Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/59066

TítuloViscoelastic properties of chitosan with different hydration degrees as studied by dynamic mechanical analysis
Autor(es)Mano, J. F.
Palavras-chaveBiotechnology
Chitosan
Elasticity
Materials Testing
Membranes
Temperature
Viscosity
Water
biomaterials
complex modulus
viscoelastic properties
Data9-Jan-2008
EditoraWiley
RevistaMacromolecular Bioscience
Resumo(s)Dynamic mechanical analysis, DMA, is an adequate technique for characterizing the mechanical features of biomaterials, as one can use test conditions that can more closely simulate the physiological environments in which they are going to be applied. In this work it was possible to perform different tests on chitosan membranes using low/moderate hydration levels, as well in completely wet conditions. In the first case the data obtained at different relative humidity environments were rationalized under a time-humidity superposition principle, where a master curve for the storage modulus could be obtained along a wide range of frequencies. The temperature dependence of the shift factors exhibited a curvature opposite to that expected by the WLF equation, and is consistent with relaxation dynamics behavior below the glass transition. Temperature scans above room temperature in both dry and wet conditions did not reveal strong variations in the viscoelastic properties. It was possible to follow in real time the water uptake in an initially-dry membrane. During the initial strong and fast decrease of the storage modulus the loss factor exhibited a peak that should correspond to the occurrence of the glass transition resulting from the plasticization effect of water. Upon equilibration the loss factor reached similar values as for the dry material (tandelta approximately equal to 0.5). The viscoelastic characterization reported in this work for chitosan may be useful in the use of such material for a variety of biomedical applications.
TipoArtigo
URIhttps://hdl.handle.net/1822/59066
DOI10.1002/mabi.200700139
ISSN1616-5187
Arbitragem científicayes
AcessoAcesso restrito UMinho
Aparece nas coleções:3B’s - Artigos em revistas/Papers in scientific journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Mano-2008-Macromolecular_Bioscience.pdf
Acesso restrito!
223,88 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID