Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/76802

TítuloSurface biofunctionalization of polycaprolactone fibrous meshes for skeletal and neural tissue advanced therapies
Outro(s) título(s)Biofuncionalização da superfície de membranas fibrosas de policaprolactona para terapias avançadas de tecido esquelético e neural
Autor(es)Casanova, Marta Alexandra Rodrigues
Orientador(es)Neves, Nuno João Meleiro Alves das
Martins, Albino
Palavras-chaveAntibodies Immobilization
Bone
Cartilage
Electrospun Nanofibrous Meshes
Nerve
Cartilagem
Imobilização de Anticorpos
Malhas fibrosas produzidas por "electrospinning"
Nervo
Osso
Data20-Fev-2020
Resumo(s)Damage of the skeletal and neural tissues has a significant impact over the quality-of-life of patients and high socio-economical costs. Current treatment options are not effective in long term, due to the suboptimal integration with the host tissue and limited bioactivity of implantable biomaterials. The immobilization of biomolecules at the surface of biomedical devices has attracted increasing interest, allowing for their local bioavailability avoiding systemic side effects and longer half-life. Envisioning the development of advanced therapies, the electrospun nanofibrous meshes (NFMs) were used as a substrate due to their fibrous structure mimic the extracellular matrix (ECM) of many tissues, allowing cell-cell and cell-biomaterial interactions. For that, the surface of polycaprolactone NFMs was activated and functionalized with amine groups allow for covalent immobilization of defined antibodies, with the capacity to selectively bind autologous biomolecules. Different biofunctional substrates with chondrogenic inductive properties were developed through the surface biofunctionalization of NFM with endogenous human fibronectin, extracellular vesicles or the combination of endogenous Transforming Growth Factor-133 and Insulin-like Growth Factor-I. All these biofunctional substrates successfully induced the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) under basal culture conditions. Blood-derived Nerve Growth Factor bound to the surface of NFMs remains bioactive, being an effective inducer of the neurogenic differentiation of a relevant cell line. Additionally, we developed a biofunctional system able to mimic the vasculature of bone tissue, comprising Bone Morphogenetic Protein 2 and Vascular Endothelial Growth Factor in a parallel pattern design. This biofunctional system enabled a spatially defined osteogenic and angiogenic differentiation of hBM-MSCs. The surface biofunctionalization of biomaterial substrates enables developing biofunctional systems envisioning patient-specific devices promoting skeletal and neural tissue regeneration that can maximize and extend the local efficacy and minimize the side effects of the use of biologic based therapies in patients.
A deterioração dos tecidos esquelético a neural têm um impacto significativo na qualidade de vida dos pacientes e um elevado custo socioeconómico. Os tratamentos atualmente disponíveis não são eficazes a longo termo, devido à inadequada integração com o tecido hospedeiro e à baixa bioatividade dos biomateriais implantados. A imobilização de biomoléculas constitui uma estratégia alternativa, permitindo a biodisponibilidade local das biomoléculas evitando efeitos colaterais sistêmicos. Ambicionando desenvolver terapias avançadas, malhas fibrosas produzidas por "electrospinning" (NFMs) foram usadas como substratos poliméricos devido à sua estrutura fibrosa similar a matriz extracelular (ECM) de muitos tecidos, promovendo as interações célula-célula e célula-biomaterial. Para isso, NFMs de policaprolactona foram ativadas e funcionalizadas com grupos amina, permitindo a imobilização covalente de anticorpos pré-definidos, com capacidade de ligar seletivamente biomoléculas autólogas. Foram desenvolvidos diferentes substratos biofuncionais, com propriedades indutoras de diferenciação condrogénica, mediante ligação de fibronectina humana, vesículas extracelulares ou a combinação do fator de transformação do crescimento beta 3 com o fator de crescimento semelhante à insulina tipo I. Todos estes substratos biofuncionalizados foram capazes de induzir a diferenciação condrogénica de células estaminais mesenquimais derivadas de medula óssea humana (hBM-MSCs) sendo cultivadas em condições basais. O fator de crescimento nervoso ligado à superfície das NFMs permanece bioativo, sendo um indutor eficaz da diferenciação neurogénica de uma linha celular relevante. Numa outra abordagem, foi desenvolvido um sistema biofuncional capaz de mimetizar a vasculatura de um tecido ósseo, ligando paralelamente a proteína morfogenética óssea 2 e o fator de crescimento do endotélio vascular sobre uma mesma NFM. Este sistema biofuncional permitiu a diferenciação osteogénica e angiogénica de hBM-MSCs espacialmente definida. Concluindo, a bioftmcionalização de substratos produzidos por "electrospinning" permite o desenvolvimento de dispositivos biomédicos personalizados, capazes de promover a regeneração do tecido esquelético e neural, maximizando a eficácia local e minimizando os efeitos colaterais do uso de terapias biológicas em pacientes.
TipoTese de doutoramento
DescriçãoTese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais
URIhttps://hdl.handle.net/1822/76802
AcessoAcesso aberto
Aparece nas coleções:BUM - Teses de Doutoramento
I3Bs - Teses de doutoramento

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Marta Alexandra Rodrigues Casanova.pdfTese de Doutoramento14,3 MBAdobe PDFVer/Abrir

Este trabalho está licenciado sob uma Licença Creative Commons Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID