Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/44402

TítuloOsteochondral tissue engineering and regenerative strategies
Autor(es)Canadas, Raphael Faustino
Marques, A. P.
Reis, R. L.
Oliveira, J. M.
Palavras-chaveBilayer
Biodegradable Material
Biomaterial
Bioreactor
Bone
Cartilage
Cell therapy
Ceramic
Hydrogel
In Vitro Model
Injectable material
Osteochondral
Polymer
Regenerative medicine
Scaffold
Stem cells
Tissue engineering
Articular Cartilage
Articular Chondrocytes
Autologous Chondrocytes Implantation
Hyaluronic Acid
Subchondral Bone
Data2017
EditoraSpringer International Publishing AG
RevistaStudies in Mechanobiology Tissue Engineering and Biomaterials
CitaçãoCanadas R. F., Marques A. P., Reis R. L., Oliveira J. M. Osteochondral Tissue Engineering and Regenerative Strategies, Regenerative Strategies for the Treatment of Knee Joint Disabilities, Vol. 21, pp. 213-233, doi:10.1007/978-3-319-44785-8_11, 2016
Resumo(s)The orthopedic field has been facing challenging difficulties when it comes to regeneration of large and/or complex defects as we come across in osteochondral (OC) cases of lesions grade 4. Autologous OC mosaicplasty has proven to be a valid therapeutic option but donor site morbidity and the lack of long-term functionality remain sources of concern. OC tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. The use of two scaffolds with optimized properties for bone and cartilage architectures combined at the time of implantation as a multilayered structure was one of the first approaches for OC large defects regeneration. Last decade strategies using a bony-like scaffold supporting a cell layer for cartilage phase were introduced. Beyond the approaches already mentioned, three other strategies were reported for OCD regeneration. One methodology was the use of two different layers with a compact interface to create an integrated bilayered scaffold before cell seeding. A second strategy was the use of a single continuous structure but with different features in each layer. The last one was the combination of hydrogel phases creating this way the possibility to have injectable systems. These promising strategies for the regeneration of complex OCDs comprise the use of different biomaterials, growth factors, and cells alone or in combination, but the ideal solution is still to be found. The interface’s mechanical properties have to be optimized. A different problem is related with the cell culture method within the 3D bilayered structures with heterogeneous properties. With the increasing demand of these stratified 3D structures new cell culture systems are required. Moreover these structures present the potential to be used as in vitro models, which is a need also because of the pressure resulting from the 3R’s principle implementation that is now occurring. Regarding this, adapted bioreactors are being developed, but more efforts are required to target this scientific demand.
TipoCapítulo de livro
DescriçãoSeries: Studies in mechanobiology, tissue engineering and biomaterials, ISSN 1868-2006, vol. 21
URIhttps://hdl.handle.net/1822/44402
ISBN978-3-319-44783-4
e-ISBN978-3-319-44785-8
DOI10.1007/978-3-319-44785-8_11
ISSN1868-2006
AcessoAcesso restrito UMinho
Aparece nas coleções:3B’s - Capítulos de Livros/Book Chapters

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
18402-Chapter 11_Osteochondral Tissue Engineering and Regenerative Strategies.pdf
Acesso restrito!
550,51 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID