Please use this identifier to cite or link to this item:

TitleUV spectrophotometry method for the monitoring of galacto-oligosaccharides production
Author(s)Dias, Luís G.
Veloso, Ana C. A.
Correia, Daniela M.
Rocha, Orlando
Torres, D.
Rocha, I.
Rodrigues, L. R.
Peres, A. M.
KeywordsFermentation processes
UV spectrophotometer
Partial least squares regression
Artificial neural network
Issue date2009
PublisherElsevier Ltd.
JournalFood Chemistry
Citation"Food Chemistry." ISSN 0308-8146. 113:1 (Mar. 2009) 246–252.
Abstract(s)Monitoring the industrial production of galacto-oligosaccharides (GOS) requires a fast and accurate methodology able to quantify, in real time, the substrate level and the product yield. In this work, a simple, fast and inexpensive UV spectrophotometric method, together with partial least squares regression (PLS) and artificial neural networks (ANN), was applied to simultaneously estimate the products (GOS) and the substrate (lactose) concentrations in fermentation samples. The selected multiple models were trained and their prediction abilities evaluated by cross-validation and external validation being the results obtained compared with HPLC measurements. ANN models, generated from absorbance spectra data of the fermentation samples, gave, in general, the best performance being able to accurately and precisely predict lactose and total GOS levels, with standard error of prediction lower than 13 g kg 1 and coefficient of determination for the external validation set of 0.93–0.94, showing residual predictive deviations higher than five, whereas lower precision was obtained with the multiple model generated with PLS. The results obtained show that UV spectrophotometry allowed an accurate and non-destructive determination of sugars in fermentation samples and could be used as a fast alternative method for monitoring GOS production.
Publisher version
AccessOpen access
Appears in Collections:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Files in This Item:
File Description SizeFormat 
Dias_FoodChemistry[1].pdf269 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID