
ISSN1616-5187
Peer-Reviewedyes
AccessRestricted access (UMinho)
Appears in Collections:3B’s - Artigos em revistas/Papers in scientific journals

Files in This Item:
File Description SizeFormat 
Mano-2008-Macromolecular_Bioscience.pdf
  Restricted access
223,88 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID