Please use this identifier to cite or link to this item:

TitleBiofunctional nanofibrous substrate comprising immobilized antibodies and selective binding of autologous growth factors
Author(s)Oliveira, C.
Costa-Pinto, A. R.
Reis, R. L.
Martins, Albino
Neves, N. M.
Biological fluids
Covalent immobilization
Electrospun nanofibers
Growth factors
Issue dateMay-2014
PublisherACS Publications
Abstract(s)The immobilization of biomolecules at the surface of different biomedical devices has attracted enormous interest in order to enhance their biological functionality at the cellular level. This work aims to develop a biofunctional polymeric substrate capable of selectively binding growth factors (GFs) of interest from a pool of proteins present in a biological fluid: platelet lysate (PL). To achieve this goal, the surface of electrospun PCL nanofibers needs to be activated and functionalized to be able to insert chemical groups for the immobilization of antibodies. After determining the maximum immobilization capacity of each antibody, TGF-β1 (12 μg mL(-1)), bFGF (8 μg mL(-1)), and VEGF (4 μg mL(-1)), the next step was to confirm their bioavailability using recombinant proteins. The binding efficiency of PL-derived GFs was of 84-87% for TGF-β1, 55-64% for bFGF, and 50-59% for VEGF. Cellular assays confirmed the biological activity of the bound VEGF (both recombinant and PL-derived). Multiple antibodies (i.e., bFGF and VEGF) were also immobilized over the same structure in a mixed or side-by-side fashion. Using both autologous biological fluids and cells, it is possible to use this platform to implement very effective and personalized therapies that can be tailored to specific medical conditions.
AccessRestricted access (UMinho)
Appears in Collections:3B’s - Artigos em revistas/Papers in scientific journals

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID