Please use this identifier to cite or link to this item:

TitleProspective scenarios for water quality and ecological status in Lake Sete Cidades (Portugal) : the integration of mathematical modelling in decision processes
Author(s)Martins, Gilberto
Ribeiro, Daniel
Pacheco, Dina
Cruz, J. Virgílio
Cunha, R.
Gonçalves, V.
Nogueira, R.
Brito, A. G.
Issue dateAug-2008
PublisherElsevier Ltd.
JournalApplied Geochemistry
Citation"Applied Geochemistry". ISSN 0883-2927. 23:8 (Aug. 2008) 2171-2181.
Abstract(s)The design of alternative strategies for water and ecological quality protection at the Lake Verde of Sete Cidades should be coupled with the assessment of future trophic states. Therefore, a mathematical model was developed to make prospective scenarios to reduce the risk of environmental degradation of the lake, and a modified Psenner scheme was used to characterize P distribution in the sediments. The model was able to describe thermal stratification, nutrient cycling (P, NH4 and NO3), dissolved O2, and phytoplankton dynamics in the water column and adjacent sediment layers. Internal P recycling, resulting from thermal stratification and sediment anoxia, was identified as the main cause for the increase of P concentration in the hypolimnion followed by slow transfer to the epilimnion (about 20 lg/L annual average). Cyanobacteria blooms during spring were explained by the availability of P and increased water temperature verified during this season. The most sensitive model parameter was sediment porosity. This parameter has a direct effect in dissolved O2 and P profiles and also in phytoplankton biomass. Finally, different water quality restoration scenarios were identified and their effectiveness assessed. Without the adoption of remediation measures (scenario control), Lake Verde water quality would deteriorate with annual average concentrations of total P and phytoplankton biomass (dry matter) reaching 34 lg/L and 2 mg/L, respectively, after 10 years of simulation. The reduction of P loads (scenario PORAL) into the lake would improve water quality comparatively to the scenario control, reducing the annual average concentrations of total P from 34 lg/L to 26 lg/L and of phytoplankton from 2 mg/L down to 1.4 mg/L after 10 years of simulation. In scenario sediments, corresponding to a decrease in the organic content of the sediments, a reduction in the concentrations of total P and phytoplankton is expected in the first two years of simulation, but this effect, would be attenuated throughout the years due to organic matter sedimentation. The best strategy is obtained by combining external and internal measures for P remediation. Finally, it is recommended that the model be used to integrate the results of water quality monitoring and watershed management plans.
AccessOpen access
Appears in Collections:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Files in This Item:
File Description SizeFormat 
Martins_Appl_Geochem[1].pdf708,82 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID