Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/19599

TitleEstratégias de filtragem Anti-Spam baseadas em técnicas de computação evolucionária
Author(s)Vaz, Rui Fernando Martins
Advisor(s)Cortez, Paulo
Sousa, Pedro
KeywordsSpam
Filtragem baseada no conteúdo
Seleção de atributos
Aprendizagem máquina
Algoritmos evolucionários
Filtragem colaborativa
Content-based filtering
Feature selection
Machine learning
Evolutionary algorithms
Collaborative filtering
Issue date2012
Abstract(s)O serviço de correio eletrónico é atualmente um serviço de comunicação essencial, que assume uma crescente importância na sociedade atual. No entanto, apesar dos vários esforços concentrados contra o correio eletrónico (email) não solicitado, designado também por spam, este continua a ser ainda um problema inerente a este serviço. No quadro das soluções tecnológicas, os métodos de filtragem baseados no conteúdo das mensagens de email, que utilizam técnicas de data mining, são atualmente os mais populares e amplamente utilizados para combater este problema. No âmbito destes métodos, a seleção de atributos que melhor caraterizam as mensagens de spam (e.g., palavras mais correlacionadas com mensagens de spam), constitui um passo importante no desenvolvimento de filtros mais assertivos. Nesse sentido, é efetuado neste trabalho um estudo empírico da introdução de técnicas de computação evolucionária de seleção de atributos no contexto da filtragem anti-spam. De forma a avaliar o método proposto foram desenvolvidos diversos filtros anti- spam que implementam, usando estratégias diferentes, técnicas de computação evolucionária de seleção de atributos. Uma das estratégias desenvolvida segue uma abordagem colaborativa que permite a troca de atributos relevantes entre filtros locais. O desempenho dos filtros anti-spam que utilizam técnicas de computação evolucionária de seleção de atributos são analisados. Posteriormente o desempenho do filltro colaborativo e comparado com um filtro padrão que utiliza apenas um método de seleção de atributos baseado num critério de informação.
Nowadays electronic mail (email) service assumes an increasing importance in modern society and is considered an essential communication service. However, despite the several efforts made against the unsolicited email (also known as spam), it remains an inherent problem which affects this service. Within the existing technological solutions, Content-Based Filtering (CBF) methods, that use data mining techniques, are currently the most popular approaches to solve this issue. Feature selection techniques are essential in CBF methods. These techniques allow the selection of a reduced set of relevant attributes (e.g., words correlated with spam messages) that provides essential information to enhance the accuracy of anti-spam filters. Hence, in this work we perform an empirical study concerning the introduction of evolutionary computation techniques for feature selection in the scope of anti-spam filtering. In order to evaluate the proposed method several anti-spam filters were developed. These filters implement, through different strategies, evolutionary computation techniques for feature selection. One of these strategies follows a collaborative approach which enables the exchange of relevant attributes between local filters. The performances of the developed filters that implement evolutionary computation techniques are evaluated. Afterwards, the performance of the collaborative filter is compared to a standard filter which uses a feature selection method based on an information criterion.
TypeMaster thesis
DescriptionDissertação de mestrado integrado em Engenharia de Comunicações
URIhttps://hdl.handle.net/1822/19599
AccessOpen access
Appears in Collections:BUM - Dissertações de Mestrado
DPS - Dissertações de Mestrado

Files in This Item:
File Description SizeFormat 
Thesis_Rui Fernando Martins Vaz.pdf10,33 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID