Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/52116

Registo completo
Campo DCValorIdioma
dc.contributor.authorDantas, T. A.por
dc.contributor.authorAbreu, C. S.por
dc.contributor.authorCosta, M. M.por
dc.contributor.authorMiranda, G.por
dc.contributor.authorSilva, F. S.por
dc.contributor.authorDourado, N.por
dc.contributor.authorGomes, J. R.por
dc.date.accessioned2018-03-12T14:10:38Z-
dc.date.issued2017-
dc.identifier.issn0928-4931por
dc.identifier.urihttps://hdl.handle.net/1822/52116-
dc.description.abstractThe Ti6Al4V alloy constitutes an alternative choice to the most common metal-polymer solutions for total hip arthroplasty (THA) due to good biocompatibility, optimal mechanical properties and high load bearing capacity. However, as Ti6Al4V is not bioactive in its conventional form, hydroxyapatite (HAp) and tricalcium phosphate (TCP) have been widely used as coatings of metal prostheses due to their osteogenic properties and ability to form strong bonds with bone tissue. A promising approach consists in creating a bioactive surface metal matrix composite Ti6Al4V+β-TCP or Ti6Al4V+HAp, obtained by hot pressing (HP) of powders. In this work, the tribological performance of Ti6Al4V+β-TCP and Ti6Al4V+HAp composites is studied to evaluate the frictional response and surface damage representative of prosthesis implantation, key factors in bone fixation. Biocomposites with 10vol% β-TCP and 10vol% Hap, as well as base titanium alloy, were prepared by HP with two surface finishing conditions - polished (Ra=0.3-0.5μm) and sandblasted (Ra=2.1-2.5μm) - for tribological testing against bovine cortical bone tissue. The static friction increases with surface roughness (from 0.20 to 0.60), whereas the kinetic regime follows an inverse trend for the biocomposites. In contrast with current knowledge, this study shows that an implant design solution based on Ti6Al4V+β-TCP or Ti6Al4V+HAp biocomposites with polished surfaces results in an improved primary stability of implants, when compared to traditional rough surfaces. Moreover, it is also expected that the secondary stability will improve due to the adhesion between bone and HAp/β-TCP, increasing the overall stability of the implant.por
dc.description.sponsorshipThis work has been supported by FCT (Fundação para a Ciência e Tecnologia - Portugal) in the scope of the project NORTE-01-0145-FEDER-000018 and UID/EEA/04436/2013.por
dc.language.isoengpor
dc.publisherElsevier 1por
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147325/PTpor
dc.rightsrestrictedAccesspor
dc.subjectAlloyspor
dc.subjectAnimalspor
dc.subjectCalcium Phosphatespor
dc.subjectCattlepor
dc.subjectDurapatitepor
dc.subjectMaterials Testingpor
dc.subjectProstheses and Implantspor
dc.subjectSurface Propertiespor
dc.subjectTitaniumpor
dc.subjectBiotribologypor
dc.subjectFrictionpor
dc.subjectBiocompositespor
dc.subjectPrimary stabilitypor
dc.subjectImplantspor
dc.titleBioactive materials driven primary stability on titanium biocompositespor
dc.typearticlepor
dc.peerreviewedyespor
oaire.citationStartPage1104-1110por
oaire.citationEndPage1110por
oaire.citationVolume77por
dc.identifier.doi10.1016/j.msec.2017.04.014por
dc.identifier.pmid28531984por
dc.description.publicationversioninfo:eu-repo/semantics/publishedVersionpor
dc.subject.wosScience & Technologypor
sdum.journalMaterials Science and Engineering: Cpor
Aparece nas coleções:DEM - Artigos em revistas de circulação internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
MSEC Dan-Abr-Cos-Mir-Sil-Dou-Gom 2017.pdf
Acesso restrito!
1,24 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID