Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/31963

Registo completo
Campo DCValorIdioma
dc.contributor.authorAraújo, M. Carvalhopor
dc.contributor.authorMartins, J. P.por
dc.contributor.authorMirkhalaf, Mohsenpor
dc.contributor.authorLanceros-Méndez, S.por
dc.contributor.authorPires, Franciscopor
dc.contributor.authorSimões, Ricardopor
dc.date.accessioned2014-12-15T16:04:02Z-
dc.date.available2014-12-15T16:04:02Z-
dc.date.issued2014-07-
dc.identifier.citationAraújo, M. C., Martins, J. P., Mirkhalaf, S. M., Lanceros-Mendez, S., Pires, F. M., & Simoes, R. (2014). Predicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulation. Applied Surface Science, 306, 37-46.por
dc.identifier.issn0169-4332por
dc.identifier.urihttps://hdl.handle.net/1822/31963-
dc.description.abstractPolymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress–strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.por
dc.description.sponsorshipFinancial support has been provided by the Foundation for Science and Technology (FCT), Lisbon, through projects PTDC-EME-PME-108859-2008, PEst-C/CTM/LA0025/2013 and PEST-C/FIS/UI607/2011, and the SFRH/BD/74027/2010 PhD grant(Mohsen Mirkhalaf). The authors also thank funding from Matepro-Optimizing Materials and Processes", ref. NORTE-07-0124-FEDER-000037", co-funded by the "Programa Operacional Regional do Norte" (ON. 2 - O Novo Norte), under the "Quadro de Referencia Estrategico Nacional" (QREN), through the "Fundo Europeu de Desenvolvimento Regional" (FEDER).por
dc.language.isoengpor
dc.publisherElsevierpor
dc.rightsrestrictedAccesspor
dc.subjectAmorphous polymerspor
dc.subjectMultiscale modelingpor
dc.subjectComputer simulationpor
dc.subjectMolecular dynamicspor
dc.subjectFinite-element methodpor
dc.titlePredicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulationpor
dc.typearticlepor
dc.peerreviewedyespor
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S016943321400600Xpor
sdum.publicationstatuspublishedpor
oaire.citationStartPage37por
oaire.citationEndPage42por
oaire.citationTitleApplied Surface Sciencepor
oaire.citationVolume306por
dc.identifier.doi10.1016/j.apsusc.2014.03.072por
dc.subject.wosScience & Technologypor
sdum.journalApplied Surface Sciencepor
Aparece nas coleções:CDF - FCD - Artigos/Papers (with refereeing)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Multiscale.pdf
Acesso restrito!
Multiscale2,35 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID