Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/45161

TítuloWhole proteome analyses on Ruminiclostridium cellulolyticum show a modulation of the cellulolysis machinery in response to cellulosic materials with subtle differences in chemical and structural properties
Autor(es)Badalato, Nelly
Guillot, Alain
Sabarly, Victor
Dubois, Marc
Pourette, Nina
Pontoire, Bruno
Robert, Paul
Bridier, Arnaud
Monnet, Véronique
Sousa, Diana Zita Machado
DataJan-2017
EditoraPublic Library of Science
RevistaPLoS ONE
CitaçãoBadalato, Nelly; Guillot, Alain; Sabarly, Victor; Dubois, Marc; Pourette, Nina; Pontoire, Bruno; Robert, Paul; Bridier, Arnaud; Monnet, Véronique; Sousa, D. Z.; Durand, Sylvie; Mazéas, Laurent; Buléon, Alain; Bouchez, Théodore; Mortha, Gérard; Bize, Ariane, Whole proteome analyses on Ruminiclostridium cellulolyticum show a modulation of the cellulolysis machinery in response to cellulosic materials with subtle differences in chemical and structural properties. PLoS One, 12(1), 1-22, 2017
Resumo(s)Lignocellulosic materials from municipal solid waste emerge as attractive resources for anaerobic digestion biorefinery. To increase the knowledge required for establishing efficient bioprocesses, dynamics of batch fermentation by the cellulolytic bacterium Ruminiclostridium cellulolyticum were compared using three cellulosic materials, paper handkerchief, cotton discs and Whatman filter paper. Fermentation of paper handkerchief occurred the fastest and resulted in a specific metabolic profile: it resulted in the lowest acetate-to-lactate and acetate-to-ethanol ratios. By shotgun proteomic analyses of paper handkerchief and Whatman paper incubations, 151 proteins with significantly different levels were detected, including 20 of the 65 cellulosomal components, 8 non-cellulosomal CAZymes and 44 distinct extracytoplasmic proteins. Consistent with the specific metabolic profile observed, many enzymes from the central carbon catabolic pathways had higher levels in paper handkerchief incubations. Among the quantified CAZymes and cellulosomal components, 10 endoglucanases mainly from the GH9 families and 7 other cellulosomal subunits had lower levels in paper handkerchief incubations. An in-depth characterization of the materials used showed that the lower levels of endoglucanases in paper handkerchief incubations could hypothetically result from its lower crystallinity index (50%) and degree of polymerization (970). By contrast, the higher hemicellulose rate in paper handkerchief (13.87%) did not result in the enhanced expression of enzyme with xylanase as primary activity, including enzymes from the xyl-doc cluster. It suggests the absence, in this material, of molecular structures that specifically lead to xylanase induction. The integrated approach developed in this work shows that subtle differences among cellulosic materials regarding chemical and structural characteristics have significant effects on expressed bacterial functions, in particular the cellulolysis machinery, resulting in different metabolic patterns and degradation dynamics.
TipoArtigo
URIhttps://hdl.handle.net/1822/45161
DOI10.1371/journal.pone.0170524
ISSN1932-6203
Versão da editorahttp://journals.plos.org/plosone/
Arbitragem científicayes
AcessoAcesso aberto
Aparece nas coleções:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
document_46637_1.pdf1,68 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID