Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/69984

TítuloAssist-as-needed EMG-based control strategy for wearable powered assistive devices
Autor(es)Moreira, Luís Carlos Rodrigues
Orientador(es)Santos, Cristina
Figueiredo, Joana
García Armada, Elena
Palavras-chaveWearable powered assistive devices
EMG-based control strategy
Regression models
Electromyography
Gait rehabilitation
Dispositivos de assistência ativos vestíveis
Estratégia de controlo baseada em EMG
Modelos de regressão
Eletromiografia
Reabilitação da marcha
Data2019
Resumo(s)Robotic-based gait rehabilitation and assistance using Wearable Powered Assistive Devices (WPADs), such as orthosis and exoskeletons, has been growing in the rehabilitation area to recover and augment the motor function of neurologically impaired subjects. These WPADs should provide a personalized assistance, since physical condition and muscular fatigue modify from patient to patient. In this field, electromyography (EMG) signals have been used to control WPADs given their ability to infer the user’s motion intention. However, in cases of motor disability conditions, EMG signals present lower magnitudes when compared to EMG signals under healthy conditions. Thus, the use of WPADs managed by EMG signals may not have potential to provide the assistance that the patient requires. The main goal of this dissertation aims the development of an Assisted-As-Needed (AAN) EMG-based control strategy for a future insertion in a Smart Active Orthotic System (SmartOs). To achieve this goal, the following elements were developed and validated: (i) an EMG system to acquire muscle activity signals from the most relevant muscles during the motion of the ankle joint; (ii) machine learning-based tool for ankle joint torque estimation to serve as reference in the AAN EMG-based control strategy; and (iii) a tool for real EMG-based torque estimation using Tibialis Anterior (TA) and Gastrocnemius Lateralis (GASL) muscles and real ankle joint angles. EMG system showed satisfactory pattern correlations with a commercial system. The reference ankle joint torque was generated based on predicted reference ankle joint kinematics, walking speed information (from 1 to 4 km/h) and anthropometric data (body height from 1.51 m to 1.83 m and body mass from 52.0 kg to 83.7 kg), using five machine learning algorithms: Support Vector Regression (SVR), Random Forest (RF), Multilayer Perceptron (MLP), Long-Short Term Memory (LSTM) and Convolutional Neural Network (CNN). CNN provided the best performance, predicting the reference ankle joint torque with fitting curves ranging from 74.7 to 89.8 % and Normalized Root Mean Square Errors (NRMSEs) between 3.16 and 8.02 %. EMG-based torque estimation beneficiates of a higher number of muscles, since EMG data from TA and GASL are not enough to estimate the real ankle joint torque.
A assistência e reabilitação robótica usando dispositivos de assistência ativos vestíveis (WPADs), como ortóteses e exosqueletos, tem crescido na área da reabilitação com o fim de recuperar e aumentar a função motora de sujeitos com alterações neurológicas. Estes dispositivos devem fornecer uma assistência personalizada, uma vez que a condição física e a fadiga muscular variam de paciente para paciente. Nesta área, sinais de eletromiografia (EMG) têm sido usados para controlar WPADs, dada a sua capacidade de inferir a intenção de movimento do utilizador. Contudo, em casos de deficiência motora, os sinais de EMG apresentam menor amplitude quando comparados com sinais de EMG em condições saudáveis e, portanto, o uso de WPADs geridos por sinais de EMG pode não oferecer a assistência que o paciente necessita. O principal objetivo desta dissertação visa o desenvolvimento de uma estratégia de controlo baseada em EMG capaz de fornecer assistência quando necessário, para futura integração num sistema ortótico ativo e inteligente (SmartOs). Para atingir este objetivo foram desenvolvidos e validados os seguintes elementos: (i) sistema de EMG para adquirir sinais de atividade muscular dos músculos mais relevantes no movimento da articulação do tornozelo; (ii) ferramenta de machine learning para estimação do binário da articulação do tornozelo para servir como referência na estratégia de controlo; e (iii) ferramenta de estimação do binário real do tornozelo considerando sinais de EMG dos músculos Tibialis Anterior (TA) e Gastrocnemius Lateralis (GASL) e ângulo real do tornozelo. O sistema de EMG apresentou correlações satisfatórias com um sistema comercial. O binário de referência para o tornozelo foi gerado com base no ângulo de referência da mesma articulação, velocidade de marcha (de 1 até 4 km/h) e dados antropométricos (alturas de 1.51 m até 1.83 e massas de 52.0 kg até 83.7 kg), usando cinco algoritmos de machine learning: Support Vector Machine, Random Forest, Multilayer Perceptron, Long-Short Term Memory e Convolutional Neural Network. CNN apresentou a melhor performance, prevendo binários de referência do tornozelo com um fit entre 74.7 e 89.8 % e Normalized Root Mean Square Errors (NRMSE) entre 3.16 e 8.02 %. A estimativa do torque com base em sinais de EMG requer a inclusão de um maior número de músculos, uma vez que sinais de EMG dos músculos TA e GASL não foram suficientes.
TipoDissertação de mestrado
DescriçãoDissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
URIhttps://hdl.handle.net/1822/69984
AcessoAcesso aberto
Aparece nas coleções:BUM - Dissertações de Mestrado

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Dissertação Luís Carlos Rodrigues Moreira.pdf3,08 MBAdobe PDFVer/Abrir

Este trabalho está licenciado sob uma Licença Creative Commons Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID