Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/33066

TitleReal-time prediction of organ failure and outcome in intensive medicine
Other titlesTempo real na previsão da falência de órgãos e outcome em medicina intensiva
Author(s)Vilas-Boas, Marta
Portela, Filipe
Santos, Manuel Filipe
Silva, Álvaro
Rua, Fernando
KeywordsINTCare
Sistemas de Apoio à Decisão Inteligente;
Clinical Data Mining
Previsão em Tempo Real;
Previsão Horária;
Medicina Intensiva
Issue date2010
PublisherIEEE
Abstract(s)Actualmente há uma tendência para usar modelos de Data Mining na perspectiva do suporte à decisão em medicina intensiva. Resultados de investigações anteriores utilizaram dados offline para previsão de falência de órgãos e outcome para o dia seguinte. Este artigo apresenta o sistema INTCare, um Sistema de Apoio à Decisão Inteligente para Medicina Intensiva. Avanços no INTCare levaram a um novo objectivo, a previsão para a hora seguinte, com dados em tempo real, recolhidos na Unidade de Cuidados Intensivos do Hospital Geral de Santo António, Porto, Portugal. Foram atingidos resultados interessantes, provando que é possível usar dados online e em tempo real para fazer previsões precisas para a hora seguinte. Esta nova abordagem representa um avanço em termos de medicina intensiva, uma vez que a previsão horária permitirá aos intensivistas adoptar uma atitude pró-activa, com medidas rápidas e atempadas, no sentido de evitar situações mais graves para o doente.
Nowadays, there is a trend to use Data Mining models in the context of decision support for intensive medicine. Previous research has used offline data for predicting organ failure and outcome for the next day. This paper presents the INTCare system, an Intelligent Decision Support System for intensive medicine. Advances in INTCare led to a new goal, the prediction for the next hour, with real-time data, gathered in the Intensive Care Unit of Hospital Geral de Santo António, Oporto, Portugal. Interesting results were achieved, proving that it is possible to use online and real-time data to make accurate predictions for the next hour. This new approach represents an advance in intensive medicine, for hourly prediction will allow doctors to have a proactive attitude, with timely intervention, in order to avoid serious complications in the patients' clinical condition.
TypeConference paper
URIhttp://hdl.handle.net/1822/33066
ISBN978-1-4244-7227-7
Peer-Reviewedyes
AccessRestricted access (UMinho)
Appears in Collections:CAlg - Artigos em livros de atas/Papers in proceedings

Files in This Item:
File Description SizeFormat 
CISTI 2010 - Tempo real na previsão da falência de órgãos e outcome em Medicina Intensiva.pdf
  Restricted access
284,2 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID