Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/64866

TitleDeep reinforcement learning for robot navigation systems
Other titlesAprendizagem profunda por reforço em sistemas de navegação robóticos
Author(s)Ribeiro, Tiago Alcântara
Advisor(s)Lopes, Gil
KeywordsMachine Learning
Reinforcement learning
Deep learning
Robotics
Navigations systems
Aprendizagem máquina
Aprendizagem por reforço
Aprendizagem profunda
Robótica
Sistemas de navegação
Issue date2019
Abstract(s)Reinforcement Learning in robotics has been a challenging topic for the past few years. The ability to equip a robot with a tool powerful enough to allow an autonomous discovery of optimal behaviour through trial-and-error interactions with the environment, has been a motive for numerous in-depth research projects. This dissertation presents a thorough theoretical foundation that supports different reinforcement learning algorithms. Three different algorithms namely Q-Learning, Monte Carlo Policy Gradient and Deep Deterministic Policy Gradient were selected and implemented on OpenAI Gym control environments. The selected environments were MountainCar, CartPole and Pendulum. These granted a wide variety of applicable algorithms for different action-space and state-space. For each implemented algorithm, a detailed hyperparameter configuration is analysed and compared. A simulated agent was also created in V-REP and configured via ROS and a Python control node. The agent is a Bot’n Roll ONE A robot, which is a differential robot with embedded distance sensors. The goal of the robot/agent is to surpass three levels of increasing complexity mazes using its distance sensors. Tests with different sensor topologies using the embedded distance sensors and additional Time-of-Flight sensors were carried out. Q-Learning and Monte Carlo Policy Gradient algorithms were implemented in the simulated robot. Q-Learning allowed a comparison between two different methods regarding different action selection timings. One of the methods was able to solve the three mazes using the embedded discrete distance sensors. With the Monte Carlo Policy Gradient algorithm, a thorough analysis of how reward functions influence the robot learned policies is presented. The Deep Deterministic Policy Gradient, even though not implemented on the simulated robot, demonstrated a significant potential with several essential advantages such as the stochastic behaviour policy associated with a deterministic target policy, the Actor-Critic method and continuous control.
A aprendizagem por reforço na robótica tem sido um tema desafiante dos últimos anos. A capacidade de equipar um robô com uma ferramenta tão poderosa, como permitir a descoberta, de forma autónoma, de um comportamento optimizador a partir de tentativa-erro, tem gerado inúmeros projetos de investigação. Esta dissertação apresenta os fundamentos teóricos de diferentes algoritmos de aprendizagem por reforço. Destes, três algoritmos distintos, nomeadamente Q-Learning, Monte Carlo Policy Gradient e Deep Deterministic Policy Gradient foram implementados em ambientes de controlo do OpenAI Gym. Os ambientes selecionados são MountainCar, CartPole e Pendulum, que garantem uma variedade de algoritmos implementáveis para diferentes espaços de estados e espaços de ações. De seguida, um agente simulado foi criado no V-REP e configurado via ROS e um nó de controlo em Python. O agente, Bot’n Roll ONE A, é um robô diferencial com sensores de distância embebidos. O objetivo do robô/agente é resolver três labirintos que aumentam de dificuldade utilizando os sensores de distância. Foram desenvolvidos testes com diferentes posições e orientações dos sensores e adicionados sensores Time-of-Flight. Dois algoritmos, Q-Learning e Monte Carlo Policy Gradient foram implementados no robô simulado. O Q-Learning permitiu a comparação entre dois métodos distintos no que toca a tempos de seleção das ações, em que um dos métodos conseguiu resolver os três labirintos utilizando os sensores embebidos. O método Monte Carlo Policy Gradient permitiu uma análise detalhada de como o sistema de recompensas influencia a política de ações aprendida. O Deep Deterministic Policy Gradient, ainda que não implementado no robô simulado, demonstrou um enorme potencial e vantagens essenciais, tais como a política de comportamento estocástica aliada a uma política alvo determinística, o método Actor-Crítico e a controlo de ações continuo.
TypeMaster thesis
DescriptionDissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
URIhttps://hdl.handle.net/1822/64866
AccessOpen access
Appears in Collections:BUM - Dissertações de Mestrado
DEI - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
77157-Tiago+Alcantara+Ribeiro+-+Dissertation.pdf10,23 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID