Please use this identifier to cite or link to this item:

TitleLong-chain fatty acids degradation by desulfomonile species and proposal of candidatus Desulfomonile palmitatoxidans
Author(s)Alves, J. I.
Salvador, Andreia Filipa Ferreira
Carvalho, Ana Rita Castro
Zheng, Ying
Nijsse, Bart
Atashgahi, Siavash
Sousa, Diana Zita Machado
Stams, Alfons Johannes Maria
Alves, M. M.
Cavaleiro, Ana Júlia
sulfate reduction
long-chain fatty acids
organohalide respiration
Issue date2020
PublisherFrontiers Media S.A.
JournalFrontiers in Microbiology
CitationAlves, J. I.; Salvador, Andreia F.; Castro, Rita; Zheng, Ying; Nijsse, Bart; Atashgahi, Siavash; Sousa, Diana Z.; Stams, A. J. M.; Alves, M. Madalena; Cavaleiro, Ana Júlia, Long-chain fatty acids degradation by desulfomonile species and proposal of candidatus Desulfomonile palmitatoxidans. Frontiers in Microbiology, 11(539604), 2020
Abstract(s)Microbial communities with the ability to convert long-chain fatty acids (LCFA) coupled to sulfate reduction can be important in the removal of these compounds from wastewater. In this work, an enrichment culture, able to oxidize the long-chain fatty acid palmitate (C16:0) coupled to sulfate reduction, was obtained from anaerobic granular sludge. Microscopic analysis of this culture, designated HP culture, revealed that it was mainly composed of one morphotype with a typical collar-like cell wall invagination, a distinct morphological feature of the Desulfomonile genus. 16S rRNA gene amplicon and metagenome-assembled genome (MAG) indeed confirmed that the abundant phylotype in HP culture belong to Desulfomonile genus [ca. 92% 16S rRNA gene sequences closely related to Desulfomonile spp.; and ca. 82% whole genome shotgun (WGS)]. Based on similar cell morphology and average nucleotide identity (ANI) (77%) between the Desulfomonile sp. in HP culture and the type strain Desulfomonile tiedjei strain DCB-1T, we propose a novel species designated as Candidatus Desulfomonile palmitatoxidans. This bacterium shares 94.3 and 93.6% 16S rRNA gene identity with Desulfomonile limimaris strain DCB-MT and D. tiedjei strain DCB-1T, respectively. Based on sequence abundance of Desulfomonile-morphotype in HP culture, its predominance in the microscopic observations, and presence of several genes coding for enzymes involved in LCFA degradation, the proposed species Ca. Desulfomonile palmitatoxidans most probably plays an important role in palmitate degradation in HP culture. Analysis of the growth of HP culture and D. tiedjei strain DCB-1T with short- (butyrate), medium- (caprylate) and long-chain fatty acids (palmitate, stearate, and oleate) showed that both cultures degraded all fatty acids coupled to sulfate reduction, except oleate that was only utilized by HP culture. In the absence of sulfate, neither HP culture, nor D. tiedjei strain DCB-1T degraded palmitate when incubated with Methanobacterium formicicum as a possible methanogenic syntrophic partner. Unlike D. tiedjei strain DCB-1T, Ca. Desulfomonile palmitatoxidans lacks reductive dehalogenase genes in its genome, and HP culture was not able to grow by organohalide respiration. An emended description of the genus Desulfomonile is proposed. Our study reveals an unrecognized LCFA degradation feature of the Desulfomonile genus.
DescriptionThe datasets generated for this study can be found in the European Nucleotide Archive (ENA)–LS453291 (, PRJEB26656 (, PRJEB35900 (
Publisher version
AccessOpen access
Appears in Collections:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Files in This Item:
File Description SizeFormat 
document_54076_1.pdf2,11 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID