Please use this identifier to cite or link to this item:

TitleInstructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering
Author(s)Monteiro, Nelson
Ribeiro, Diana Margarida da Costa
Martins, Albino
Faria, Susana
Fonseca, Nuno A.
Moreira, João N.
Reis, R. L.
Neves, N. M.
Mesenchymal stem cells
Gene expression
Bone tissue engineering
Issue date2014
PublisherAmerican Chemical Society
JournalACS Nano
Abstract(s)Inducer molecules capable of regulating mesenchymal stem cells (MSCs) differentiation into specific lineages have proven effective in basic science and in preclinical studies. Runt-related transcription factor 2 (RUNX2) is considered to be the central gene involved in the osteoblast phenotype induction, which may be advantageous for inducing bone tissue regeneration. This work envisions the development of a platform for gene delivery, combining liposomes as gene delivery devices, with electrospun nanofiber mesh (NFM) as a tissue engineering scaffold. pDNA-loaded liposomes were immobilized at the surface of functionalized PCL NFM. Human bone marrow-derived mesenchymal stem cells (hBMSCs) cultured on RUNX2-loaded liposomes immobilized at the surface of electrospun PCL NFM showed enhanced levels of metabolic activity and total protein synthesis. RUNX2-loaded liposomes immobilized at the surface of electrospun PCL NFMs induce a long-term gene expression of eGFP and RUNX2 by cultured hBMSCs. Furthermore, osteogenic differentiation of hBMSCs was also achieved by the overexpression of other osteogenic markers in medium free of osteogenic supplementation. These findings demonstrate that surface immobilization of RUNX2 plasmid onto elestrospun PCL NFM can produce long-term gene expression in vitro, which may be employed to enhance the osteoinductive properties of scaffolds used for bone tissue engineering strategies.
Description"Epub 2014 Jul. 30"
Publisher version
AccessRestricted access (UMinho)
Appears in Collections:3B’s - Artigos em revistas/Papers in scientific journals

Files in This Item:
File Description SizeFormat 
  Restricted access
5,3 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID