Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/81297

TitleNetwork anomaly detection using adversarial Deep Learning
Author(s)Valente, Maria Elisa Maciel
Advisor(s)Rocha, Miguel
Rio, Miguel Joaquim Garcia
KeywordsNetwork security
Anomaly detection
Deep Learning
Generative adversarial networks
Segurança das redes de computadores
Deteção de anomalias
Issue date6-Apr-2021
Abstract(s)Computer networks security is becoming an important and challenging topic. In particular, one currently witnesses increasingly complex attacks which are also bound to become more and more sophisticated with the advent of artificial intelligence technologies. Intrusion detection systems are a crucial component in network security. However, the limited number of publicly available network datasets and their poor traffic variety and attack diversity are a major stumbling block in the proper development of these systems. In order to overcome such difficulties and therefore maximise the detection of anomalies in the network, it is proposed the use of Adversarial Deep Learning techniques to increase the amount and variety of existing data and, simultaneously, to improve the learning ability of the classification models used for anomaly detection. This master’s dissertation main goal is the development of a system that proves capable of improving the detection of anomalies in the network through the use of Adversarial Deep Learning techniques, in particular, Generative Adversarial Networks. With this in mind, firstly, a state-of-the-art analysis and a review of existing solutions were addressed. Subsequently, efforts were made to build a modular solution to learn from imbalanced datasets with applications not only in the field of anomaly detection in the network, but also in all areas affected by imbalanced data problems. Finally, it was demonstrated the feasibility of the developed system with its application to a network flow dataset.
A segurança das redes de computadores tem-se vindo a tornar num tópico importante e desafiador. Em particular, atualmente testemunham-se ataques cada vez mais complexos que, com o advento das tecnologias de inteligência artificial, tendem a tornar-se cada vez mais sofisticados. Sistemas de deteção de intrusão são uma peça chave na segurança de redes de computadores. No entanto, o número limitado de dados públicos de fluxo de rede e a sua pobre diversidade e variedade de ataques revelam-se num grande obstáculo para o correto desenvolvimento destes sistemas. De forma a ultrapassar tais adversidades e consequentemente melhorar a deteção de anomalias na rede, é proposto que sejam utilizadas técnicas de Adversarial Deep Learning para aumentar o número e variedade de dados existentes e, simultaneamente, melhorar a capacidade de aprendizagem dos modelos de classificação utilizados na deteção de anomalias. O objetivo principal desta dissertação de mestrado é o desenvolvimento de um sistema que se prove capaz de melhorar a deteção de anomalias na rede através de técnicas de Adversarial Deep Learning, em particular, através do uso de Generative Adversarial Networks. Neste sentido, primeiramente, procedeu-se à análise do estado de arte assim como à investigação de soluções existentes. Posteriormente, atuou-se de forma a desenvolver uma solução modular com aplicação não só na área de deteção de anomalias na rede, mas também em todas as áreas afetadas pelo problema de dados desbalanceados. Por fim, demonstrou-se a viabilidade do sistema desenvolvido com a sua aplicação a um conjunto de dados de fluxo de rede.
TypeMaster thesis
DescriptionDissertação de mestrado integrado em Engenharia Informática
URIhttps://hdl.handle.net/1822/81297
AccessOpen access
Appears in Collections:BUM - Dissertações de Mestrado
DI - Dissertações de Mestrado
CEB - Dissertações de Mestrado / MSc Dissertations

Files in This Item:
File Description SizeFormat 
Maria Elisa Maciel Valente.pdf1,64 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID