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Abstract: Recon�gurable software systems behave di�erently in di�erent
modes of operation and commute between them along their lifetime. Such
di�erent behaviours can be modelled by a transition system, to express the
overall system's dynamics, but with structured states to capture local proper-
ties. We take this path in this paper by endowing states in standard Kripke
frames with algebras, each of them modelling a local con�guration. An equa-
tional hybrid logic, with in�nitary formulas, is proposed to express a broad
range of properties of those structures, including liveness requirements. The
paper develops a number of results on its semantics, including suitable notions
of simulation and bisimulation.
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1. Introduction

Motivation. Published in 1976, Niklaus Wirth's most in�uential
book Algorithms + Data Structures = Programs [40] was the �rst
to systematically draw the community attention to the fundamen-
tal interconnection between what one would call now behaviour and
data in software construction. The message is more relevant than
ever: systems whose functionality changes along their own compu-
tation, in response to varying context conditions, are ubiquitous
in modern societies. We classify such systems as recon�gurable to
emphasise that their behaviour commutes through a set of di�erent
run-time modes of operation along their lifetime.

At present such is more the norm than the exception in software
systems whose components are frequently recon�gured. A typical,
everyday example is o�ered by cloud based applications that elas-
tically react to client demands. Another example is a modern car
in which hundreds of electronic control units must operate in dif-
ferent modes depending on the current situation � such as driving
on a highway or �nding a parking spot. Switching between these
modes is an intuitive example of a dynamic recon�guration.

Classically, there are two main paradigms to formally capture
requirements for this sort of software: one emphasises behaviour
and its evolution; the other focus on data and their transforma-
tions. In the former, systems are speci�ed through (some vari-
ant of) state-machines and their evolution is expressed in terms of
event occurrences and their impact in internal state con�gurations.
In the latter, data-oriented approach, the system's functionality is
given in terms of input-output relations modelling operations on
data. A speci�cation is presented as a theory in a suitable logic,
expressed over a signature, which captures its syntactic interface.
Its semantics is a class of concrete algebras acting as models for
the speci�ed theory [20].

The authors' recent work [28] aims at putting together these
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two approaches to pave the way to a speci�cation method for
recon�gurable systems. Clearly, the dynamics of recon�guration
of a software system can be described by some sort of transition
system, whose states represent con�gurations and transitions are
triggered by whatever conditions enforce the move from a con�gu-
ration to another. However, one needs also to capture the speci�c,
local requirements which characterise each con�guration and dis-
tinguish one from the others. Formally, such di�erent behaviours
can be modelled by imposing additional structure upon states in
the transition system which expresses the overall dynamics. For
example, starting from a classical state-machine speci�cation, each
state can be equipped with an algebra (over the system's interface)
of the corresponding functionality. Technically, speci�cations be-
come structured state-machines, states denoting algebras, rather
than sets. This method, introduced in [28], raises a number of
technical issues which this paper intends to address.

First of all, a speci�cation of a recon�gurable system should be
able to make assertions both about the transition dynamics and,
locally, about each particular con�guration. This entails the need
for an expressive logic to deal with transitional behaviour and data
speci�cation. Clearly, this should be a modal language with the
ability to refer to individual states, each of which stands for a local
con�guration. Hybrid logic [23, 8, 13] is thus the obvious choice.

In general, hybrid logic adds to a modal language the ability
to name, or to explicitly refer to speci�c states of the underlying
Kripke structure. This is done through the introduction of propo-
sitional symbols of a new sort, called nominals, each of which is
true at exactly one possible state. The sentences are then enriched
in two directions. On the one hand, nominals are used as sim-
ple sentences holding exclusively in the state they name. On the
other hand, explicit reference to states is provided through a local
satisfaction operator. One may therefore specify (local) proper-
ties of speci�c con�gurations in the system or even to assert the
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equality between two particular con�gurations, something which
is beyond what can be said in a modal language. Modalities, how-
ever, capture state transitions, providing a way to specify the global
dynamics of recon�gurability.

Historically, hybrid logic was introduced by A. Prior in his book
[35]. However, its seminal ideas emerged by the end of the �fties,
in a discussion of C.A. Meredith [8]. The theme was later revisited,
in the school of So�a, by S. Passy and T. Tinchev [34]. It achieved
global interest within the modal logic community in the nineties,
with contributions by P. Blackburn, C. Areces, B. ten Cate, T.
Braüner, T. Bolander, among many others (see, e.g., [3, 15, 13,
11]). This lifted the status of hybrid logic to an independent branch
of modern logic. For an historical account we suggest [8, 13], as
well as [9] for a comparison with the original perspective of A.
Prior.

For the data part, on the other hand, equational logic is widely
accepted as a solid, mature speci�cation language. Actually, de-
spite their simplicity, equations are enough to characterise all com-
putable data structures [7] and to describe the semantics of pro-
gramming languages [24]. Moreover, models for equational logic
are (universal) algebras, well known and semantically rich struc-
tures. Finally, the equational calculus is complete, and rewriting
algorithms provide e�ective tool support for equational reasoning
(as in [16] or [20]).

On the other hand, higher expressive power can be achieved
by incorporating in the syntax of the logic in�nitary formation
rules, namely to generate formulas with (possible) in�nite dis-
junctions and conjunctions. The move to an in�nitary language
[22, 37, 38] provides a suitable way to specify both liveness prop-
erties and fairness assumptions most relevant in the presence of
concurrency and non determinism inherent to the kind of systems
we want to capture. In�nitary formulas also express properties
of (possibly in�nite) data structures in a natural way: for exam-
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ple,
∧{top(popn(s)) ≈ top(popn(s′)) : n ≥ 0} captures behavioural

equivalence of unbounded stacks s and s′.
In the sequel we consider languages with (possible) in�nite dis-

junctions and conjunctions over a countable set of variables. As an
extension to �rst-order logic a family of such languages was �rst
introduced by J. Barwise [5] as a tool for exploring in�nite struc-
tures. Since then they have found a number of uses in theoretical
Computer Science. Typical examples range from the speci�cation
of in�nite data structures [18, 39] and semantics [27] to graph the-
ory [17] and data base query languages [26, 1].

Contributions. The paper contributions are, thus, twofold. First
an in�nitary equational hybrid logic is introduced and its seman-
tics given in terms of Kripke frames whose states are endowed with
algebras. Then notions of simulation and bisimulation [33, 36] be-
tween these structures are characterised. A number of preservation
results studied for the hybrid propositional case are extended to
this richer setting.

Paper structure. The in�nitary equational hybrid logic pro-
posed as a lingua franca for specifying recon�gurable systems is
introduced and brie�y illustrated in section 3. Section 4 charac-
terises simulation and bisimulation for the underlying structures
and proves the analog to a modal equivalence result for this logic.
Finally, section 5 concludes and comments on future work.

2. Preliminares

This section contains a brief summary of concepts and notations
for both equational and hybrid propositional logic. For a detailed
exposition, the reader is referred to any standard text on each
subject, for example [14] and [8, 13], respectively.
2.1 Universal algebra
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A signature Σ is a family (Σn)n∈N, where Σn is a set of opera-
tion symbols of arity n. Given a signature Σ, a Σ-algebra A is a
nonempty set |A| together with a function Af : |A|×· · ·×|A| → |A|,
for each f ∈ Σn. An homomorphism between two algebras A and
A′ consists of a map h : |A| → |A′| such that, for any f ∈ Σn and
any a1, . . . , an ∈ |A|, h(Af (a1, . . . , an)) = A′f (h(a1), . . . , h(an)).

For a set X of variables, the set of Σ-terms, T (Σ, X), is the
smallest set such that x ∈ T (Σ, X), for each x ∈ X, and
f(t1, ..., tn) ∈ T (Σ, X), for any f ∈ Σn, and all terms ti ∈ T (Σ, X),
i = 1, ..., n.

For a given signature Σ and set of variables X, an equation

is an expression t ≈ t′, for t, t′ ∈ T (Σ, X). We denote the set
of equations w.r.t. Σ and X by EqΣ(X). An equation t ≈ t′

is satis�ed by an algebra A, in symbols A |= t ≈ t′, if for any
assignment σ : X → |A| we have σ#(t) = σ#(t′), where σ# is the
unique homomorphism extension of σ : X → |A| to T (Σ, X).

Some classes of algebras play an important role in universal al-
gebra. The class K of models of a set of equations E is called
an equational class (and similarly E is known as an equational

axiomatisation of K). A class of algebras closed under subalge-
bras, homomorphisms and products is called a variety [14]. The
smallest variety containing the class of Σ-algebras K is denoted
by V(K) and is called the variety generated by K. When K has
a single member A we simply write V(A). A fundamental result
states that, for any class K of Σ-algebras, K and V(K) satisfy the
same equations. This can be proved by using the free algebra over
a set of variables.

De�nition 2.1 Let K be a class of Σ-algebras. Given a nonempty

set X of variables, the congruence on T (Σ, X) generated by X
over K is

θK =
⋂

ΦK(X),

where ΦK(X) is the set of all congruences φ on T (Σ, X) such that
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T (Σ, X)/φ is isomorphic to a subalgebra in K. The K-free algebra
over X, FK(X), is the quotient algebra T (Σ, X)/θK .

We have that
Theorem 2.2 ([14, Theorem 10.12])If K is a variety, then

FK(X) ∈ K.

As consequence, for a variety K, we have that the variety gen-
erated by FK(X) is a subset of K. Moreover, in case X is in�nite
it is exactly K.

Theorem 2.3 ([14]) If K is a variety and X is in�nite, then

V(FK(X)) = K.

This theorem is a corollary of the fact that a variety is an equa-
tional class. It is straightforward to show that an equational class
is a variety. The class of all groups, the class of all rings and the
class of all Boolean algebras are examples of equational classes and
thus varieties. That every variety is also an equational class is the
main part of the following well-known result:

Theorem 2.4 (Birkho� [14, Theorem 11.9]) A class of Σ-
algebras K is a variety if and only if K is an equational class.

The theorem, �rst proven by Birkho� in the thirties, is one
of the many results that characterise syntactic classes of formulas
in terms of the closure of their classes of models under certain
algebraic constructions. As a corollary any two Σ-algebras which
satisfy exactly the same equations generate the same variety.

2.2 Hybrid logic

As brie�y mentioned in the Introduction, the quali�er hybrid
[8, 13] applies to extensions of a modal languages with symbols,
called nominals, which explicitly refer to individual states in the
underlying Kripke frame. A hybrid signature is a triple Ξ =
〈Var,Nom,Λ〉, where Var and Nom are two countable sets of sym-
bols, of propositional variables and nominals, respectively, and Λ
is a �nite set of modal symbols. The set of hybrid formulas over Ξ
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extends the corresponding modal language with nominals (formula
i, for i ∈ Nom, holding exactly in the state named by i) and for-
mulas of the form @iφ, for i a nominal and φ a formula, asserting
that φ holds at the state named by i.

If modal logics have been successfully used for specifying reac-
tive systems, the hybrid component adds the possibility to refer to
individual states and reasoning about the system's local behaviour
at each of them. Typical formulas express equality between states
named by i and j (@ij) or the accessibility of the latter from the
former through a modality λ (@i〈λ〉j). Moreover, hybrid logic
is strictly more expressive than its modal fragment. For exam-
ple, irre�exivity (@i¬〈λ〉i), asymmetry (@i¬〈λ〉〈λ〉i), antisymme-
try (i→ [λ](〈λ〉i→ i)), or trichotomy (@j〈λ〉i∨@ji∨@i〈λ〉j), are
properties of the underlying transition structure which are simply
not de�nable in standard modal logic. Note that, however, for the
propositional case, the satis�ability problem still is decidable [4].

Hybrid logic, in its multiple �avours, seems suitable to capture
complex software requirements, namely of recon�gurable systems
as discussed below. The existence of encodings (i.e., conservative
comorphisms) to �rst and second order logics allows the use of
computer-supported provers, such as Hets [31], in assisted software
veri�cation (see [32]).

3. In�nitary equational hybrid logic

3.1 An in�nitary equational hybrid logic

Let us now introduce the speci�cation logic motivated in Section
1. Not only the choice for in�nitary formulas [25] and equations,
but also other features were motivated from the speci�cation prac-
tice. Such is the case of our use of functions, which are a standard
tool in algebraic speci�cation. Similarly, we do not consider any
rigid component in the logic, allowing ample freedom in speci�ca-
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tions.
An equational hybrid similarity type τ is a triple 〈Σ,Λ,Nom〉

where Σ is an algebraic signature and Λ and Nom are, as above, the
sets of modalities and nominals. Assume a countable in�nite, �xed
setX of variables. The set of Σ-terms overX is de�ned in the usual
way. We de�ne equational hybrid language FmH(τ,X), in which
λ ∈ Λ labels a modal box operator and each nominal i ∈ Nom is
used to construct another operator @i. The set Fm(τ,X) of modal
in�nitary equational formulas is given recursively as follows

1. if t, t′ are Σ-terms then t ≈ t′ is a formula;

2. if ϕ is a formula, λ ∈ Λ, then ¬ϕ and [λ]ϕ are formulas;

3. if Γ is a countable set of formulas then
∧

Γ and
∨

Γ are
formulas.

Adding nominals, as follows, leads to the set FmH(τ,X) generated
by the rules above plus the following two:

1. nominals are formulas;

2. if ϕ is a formula and i is a nominal, then @iϕ is a formula.

In FmH(τ,X) formulas de�ned by nominals or equations are called
atomic. We abbreviate the formula ¬[λ]¬ϕ to 〈λ〉ϕ, and 〈λ〉ϕ∧[λ]ϕ
to 〈λ〉◦ϕ. We use [λ]nϕ to denote the application of the operator [λ]
n times to ϕ; more precisely, [λ]0ϕ := ϕ and [λ]k+1ϕ := [λ][λ]kϕ,
for k ≥ 0 (similarly for 〈λ〉nϕ). Moreover, an indexed notation is
used with boolean connectives

∧
and

∨
: for instance

∧
k∈N[λ]kϕ

denotes the formula
∧{[λ]kϕ : k ∈ N}

In the sequel, let τ be an equational hybrid similarity type.

De�nition 3.1 (Kripke frame) A Kripke τ -frame is a structure

F = (W,R), where W is a nonempty set, R = (Rλ)λ∈Λ is a family

of binary relations over W . Relations Rλ ⊆ W 2 are called the
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transition relations in F de�ned over states (also called worlds
or modes) in W . A pointed Kripke frame is a pair (F , w), with
w ∈W .

By adding structure to states we have,

De�nition 3.2 (Algebraic Kripke frame) An algebraic Kripke
τ -frame is a structure M = (W,R, (Aw)w∈W ), where (W,R) is

a Kripke τ -frame and (Aw)w∈W ) is a family of Σ-algebras. The

family (Aw)w∈W is called the space of con�gurations. A pointed
algebraic Kripke frame is a pair (M, w) with w ∈W .

Finally, adding interpretations for the nominals, we obtain the
following de�nition:

De�nition 3.3 (Algebraic hybrid structure) An algebraic
hybrid structure over an algebraic τ -frame M = (W, (Rλ)λ∈Λ,
(Aw)w∈W ) is a pair H = 〈M, V 〉, where V : Nom → W is called

a valuation. For i ∈ Nom, w = V (i) means that the state w is

named by i. A pointed algebraic hybrid structure is a pair (H, w)
with w ∈W .

De�nition 3.4 (Satisfaction) Let τ be an equational hybrid sim-

ilarity type. The satisfaction relation |=⊆ W × FmH(τ,X) on

the algebraic hybrid structure H = (W, (Rλ)λ∈Λ, (Aw)w∈W , V ) is

recursively de�ned as follows: for any w ∈W , ϕ,ψ ∈ FmH(τ,X),
i ∈ Nom, t ≈ t′ ∈ EqΣ(X) and any countable set of formulas Γ:

1. H, w |= i if V (i) = w;

2. H, w |= t ≈ t′ if Aw |= t ≈ t′;

3. H, w |= @iϕ if H, s |= ϕ, where V (i) = s;

4. H, w |= ¬ϕ if not H, w |= ϕ;

5. H, w |= ∨Γ if H, w |= ϕ for some ϕ ∈ Γ;

6. H, w |= ∧Γ if H, w |= ϕ for every ϕ ∈ Γ;
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7. H, w |= [λ]ϕ if for all w′ ∈ W such that wRλw
′ we have

H, w′ |= ϕ.

If H, w |= ϕ, we say that ϕ is true at state w in H. When ϕ is

satis�ed at every state of H, we say that ϕ is valid in H and we

write H |= ϕ. Finally, ϕ is valid if H |= ϕ for every structure H.
Given an algebraic Kripke τ -frameM and w ∈W , ϕ is true at

state w in M, writing M, w |= ϕ, if H, w |= ϕ for every H over

M. A formula ϕ is valid inM and we writeM |= ϕ ifM, w |= ϕ
for every w ∈ W . Satisfaction in Kripke frames is de�ned simi-

larly. Given a pointed algebraic hybrid structure (H, w), we write
(H, w) |= ϕ i� H, w |= ϕ.

3.2 Examples

The speci�cation of a recon�gurable system proceeds by identi-
fying a set of con�gurations (or modes of operation), each of them
identi�ed by a nominal and endowed with an algebra capturing the
relevant, local functionality. Transitions between di�erent con�g-
urations are triggered by specifying events encoded as modalities.
A small, toy example may help to illustrate the kind of speci�-
cations we want to be able to deal with. Consider a calculator
with two possible con�gurations: in one of them an operation ?
stands for addition of natural numbers, whereas in the other it
corresponds to multiplication. A special button shift leads from
one con�guration to the other.

This calculator may be viewed as a transition system that al-
ternates between sum and multiplication modes through an event
in Λ = {shift}. Each of its states is associated to a Σ-algebra,
where Σ has the following operation symbols c :→ nat, s : nat →
nat, p : nat → nat and ? : nat × nat → nat. Global prop-
erties are expressed equationally. For example p(s(n)) ≈ n (p
and s are the predecessor and successor functions, respectively),
?(n, k) ≈ ?(k, n) (? commutativity) or ?(n, ?(k, l)) ≈ ?(?(n, k), l)
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(? associativity).
On the other hand, the speci�cation of local properties, i.e.,

properties that hold in particular modes, entails the need for the
introduction of a nominal, say Nom = {ref }, to refer, for instance,
to the mode where ? plays the role of a sum. Hence, we are able
to state, for example

@ref ? (n, c) ≈ n and @ref ? (n, s(c)) ≈ s(n)

or

@ref [shift ] ? (n, c) ≈ c and @ref [shift ] ? (n, s(c)) ≈ n

Note that we consider the interpretation of c rigid.
Finally, alternation between the two operating modes is cap-

tured by modal properties; for example,

¬@ref 〈shift〉ref and @ref [shift ][shift ]ref

Despite the simplicity of this example, in�nitary formulas may
still be in order, as in, for example, ?(n,m) ≈ l →∧{[shift ]2k ? (n,m) ≈ l : k ≥ 1}. Or, for a constant d,

∨{xn ≈ d :
n ≥ 0}, specifying the existence of a �xed order for every element.

In�nitary formulas are most useful, however, in the speci�ca-
tion of more complex systems. For example, let ϕ and ψ assert
some expected properties to be observed periodically in con�g-
urations denoted by i and j, respectively. The following prop-
erty �xes this period along transitions indexed by the modality
λ:
∨{(@i 〈λ〉n ϕ) ∧ (@j 〈λ〉2n ψ) : n ≥ 0}, i.e. for some natural

n, ϕ can be observed after n λ-transitions from the state named
by i and ψ can be observed after 2n λ-transitions from the state
named by j. The following examples, in which a unique modal-
ity is assumed (and therefore 〈λ〉, [λ] are abbreviated to 3 and 2,
respectively), illustrate other properties found useful in the speci-
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On in�nitary equational hybrid logic 185

�cation practice:

• i belongs to a �nite cycle:∨{@i3
ni : n ≥ 1}

• ϕ is true in at least one state in any �nite orbit centered in
i:

@i
∧{3nϕ : n ≥ 0}

• (safety) ϕ is true in any state ��nitely connected� to i:∧{@i2
nϕ : n ≥ 0}

• (liveness) ϕ holds at some state ��nitely connected� to i:∨{@i3
nϕ : n ≥ 0}

• there is a �xed order for every element wrt a binary opera-
tion: ∨{xn ≈ 1 : n ≥ 0}

4. Simulation, bisimulation and bisimilarity

4.1 Simulation

Let τ be an equational hybrid similarity type. Given two al-
gebraic hybrid structures H = (W,R, (Aw)w∈W , V ) and H′ =
(W ′, R′, (A′w)w∈W ′ , V ′) over τ , and a binary relation - between
Σ-algebras, we say that H′ simulates H modulo - (--simulates,
for short) if there is a relation Z ⊆W ×W ′ such that

• All points named by nominals are related by Z, i.e., for each
i ∈ Nom, V (i)Z V ′(i) ;

• for every pair (w,w′) ∈ Z,
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� ∀i ∈ Nom, V (i) = w ⇒ V ′(i) = w′,

� Aw - A′w′ ,

� For any λ ∈ Λ, if wRλu for some u ∈ W , then there is
some u′ ∈W ′ such that w′R′λu

′ and uZu′ (Zig).

The relation Z is called a --simulation of H in H′. There are
several natural choices for -. We shall consider the following three:

De�nition 4.1 Let A,B be Σ-algebras. Then, de�ne:

• A -1 B i� B ∈ V(A)

• A -2 B i� V(A) = V(B) and

• A -3 B i� A ∼= B (i.e. A is isomorphic to B).

Clearly, -3 ⊆ -2 ⊆ -1. Note that the relation -2 corresponds
to elementary equivalence.

Lemma 4.2 The -i-simulation is re�exive for i = 2, 3 and tran-

sitive for i = 1, 2, 3.

Proof Re�exivity of -2 and -3 comes from re�exivity of variety
equality and algebra isomorphism, respectively. The other con-
ditions are trivial to check. For transitivity we will show that
simulation is closed for relational composition. Let Z1 and Z2 be
two simulations between H, H′ and H′, H′′, respectively, and con-
sider Z = Z2 ·Z1. Clearly, for any nominal i, V (i)Z V ′′(i), because
Z1, Z2 are both simulations.

Consider now (w,w′′) ∈ Z. Then, there exists a state w′ ∈ W ′
such that wZ1w

′ and w′Z2w
′′. Thus,

• V (i) = w implies V ′′(i) = w′′, because V (i) = w implies
V ′(i) = w′, as wZ1w

′, and the later implies V ′′(i) = w′′, as
w′Z2w

′′;
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• Aw -i A
′′
w′′ because the -i relations, for i = 1, 2, 3, are

transitive;

• Finally, suppose wRλu. Z1 being a simulation and wZ1w
′,

there exists u′ ∈ W ′ such that w′R′λu
′ and uZ1u

′. On the
other hand, Z2 being also a simulation and w′Z2w

′′, there
exists u′′ ∈ W ′′ such that w′′R′′λu

′′ and u′Z2u
′′. Therefore,

uZ u′′, as expected.

Simulations are a basic tool in program development. As a
consequence of the previous lemma we have a stepwise re�nement
process for all candidate relations. Actually, let PE(τ) be the set
of positive existential in�nitary hybrid formulas over τ , i.e., the set
of the formulas built from the atoms (nominals and equations) by
just using countable conjunctions and disjunctions, the @ operator
and 3. Such formulas are preserved under simulations:

Theorem 4.3 Positive existential in�nitary hybrid formulas are

preserved under -i-simulation, for i = 2, 3. In other words, let

τ be an equational hybrid similarity type and Z a -i-simulation

between algebraic hybrid structures over τ , let say H and H′. Then,
for any w ∈W,w′ ∈W ′ such that wZw′ we have

(H, w) |= ϕ ⇒ (H′, w′) |= ϕ, for any ϕ ∈ PE(τ).

Proof See the proof of Theorem 4.5 below, as the proof of this
result can be obtained in a similar way.

4.2 Bisimulation

To de�ne bisimulation the (Zag) condition is added, as usual.
Additionally, in the atomic conditions, algebras corresponding to
related states are required to generate the same variety. Thus,

De�nition 4.4 (Bisimulation) Consider an equational hybrid

similarity type τ and two algebraic hybrid structures H =
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(W, (Rλ)λ∈Λ, (Aw)w∈W , V ) and H′ = (W ′, (R′λ)λ∈Λ, (A
′
w)w∈W ′ , V ′).

A bisimulation between H and H′ is a nonempty relation Z ⊆
W ×W ′ such that

• All points named by nominals are related by Z, i.e., for each
i ∈ Nom, V (i)Z V ′(i);

• for every pair (w,w′) ∈ Z,

� Atomic conditions:

∗ ∀i ∈ Nom, V (i) = w i� V ′(i) = w′;

∗ V(Aw) = V(A′w′), i.e., Aw and A′w′ generate the

same variety;

� For any λ ∈ Λ, if wRλu for some u ∈W , then there is

some u′ ∈W ′ such that w′R′λu
′ and uZu′ (Zig);

� Dually, for any λ ∈ Λ, if w′R′λu
′ for some u′ ∈ W ′,

then there is some u ∈ W such that wRλu and uZu′

(Zag).

Two pointed algebraic hybrid structures (H, w) and (H′, w′) are
bisimilar, if there is a bisimulation Z between H and H′ such that
wZw′.

It is well-known that modal satisfaction is invariant under bisim-
ulation. The following theorem establishes a corresponding result
for in�nitary equational hybrid logic. Again, a similar result holds
for Kripke frames and formulas in Fm(τ,X).

Theorem 4.5 The in�nitary equational hybrid logic is invariant

under bisimulation: let τ be an equational hybrid similarity type

and Z a bisimulation between the algebraic hybrid structures H
and H′. Then, for any w ∈W,w′ ∈W ′ such that wZw′ we have

(H, w) |= ϕ i� (H′, w′) |= ϕ, for any ϕ ∈ FmH(τ,X).

Beziau, J-Y.; Costa-Leite, A; D'Ottaviano, I. M. L. (orgs.). Aftermath of the
Logical Paradise, Coleção CLE, v.81, pp. 173�202, 2018.



On in�nitary equational hybrid logic 189

Proof The proof is by induction over the formulas' structure. Let
wZw′. Then,
ϕ = i ∈ Nom

(H, w) |= i

⇔ { |= defn.}
V (i) = w

⇔ { since Z is a bisimulation}
V ′(i) = w′

⇔ { |= defn.}
(H′, w′) |= i

ϕ = @iϕ
′

(H, w) |= @iϕ
′

⇔ { |= defn.}
(H, V (i)) |= ϕ′

⇔ { I.H., since V (i)ZV ′(i)}
(H′, V ′(i)) |= ϕ′

⇔ { |= defn.}
(H′, s) |= @iϕ

′ for any s ∈W
⇔ { in particular}

(H′, w′) |= @iϕ
′
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ϕ = t ≈ t′

(H, w) |= t ≈ t′
⇔ { |= defn.}

Aw |= t ≈ t′
⇔ { wZw′ implies V(Aw) = V(A′

w′); Birkho�'s theorem on varieties}
A′w′ |= t ≈ t′

⇔ { |= defn.}
(H′, w′) |= t ≈ t′

ϕ =
∧

Γ (case ϕ =
∨

Γ is analogous)

(H, w) |=
∧

Γ

⇔ { |= defn.}
(H, w) |= γ for any γ ∈ Γ

⇔ { I.H.}
(H′, w′) |= γ for any γ ∈ Γ

⇔ { |= defn.}

(H′, w′) |=
∧

Γ
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ϕ = [λ]ϕ′

(H, w) |= [λ]ϕ′

⇔ { |= defn.}
(H, s) |= ϕ′ for any s such that wRλs

⇔ { I.H. + (Zig) and (Zag) conditions}
(H′, s′) |= ϕ′ for any s′ such that w′R′λs

′

⇔ { |= defn.}
(H′, w′) |= [λ]ϕ′

ϕ = ¬ϕ′

(H, w) |= ¬ϕ′
⇔ { |= defn.}

it is false that (H, w) |= ϕ′

⇔ { I.H.}
it is false that (H′, w′) |= ϕ′

⇔ { |= defn.}
(H′, w′) |= ¬ϕ′

As in the standard modal case, given two states of two τ -models,
the relation de�ned by the logical equivalence between the corre-
sponding pointed Kripke models is not in general a bisimulation.
Such is the case, however, in image-countable Kripke models, as
shown below (the same condition was pointed out in [10] for the
plain case of modal logic). More precisely, let τ be an equational
hybrid similarity type and H an algebraic hybrid structure, we say
thatH is image-countable if for each state w ∈W and each relation
Rλ, λ ∈ Λ, the set {w′ ∈ W : wRλw

′} is countable. No condition
is imposed on the number of relations present or the cardinality of
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W .

Theorem 4.6 Let τ be an equational hybrid similarity type. Let H
and H′ be two image-countable algebraic hybrid structures. Then,

for every w ∈W and w′ ∈W ′, the following conditions are equiv-
alent:

1. (H, w) and (H′, w′) are bisimilar

2. for any ϕ ∈ FmH(τ,X), (H, w) |= ϕ i� (H′, w′) |= ϕ.

Proof The proof that 1. implies 2. was already proved in Theo-
rem 4.5. To prove the converse, suppose that for any ϕ ∈
FmH(τ,X), (H, w) |= ϕ i� (H′, w′) |= ϕ .

Let Z :=
{

(w,w′) ∈ W × W ′ : for any ϕ ∈ FmH(τ,X),
(H, w) |= ϕ ⇔ (H′, w′) |= ϕ

}
. The atomic conditions trivially

hold.
For the (Zig) condition, let λ ∈ Λ. Assume that wZw′ and let

u ∈ W such that wRλu. To obtain a contradiction, suppose that
there is no u′ ∈W ′ with w′Rλu′ and uZu′. As in the standard case,
from the condition of image-countable, the set S′ = {u′ : w′Rλu

′}
is countable. Moreover, S′ cannot be empty since in such case
(H′, w′) |= [λ]¬@ii (equivalently, (H′, w′) |= ¬〈λ〉@ii), which is
incompatible with the fact that (H, w) |= 〈λ〉(@ii), which holds
since wRλu.

By assumption, for every v ∈ S′ there is a formula ψv such that
(H, u) |= ψv and it is false that (H′, v) |= ψv (it can be at reverse
order but in such case we take the negation of the formula).

Consider now the conjunction ψ =
∧
v∈S′

ψv of all of these formu-

las. Then,

• (H, w) |= 〈λ〉ψ and

• for all v ∈ S′ it is false that (H, v) |= 〈λ〉ψ.
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Figure 1: Two bisimilar models.

This contradicts the fact that wZw′. The (Zag) condition can
be shown in a similar way.

A consequence of the previous theorem is that any two alge-
braic hybrid structures with a countable set of states and the same
theory are bisimilar. Back to the calculator example, it is ob-
vious that we may construct models for the speci�cation given
with any number of states. Actually, any Z =

{
(w, v) | v ∈

W2 \ {V2(ref )}
}
∪ {(V1(ref ), V2(ref ))} is a bisimulation between

the algebraic hybrid structures H1 and H2 (see Figure 1). Ob-
serve that the algebras associated to states wi may not be the
same, but di�erent possible realizations the local theory of the re-
spective mode. For instance, in a loose semantics setting, it is
possible to have the free realization of naturals in some mode and
the trivial algebra in another one, all in the same model. This
situation, which is common in loose semantics speci�cation, may
be controlled by imposing some constraints on the de�nition of
models. For instance, in [28] we impose common universes for the
realization of system nodes.

Our next result entails the existence of a largest bisimulation,
which we call, as usual, the bisimilarity relation and denote by
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∼H,H′ (simply, ∼H if H = H′). Two elements p, q ∈W are said to
be bisimilar if there is a bisimulation relating them.

Theorem 4.7 Consider two algebraic hybrid structures over τ ,
H = (W, (Rλ)λ∈Λ, (Aw)w∈W , V ) and H′ = (W ′, (R′λ)λ∈Λ,
(A′w)w∈W ′ , V ′). The set of bisimulations between H and H′ is
closed under unions.

Proof Let Z1, Z2 be two bisimulations between H =
(W,R, (Aw)w∈W , V ) and H′ = (W ′, R′, (A′w)w∈W ′ , V ′). Relation
Z = Z1 ∪ Z2 is also a bisimulation because

• Clearly, all points named by nominals are related by Z as
they are either by Z1 or Z2.

• The atomic conditions also hold because, if (w,w′) ∈ Z, the
pair also belongs to Z1 or Z2 which are bisimulations.

• A similar argument applies to both the (Zig) and the (Zag)
conditions. For the former (the latter being similar) consider
(w,w′) ∈ Z and suppose that, for a λ ∈ Λ, wRλu for some
u ∈ W . Then there exists u′ ∈ W ′ such that w′R′λu

′ and
either uZ1u

′ or uZ2u
′. In any case uZu′.

Lemma 4.8 ∼H is an equivalence relation.

Proof Clearly the identity relation and the converse of a bisim-
ulation are bisimulations (for the latter consider the (Zig) and
(Zag) conditions interchangeably). The relation composition of
bisimulations is also a bisimulation, with the proof being similar
to that of Lemma 4.2 extended to the (Zag) condition.

Let τ be an equational hybrid similarity type. Given an alge-
braic hybrid structure H = (W, (Rλ)λ∈Λ, (Aw)w∈W , V ) over τ , the
reduction of H is H/ ∼H= (W ′, (R′λ)λ∈Λ, (A

′
w)w∈W ′ , V ′) where
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• W ′ = W/ ∼H ,

• [w1]∼HR
′
λ[w2]∼H if there are u1 ∈ [w1]∼H and u2 ∈ [w2]∼H

such that u1Rλu2,

• for any w̄ ∈W/ ∼H ,
A′[w] = FV(Aw)(X) - the V(Aw)-free algebra over X,

• V ′(i) = [V (i)]∼H .

Note that the de�nition of A′[w] is sound since, for any u1, u2 ∈
[w]∼H , V(Au1) = V(Au2). As an example, consider the following
useful bisimulation:

Lemma 4.9 Relation Z = {(w, [w]∼H) : w ∈W} is a bisimulation.

Proof Relation Z = {(w, [w]∼H) : w ∈ W} is a bisimulation
because

• For any nominal i, V (i)Z [V (i)]∼H by de�nition of Z, thus,
V (i)Z V ′(i);

• The atomic conditions hold trivially;

• For the (Zig) condition, let wZ [w]∼H and suppose wRλu,
for λ ∈ Λ. Then [w]∼HR

′
λ[u]∼H , by de�nition of R′, and

clearly uZ [u]∼H ;

• For the (Zag) condition, let wZ [w]∼H and suppose
[w]∼HR

′
λ[u]∼H , for λ ∈ Λ. This means that there exists

w1 ∈ [w]∼H and u1 ∈ [u]∼H such that w1Rλu1. But because
w1 is bisimilar to w, there is also u2 bisimilar to u1 such that
wRλu2. Finally, as u2 is bisimilar to u, we conclude that
u2 Z [u]∼H .

Beziau, J-Y.; Costa-Leite, A; D'Ottaviano, I. M. L. (orgs.). Aftermath of the
Logical Paradise, Coleção CLE, v.81, pp. 173�202, 2018.



196 Manuel A. Martins et al.

5. Conclusions

The paper introduced a logic to specify recon�gurable systems,
by extending the classical (propositional) hybrid logic with equa-
tions (over an algebraic signature) and in�nitary formulas.

As a framework for specifying recon�gurable systems, the ap-
proach described here is only part of the picture. Several exten-
sions may indeed be considered. For example, as the reader may
have noticed, recon�gurations are triggered by a set of events in-
dependent of the local algebras. Often in practice, however, such
recon�gurations are guarded by local properties (e.g. by local vari-
ables taking speci�c values). This limitation may be overcome by
imposing common data universes on modes and �xing globally a
set of rigid variables as proposed in reference [28].

One may go even further, however, and choose the local se-
mantic structure in terms of the speci�c problem requirements.
For example, instead of algebras, one may �nd necessary to have
partial algebras to deal with systems with partial operations, or
multi-algebras for non-determinism, etc. In fact, this choice does
not change the essence of the method: at a more abstract level,
the authors developed in [30] a method to �hybridise� any logic
suitable to specify the local con�gurations. This process is called
hybridisation. The basic idea is quite simple: to develop, on top
of a given logic, called the base logic and framed as an institu-
tion [19], the characteristic features of hybrid logic, both at the
level of syntax (i.e. modalities, nominals, etc.) and of the seman-
tics (i.e., possible worlds), together with �rst-order encodings of
such hybridised institutions. In particular, given a base institution
`encodable' in the institution of theories in �rst-order logic, the hy-
bridisation method provides a systematic construction of a similar
encoding for the corresponding hybridised institution ([21]).

Another interesting question is the study of a sound and com-
plete calculus for the logic introduced in this paper with respect
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to this semantics. The �rst steps in this direction are reported in
[6] where the authors present a sound and complete calculus for
non in�nitary equational hybrid logic. Related work on equational
hybrid type theory is reported in [29].

A �nal remark is in order to other speci�cation frameworks
based on modal versions of �rst-order logic, also combining data
and behaviour features. Abstract state machines [12], popularised
through the B method [2], is a prime example. In this case, how-
ever, states are identi�ed with the sets of values of the system
variables at a given point of execution, evaluated in a unique �rst-
order structure. The approach motivating the research discussed
in this paper is fundamentally di�erent in the sense that each state
carries its own algebra modelling completely whatever functional-
ity the system o�ers at such a stage.
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