Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/51180

TitleParticulate blood analogues reproducing the erythrocytes cell-free layer in a microfluidic device containing a hyperbolic contraction
Author(s)Calejo, Joana
Pinho, Diana
Galindo-Rosales, Francisco J.
Lima, Rui Alberto Madeira Macedo
Campo-Deaño, Laura
KeywordsHemodynamics
Blood analogue
Rheology
Microfluidics
Cell-free layer
Issue date2016
PublisherMDPI
JournalMicromachines
Abstract(s)The interest in the development of blood analogues has been increasing recently as a consequence of the increment in the number of experimental hemodynamic studies and the difficulties associated with the manipulation of real blood in vitro because of ethical, economical or hazardous issues. Although one-phase Newtonian and non-Newtonian blood analogues can be found in the literature, there are very few studies related to the use of particulate solutions in which the particles mimic the behaviour of the red blood cells (RBCs) or erythrocytes. One of the most relevant effects related with the behaviour of the erythrocytes is a cell-free layer (CFL) formation, which consists in the migration of the RBCs towards the center of the vessel forming a cell depleted plasma region near the vessel walls, which is known to happen in in vitro microcirculatory environments. Recent studies have shown that the CFL enhancement is possible with an insertion of contraction and expansion region in a straight microchannel. These effects are useful for cell manipulation or sorting in lab-on-chip studies. In this experimental study we present particulate Newtonian and non-Newtonian solutions which resulted in a rheological blood analogue able to form a CFL, downstream of a microfluidic hyperbolic contraction, in a similar way of the one formed by healthy RBCs.
TypeArticle
URIhttp://hdl.handle.net/1822/51180
DOI10.3390/mi7010004
ISSN2072-666X
Peer-Reviewedyes
AccessOpen access
Appears in Collections:DEM - Artigos em revistas de circulação internacional com arbitragem científica

Files in This Item:
File Description SizeFormat 
Calejo_micromachines_2016.pdf1,87 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID