Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/77563

TitleSelf-healing radio maps of wireless networks for indoor positioning
Author(s)Silva, Ivo Miguel Menezes
Advisor(s)Moreira, Adriano
Pendão, Cristiano Gonçalves
KeywordsFusão Sensorial
Indústria 4.0
Mapas de Rádio
Posicionamento Indoor
Veículos Industriais
Indoor Positioning
Industry 4.0
Industrial Vehicles
Radio Maps
Sensor Fusion
Issue date29-Apr-2022
Abstract(s)A Indústria 4.0 está a impulsionar a mudança para novas formas de produção e otimização em tempo real nos espaços industriais que beneficiam das capacidades da Internet of Things (IoT) nomeadamente, a localização de veículos para monitorização e optimização de processos. Normalmente os espaços industriais possuem uma infraestrutura Wi-Fi que pode ser usada para localizar pessoas, bens ou veículos, sendo uma oportunidade para aumentar a produtividade. Os mapas de rádio são importantes para os sistemas de posicionamento baseados em Wi-Fi, porque representam o ambiente de rádio e são usados para estimar uma posição. Os mapas de rádio são constituídos por amostras Wi-Fi recolhidas em posições conhecidas e degradam-se ao longo do tempo devido a vários fatores, por exemplo, efeitos de propagação, adição/remoção de APs, entre outros. O processo de construção do mapa de rádio costuma ser exigente em termos de tempo e recursos humanos, constituindo um desafio considerável. Os veículos, que operam em ambientes industriais podem ser explorados para auxiliar na construção de mapas de rádio, desde que seja possível localizá-los e rastreá-los. O objetivo principal desta tese é desenvolver um sistema de posicionamento para veículos industriais com mapas de rádio auto-regenerativos (capaz de manter os mapas de rádio atualizados). Os veículos são localizados através da fusão sensorial de Wi-Fi com sensores de movimento, que permitem anotar novas amostras Wi-Fi para o mapa de rádio auto-regenerativo. São propostas duas abordagens de fusão sensorial, baseadas em Loose Coupling e Tight Coupling, para a localização dos veículos. A abordagem Tight Coupling inclui uma métrica de confiança para determinar quando é que as amostras de Wi-Fi devem ser anotadas. Deste modo, esta solução não requer calibração nem esforço humano para a construção e manutenção do mapa de rádio. Os resultados obtidos em experiências sugerem que esta solução tem potencial para a IoT e a Indústria 4.0, especialmente em serviços de localização, mas também na monitorização, suporte à navegação autónoma, e interconectividade.
Industry 4.0 is driving change for new forms of production and real-time optimization in factories, which benefit from the Industrial Internet of Things (IoT) capabilities to locate industrial vehicles for monitoring, improving safety, and operations. Most industrial environments have a Wi-Fi infrastructure that can be exploited to locate people, assets, or vehicles, providing an opportunity for enhancing productivity and interconnectivity. Radio maps are important for Wi-Fi-based Indoor Position Systems (IPSs) since they represent the radio environment and are used to estimate a position. Radio maps comprise a set of Wi- Fi samples collected at known positions, and degrade over time due to several aspects, e.g., propagation effects, addition/removal of Access Points (APs), among others, hence they should be periodically updated to maintain the IPS performance. The process to build and maintain radio maps is usually time-consuming and demanding in terms of human resources, thus being challenging to perform. Vehicles, commonly present in industrial environments, can be explored to help build and maintain radio maps, as long as it is possible to locate and track them. The main objective of this thesis is to develop an IPS for industrial vehicles with self-healing radio maps (capable of keeping radio maps up to date). Vehicles are tracked using sensor fusion of Wi-Fi with motion sensors, which allows to annotate new Wi-Fi samples to build the self-healing radio maps. Two sensor fusion approaches based on Loose Coupling and Tight Coupling are proposed to track vehicles. The Tight Coupling approach includes a reliability metric to determine when Wi-Fi samples should be annotated. As a result, this solution does not depend on any calibration or human effort to build and maintain the radio map. Results obtained in real-world experiments suggest that this solution has potential for IoT and Industry 4.0, especially in location services, but also in monitoring and analytics, supporting autonomous navigation, and interconnectivity between devices.
TypeDoctoral thesis
DescriptionPrograma Doutoral em Telecomunicações MAP-tele das Universidades do Minho, Aveiro e Porto
URIhttps://hdl.handle.net/1822/77563
AccessOpen access
Appears in Collections:BUM - Teses de Doutoramento
CAlg - Teses de doutoramento/PhD theses

Files in This Item:
File Description SizeFormat 
Ivo Miguel Menezes Silva.pdfTese de doutoramento9,81 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID