Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/6972

TítuloBiofilm interactions between distinct bacterial genera Isolated from drinking water
Autor(es)Simões, Lúcia C.
Simões, M.
Vieira, M. J.
DataOut-2007
EditoraAmerican Society for Microbiology (ASM)
RevistaApplied and Environmental Microbiology
Citação"Applied Environmental Microbiology". ISSN 0099-2240. 73:19 (Oct. 2007) 6192-6200.
Resumo(s)In the environment, multiple microorganisms coexist as communities, competing for resources and often associated as biofilms. In this study, single- and dual-species biofilm formation by, and specific activities of, six heterotrophic intergeneric bacteria were determined using 96-well polystyrene plates over a 72-h period. These bacteria were isolated from drinking water and identified by partial 16S rRNA gene sequencing. A series of planktonic studies was also performed, assessing the bacterial growth rate, motility, and production of quorum-sensing inhibitors (QSI). This constituted an attempt to identify key attributes allowing bacteria to effectively interact and coexist in a drinking-water environment. We observed that in both pure and dual cultures, all of the isolates formed stable biofilms within 72 h, with specific metabolic activity decreasing, in most cases, with an increase in biofilm mass. The largest single- and dual-biofilm amounts were found for Methylobacterium sp. and the combination of Methylobacterium sp. and Mycobacterium mucogenicum, respectively. Evidences of microbial interactions in dual-biofilm formation, associated with appreciable biomass variation in comparison with single biofilms, were found for the following cases: synergy/cooperation between Sphingomonas capsulata and Burkholderia cepacia, S. capsulata and Staphylococcus sp., and B. cepacia and Acinetobacter calcoaceticus and antagonism between S. capsulata and M. mucogenicum, S. capsulata and A calcoaceticus, and M. mucogenicum and Staphylococcus sp. A neutral interaction was found for Methylobacterium sp.-M. ucogenicum, S. capsulata-Staphylococcus sp., M. mucogenicum-A. calcoaceticus, and Methylobacterium sp.-A. calcoaceticus biofilms, since the resultant dual biofilms had a mass and specific metabolic activity similar to the average for each single biofilm. B. cepacia had the highest growth rate and motility and produced QSI. Other bacteria producing QSI were Methylobacterium sp., S. capsulata, and Staphylococcus sp. However, only for S. capsulata-M. mucogenicum, S. capsulata-A. calcoaceticus, and M. mucogenicum-Staphylococcus sp., dual-biofilm formation seems to be regulated by the QSI produced by S. capsulata and Staphylococcus sp. and by the increased growth rate of S. capsulata. The parameters assessed by planktonic studies did not allow prediction and generalization of the exact mechanism regulating dual-species biofilm formation between the drinkingwater bacteria.
TipoArtigo
URIhttps://hdl.handle.net/1822/6972
DOI10.1128/AEM.00837-07
ISSN0099-2240
Arbitragem científicayes
AcessoAcesso aberto
Aparece nas coleções:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Sim_C3_B5es_Lucia_AEM[1].pdf207,26 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID