Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/65527

TitleEcological design of new efficient energy-performance construction mMaterials with rigid polyurethane foam waste
Author(s)Briones-Llorente, Raúl
Barbosa, Ricardo
Almeida, Manuela Guedes de
Montero García, Eduardo Atanasio
Rodríguez Saiz, Ángel
Keywordscomputer simulation
ecological mortar
energy efficiency
polyurethane waste
prefabricated
slag
Issue date3-May-2020
PublisherMultidisciplinary Digital Publishing Institute
JournalPolymers
CitationBriones-Llorente, R.; Barbosa, R.; Almeida, M.; Montero García, E.A.; Rodríguez Saiz, Á. Ecological Design of New Efficient Energy-Performance Construction Materials with Rigid Polyurethane Foam Waste. Polymers 2020, 12, 1048.
Abstract(s)An ecological mortar is designed from industrial sub-products, with the objective of utilizing both the slag residues, generated during steel manufacturing processes, and the waste from Polyurethane Foam (PF) panels, generated during refrigerator chamber manufacturing processes. The ecological mortar design involves the dosing of Electric Arc Furnace (EAF) slag, together with finely ground Polyurethane Foam, cement, and additives. An energy efficient prefabricated block is designed with the mortar, for use in construction, and its energy performance is assessed as a material inserted within the envelope of a service sector (hospital) building, either as an exterior skin, or as an enclosing component within the façade interior. The main contribution of this research is the characterization of the thermo-physical and mechanical properties of a new prefabricated panel made with recycled materials. The full characterization of the properties of these new materials is presented and discussed. The new prefabricated panel demonstrates adequate thermo-mechanical characteristics as a substitute for traditional materials, while improving the sustainability of the building. As a secondary objective, the energy behaviour of the new panels when integrated in a real building is presented by means of a case study simulation. The use of computational thermal simulation confirmed that the properties of the prefabricated block influenced the annual thermal demand of the building for heating and cooling. Improvements to the thermal inertia of the building envelope were also confirmed with the inclusion of PF waste, giving the mortar an energy performance that was similar to conventional materials, in such a way that its use in façade construction may be validated, in addition to its environmental benefits, due to it having been manufactured with critical recycled industrial waste such as EAF slag and PF, thereby contributing to both the circular economy and sustainable development.
TypeArticle
URIhttps://hdl.handle.net/1822/65527
DOI10.3390/polym12051048
e-ISSN2073-4360
Publisher versionhttps://www.mdpi.com/2073-4360/12/5/1048
Peer-Reviewedyes
AccessOpen access
Appears in Collections:C-TAC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat 
polymers-12-01048-v2.pdf4,92 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID