Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/47076

Registo completo
Campo DCValorIdioma
dc.contributor.authorMoreira, Helena Rochapor
dc.contributor.authorRodrigues, Daniel Barreirapor
dc.contributor.authorReis, R. L.por
dc.contributor.authorMarques, A. P.por
dc.date.accessioned2017-11-07T10:35:22Z-
dc.date.available2017-11-07T10:35:22Z-
dc.date.issued2017-06-
dc.date.submitted2017-07-
dc.identifier.citationMoreira H., Rodrigues D. B., Reis R. L., Marques A. P. Unravelling the path to create a cell sheet-based model of skin scar-like tissue, European Cells & Materials, Vol. 33, Issue Suppl. 2, pp. 0236, doi:10.22203/eCM.2017.0236, 2017por
dc.identifier.issn1473-2262-
dc.identifier.urihttps://hdl.handle.net/1822/47076-
dc.description.abstractRegardless of the advances in understanding the mechanisms and the pathophysiology behind skin deformities, scaring continues to be an unsolved clinical problem. The underlying wound healing process involves a series of key cells which play different key roles. Fibroblasts are known to suffer the influence of local biochemical (e.g TGF-B1) and biomechanical signaling upon a wound scenario leading to a phenotypical change into myofibroblasts. The latter enhance immature extracellular matrix (ECM) synthesis and generate tensional forces that leads to ECM reorganization. Certain skin pathologies (e.g hypertrophic scars) rise from a dysfunction of this underlying regulatory mechanism which in turn drives myofibroblast persistence in the wound. When trying to study the mechanisms behind scarring human ex vivo samples are many times scarce and most of the current in vitro systems rely on standard 2D cultures of keloid/hypertrophic scar fibroblasts. Taking all of this into consideration we propose the use of cell sheet technology to create an in vitro 3D scar model. Herein we report the effect of TGF-B1 in human dermal fibroblast cell sheets as the first step to attain cell sheets with a myofibroblast-like phenotype in which cells are embedded in a scar-like ECM. To further strengthen our concept we performed the stacking of pre-formed cell sheets generating a cohesive 3D scar-like tissue. Human dermal fibroblast (hDFbs) cell sheets were produced as previously described1, and stimulated with TGF-B1 (10ng/ml) over 7, 14 and 21 days. Following phenotype and ECM characterization, cell sheets were stacked in order to obtain a 3D structure composed of 2 or 3 cell-sheets. The analysis of key genes (q-PCR) and proteins (Western blot and immunocytochemistry) showed that hDFbs cell sheets, when stimulated with TGF-B1 present an increased expression of a-SMA, fibronectin (FN) ED- A and FN ED-B, characteristic of a myofibroblast-like phenotype. When looking into the expression of scar ECM-associated proteins, hDFbs cell sheets obtained in the presence of TGF-B1 produced higher amounts of fibronectin and collagen I. Stable 3D constructs with a noticeable level of integration after a total of 21 days of culture, were further created upon stacking of the cell sheets obtained after 7days of culture in the presence of TGF-B1. In conclusion, this work suggested that it is possible to promote the secretion of scar-like ECM in hDFbs cell sheets due to phenotypic changes into myofibroblast-like cells when stimulated with TGF-B1. Cohesive 3D scar-like tissue structures were obtained which opens the possibility to develop a highly accurate in vitro 3D scar model to study underlying cellular mechanisms involved in the wound healing deregulation. por
dc.description.sponsorshipGrant IF/00945/2014 funded by FCT/MCTES, Project “NORTE-08-5369-FSE-000044”, funded by Programa Operacional Norte 2020 Fundo Social Europeu, and GENE2SKIN Twinning Project, Horizon 2020, funded by the European Commissionpor
dc.language.isoengpor
dc.publisherAO Research Institute Davos (ARI)por
dc.rightsopenAccesspor
dc.subjectCell sheet technologypor
dc.subjectHypertrophic scarpor
dc.subjectSkin modelpor
dc.titleUnravelling the path to create a cell sheet-based model of skin scar-like tissuepor
dc.typeconferenceAbstractpor
dc.peerreviewednopor
dc.commentshttp://3bs.uminho.pt/node/19141por
oaire.citationConferenceDate26 Jun. - 30 Jun. 2017por
sdum.event.titleTERMIS-EU2017por
sdum.event.typemeetingpor
oaire.citationStartPage0236por
oaire.citationIssueSuppl. 2-
oaire.citationConferencePlaceDavos, Switzerlandpor
oaire.citationVolume33-
dc.date.updated2017-09-25T15:09:58Z-
dc.subject.fosCiências Médicas::Biotecnologia Médicapor
dc.description.publicationversioninfo:eu-repo/semantics/publishedVersionpor
sdum.conferencePublicationTERMIS-EU2017, European Cells & Materialspor
Aparece nas coleções:3B’s - Resumos em livros de atas de conferências - indexados no ISI Web of Science

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
19141-TERMISEU_2017_HM.pdf237,55 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID