Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/51095

Registo completo
Campo DCValorIdioma
dc.contributor.authorPinto, Elmanopor
dc.contributor.authorFaustino, Verapor
dc.contributor.authorRodrigues, Raquel O.por
dc.contributor.authorPinho, Dianapor
dc.contributor.authorGarcia, Valdemarpor
dc.contributor.authorMiranda, João M.por
dc.contributor.authorLima, Rui Alberto Madeira Macedopor
dc.date.accessioned2018-02-27T11:28:13Z-
dc.date.available2018-02-27T11:28:13Z-
dc.date.issued2015-
dc.identifier.issn2072-666Xpor
dc.identifier.urihttps://hdl.handle.net/1822/51095-
dc.description.abstractMicrofluidic devices are electrical/mechanical systems that offer the ability to work with minimal sample volumes, short reactions times, and have the possibility to perform massive parallel operations. An important application of microfluidics is blood rheology in microdevices, which has played a key role in recent developments of lab-on-chip devices for blood sampling and analysis. The most popular and traditional method to fabricate these types of devices is the polydimethylsiloxane (PDMS) soft lithography technique, which requires molds, usually produced by photolithography. Although the research results are extremely encouraging, the high costs and time involved in the production of molds by photolithography is currently slowing down the development cycle of these types of devices. Here we present a simple, rapid, and low-cost nonlithographic technique to create microfluidic systems for biomedical applications. The results demonstrate the ability of the proposed method to perform cell free layer (CFL) measurements and the formation of microbubbles in continuous blood flow.por
dc.description.sponsorshipThe authors acknowledge the financial support provided by PTDC/SAU-BEB/105650/2008, PTDC/SAU-ENB/116929/2010, EXPL/EMS-SIS/2215/2013 and scholarship SFRH/BD/89077/2012 and SFRH/BD/97658/2013 from FCT (Science and Technology Foundation), COMPETE, QREN and European Union (FEDER).por
dc.language.isoengpor
dc.publisherMDPIpor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876-PPCDTI/105650/PTpor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876-PPCDTI/116929/PTpor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876-PPCDTI/135240/PTpor
dc.relationinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F89077%2F2012/PTpor
dc.relationinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F97658%2F2013/PTpor
dc.rightsopenAccesspor
dc.subjectLow cost biochipspor
dc.subjectNonlithographic techniquepor
dc.subjectXurographypor
dc.subjectBlood flowpor
dc.subjectBifurcationspor
dc.subjectMicrobubblespor
dc.subjectBiomicrofluidicspor
dc.titleA rapid and low-cost nonlithographic method to fabricate biomedical microdevices for blood flow analysispor
dc.typearticlepor
dc.peerreviewedyespor
oaire.citationStartPage121por
oaire.citationEndPage135por
oaire.citationIssue12por
oaire.citationVolume6por
dc.identifier.doi10.3390/mi6010121por
dc.subject.fosEngenharia e Tecnologia::Engenharia Mecânicapor
dc.description.publicationversioninfo:eu-repo/semantics/publishedVersionpor
dc.subject.wosScience & Technologypor
sdum.journalMicromachinespor
Aparece nas coleções:DEM - Artigos em revistas de circulação internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Elmano_etal_micromachines-06-00121.pdf3,08 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID