Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/34447

TitleModel to predict shrinkage and ejection forces of injection moulded tubular parts of short glass fiber reinforced thermoplastics
Author(s)Garcia, M. C. R.
Netto, A. C. S.
Pontes, A. J.
KeywordsShrinkage
Ejection force
Glass fiber
Mathematical model
Issue date2011
Abstract(s)This work presents a model to predict shrinkage and ejection forces for glass fiber reinforced thermoplastics of tubular geometry. This mathematical model was based in Jansen’s Model to predict shrinkage and residual stresses in fiber reinforced injection molded products and Pontes’s Model to predict ejection forces for tubular parts of pure PP. The model used the modified classical laminate theory applied to injection moulding and it uses the fiber orientation state, temperature and pressure field as input and which predicts the shrinkage and ejection forces. The fiber orientation state was determined experimentally and the temperature and pressure fields were obtained by MOLDFLOW simulations. The model to predict ejection forces considers also the fiber orientation state, friction coefficient between steel and polymer, elastic modulus of polymer, both in the ejection temperature and diametrical shrinkage. The model is validated by experimental results.
TypeConference paper
URIhttp://hdl.handle.net/1822/34447
Peer-Reviewedyes
AccessOpen access
Appears in Collections:IPC - Textos completos em actas de encontros científicos internacionais com arbitragem

Files in This Item:
File Description SizeFormat 
CI87.pdf112,02 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID