Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/58816

TítuloCARB 113: Co-assembly of peptide and carbohydrate amphiphiles to generate proteoglycan mimics
Autor(es)Brito, A.
Abul-Haija, Y. M.
Soares da Costa, D.
Novoa-Carballal, Ramon
Reis, R. L.
Ulijn, R. V.
Pires, R. A.
Pashkuleva, I.
Palavras-chaveGlycopeptides
Self-assembly
Supramolecular gels
DataAgo-2018
EditoraACS Publications
CitaçãoBrito A., Abul-Haija Y. M., Soares da Costa D., Novoa-Carballal R., Reis R. L., Ulijn R. V., Pires R. A., Pashkuleva I. Co-assembly of peptide and carbohydrate amphiphiles to generate proteoglycan mimics, ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 256, pp. 113-CARB, 0065-7727, 2018
Resumo(s)Peptide amphiphiles (PA) have been used as building blocks that generate nanofibrous protein mimics through self-assembly under physiological conditions. These supramolecular structures are maintained by non-covalent interactions, such as, Pi-Pi stacking, hydrogen bonding and hydrophobic effects. The generated fibers can be further crosslinked via salt bridges thus forming hydrated systems that resemble the extracellular matrix (ECM) at structural and functional level. However, the proteins in the ECM are often presented as glycoconjugates such as glycoproteins and proteoglycans. Carbohydrate-modified PAs are just emerging as alternative or complementary building blocks able to generate closer supramolecular ECM mimics. Such PAs are challenging at synthetic, supramolecular and biofunctional level. Carbohydrates bear different â OH groups prompt to react and thus, different protections are needed for selective functionalization. Moreover, once conjugated to the PA, the carbohydrate moiety can alter its self-assembling capacity, as well as, the biofunctionality of the incorporated bioactive peptide. We therefore developed a simpler approach for generation of minimalistic proteoglycan mimics: co-assembly of short, aromatic PA and their carbohydrate analogues. The nanofibers generated by this approach have a PA core (e.g. fmoc-FF) and a carbohydrate shell (e.g. fmoc-glucosamine-6-phosphate or fmoc-glucosamine-6-sulfate). They present: 1) a higher mechanical performance than the PA single component systems; 2) an improved biofunctionality as demonstrated by our studies with growth factors (e.g. FGF2), lectins and cells. Peptide amphiphiles (PA) have been used as building blocks that generate nanofibrous protein mimics through self-assembly under physiological conditions. These supramolecular structures are maintained by non-covalent interactions, such as, Pi-Pi stacking, hydrogen bonding and hydrophobic effects. The generated fibers can be further crosslinked via salt bridges thus forming hydrated systems that resemble the extracellular matrix (ECM) at structural and functional level. However, the proteins in the ECM are often presented as glycoconjugates such as glycoproteins and proteoglycans. Carbohydrate-modified PAs are just emerging as alternative or complementary building blocks able to generate closer supramolecular ECM mimics. Such PAs are challenging at synthetic, supramolecular and biofunctional level. Carbohydrates bear different –OH groups prompt to react and thus, different protections are needed for selective functionalization. Moreover, once conjugated to the PA, the carbohydrate moiety can alter its self-assembling capacity, as well as, the biofunctionality of the incorporated bioactive peptide. We therefore developed a simpler approach for generation of minimalistic proteoglycan mimics: co-assembly of short, aromatic PA and their carbohydrate analogues. The nanofibers generated by this approach have a PA core (e.g. fmoc-FF) and a carbohydrate shell (e.g. fmoc-glucosamine-6-phosphate or fmoc-glucosamine-6-sulfate). They present: 1) a higher mechanical performance than the PA single component systems; 2) an improved biofunctionality as demonstrated by our studies with growth factors (e.g. FGF2), lectins and cells.  
TipoResumo em ata de conferência
URIhttps://hdl.handle.net/1822/58816
ISSN0065-7727
Versão da editorahttps://plan.core-apps.com/acsboston18/abstract/22b86c0c-58bc-4db9-b2a3-18abb28dd0c6
Arbitragem científicayes
AcessoAcesso aberto
Aparece nas coleções:3B’s - Resumos em livros de atas de conferências - indexados no ISI Web of Science

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
19706-256th ACS National Meeting & Exposition.pdf87,57 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID