Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/81337

TitleOptimization of epidemic multicast protocols
Author(s)Fernandes, Diogo André Teles
Advisor(s)Pereira, José
Alonso, Ana Luísa Parreira Nunes
KeywordsEpidemic multicast
Machine Learning
Peer-to-peer
Aprendizagem automática
Difusão epidémica
Entre-pares
Issue date10-Aug-2021
Abstract(s)Epidemic multicast protocols, also known as gossip protocols, offer fault tolerance and good performance at large scale. Therefore, these are used in peer-to-peer (P2P) systems on the Internet and in NoSQL data management systems. Research has shown there are multiple variants of these protocols which are most efficient in certain environments and applications. Some protocols, such as Plumtree, even allow the application to configure to obtain different performance trade-offs. This dissertation aims at taking advantage of Machine Learning (ML) to configure these protocols, developing a solution that adapts in runtime to network conditions and evaluate it experimentally. The results obtained by using ML models to control the transmission strategy used when forwarding messages show that it is possible to achieve a better trade-off between bandwidth used and the time to reach the entire network. Moreover, this does not endanger the characteristics of epidemic multicast protocols, maintaining their reliability while becoming even more scalable.
Os protocolos de difusão epidémica, também conhecidos como gossiping, oferecem tolerância a faltas e bom desempenho em grande escala. São por isso usados, por exemplo, em sistemas entre-pares (P2P) na Internet e em sistemas de gestão de dados NoSQL. A investigação feita mostrou que existem múltiplas variantes destes protocolos, adaptadas a diferentes ambientes e aplicações. Alguns protocolos concretos, como o Plumtree, permitem até que a aplicação faça uma configuração das suas características, de forma a obter diferentes compromissos de desempenho. Nesta dissertação apresenta-se uma abordagem que tira partido de tecnologias de aprendizagem automática para fazer a configuração destes protocolos, desenvolvendo uma solução capaz de se adaptar em runtime tendo em conta o estado atual da rede e posteriormente é feita uma avaliação da solução experimentalmente. Os resultados obtidos com os modelos que controlam a estratégia de transmissão na distribuição de mensagens demonstram ser possível alcançar um melhor compromisso entre o número de mensagens enviadas e o tempo necessário para as distribuir. Além disso, não compromete as características dos protocolos de difusão epidémica, mantendo a sua confiabilidade e tornando-se ainda mais escaláveis.
TypeMaster thesis
DescriptionDissertação de mestrado integrado em Engenharia Informática
URIhttps://hdl.handle.net/1822/81337
AccessOpen access
Appears in Collections:BUM - Dissertações de Mestrado
DI - Dissertações de Mestrado

Files in This Item:
File Description SizeFormat 
Diogo Andre Teles Fernandes.pdf1,81 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID