Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/15982

TítuloIdentification of amino acid residues critical for the substrate translocation in lactate permease JEN1p of saccharomyces cerevisiae
Autor(es)Pessoa, Joana Sá
Silva, Isabel Soares
Myrianthopoulos, Vassilios
Mikros, Emmanuel
Diallinas, George
Casal, Margarida
Data2011
Resumo(s)Lactic, acetic and propionic acids have been used for many years in industrial and pharmaceutical companies. In Saccharomyces cerevisiae, Jen1p is a major monocarboxylate:H+ symporter specific primarily for lactate, pyruvate and for acetate (TC # 2.A.1.12.2) (Casal et al., 1999). A phylogenetic tree of ScJen1p homologues (Casal et al., 2008) showed the existence of two main clusters: a Jen1 group (monocarboxylate transporters) and a Jen2-like (dicarboxylate transporters). Structure-function relationships in Jen1p have been approached by using a rational mutational analysis of conserved amino acid residues (Soares-Silva et al., 2007). Analysis of the conserved sequence 379NXX[S/T]HX[S/T]QDXXXT391, located in transmembrane segment seven (TMS-VII), showed that residues N379, H383 or D387 are necessary for function and specificity, while Q386 is important for the kinetics of Jen1p-mediated transport. In this work, we rationally designed and analyzed novel mutations in conserved regions located in TMS-II, TMS-V and TMS-XI of Jen1p, which we predicted to affect Jen1p specificity (distinction between mono and dicarboxylates) and function. Among the residues studied, F270 (TMS-V) and Q498 (TMS-XI) are specificity determinants for the distinction of mono- from dicarboxylates, and N501 (TMS-XI) is critical for function. Using a model based on Jen1p similarity with the GlpT permease, we show that all polar residues critical for function within TMS-VII and TMS-XI are aligned along the protein pore and substrate docking studies reveal a potential substrate translocation trajectory consisting mostly of the polar residues genetically identified as important for function. Overall, our results constitute a first step towards the genetic manipulation of substrate specificity in the lactate/pyruvate:H+ symporter subfamily and a tool for the in silico prediction of the function of Jen1p homologues in other fungi (Soares-Silva et al., 2011).
TipoResumo em ata de conferência
URIhttps://hdl.handle.net/1822/15982
Arbitragem científicano
AcessoAcesso aberto
Aparece nas coleções:DBio - Comunicações/Communications in Congresses


Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID