Please use this identifier to cite or link to this item:

TitleAccuracy of dispersion interactions in semiempirical and molecular mechanics models : the benzene dimer case
Author(s)Strutynski, Karol
Gomes, José A. N. F.
Melle-Franco, M.
Issue dateSep-2014
PublisherAmerican Chemical Society
JournalJournal of Physical Chemistry A
Abstract(s)The benzene dimer is arguably the simplest molecular analogue of graphitic materials. We present the systematic study of minima and transition states of the benzene dimer with semiempirical and molecular mechanics (MM) methods. Full minimizations on all conformations were performed and the results, geometries, and binding energies were compared with CCSD(T) and DFT-D results. MM yields the best results with three force fields MM3, OPLS, and AMOEBA, which reproduced nine out of the ten stationary points of the benzene dimer. We obtained new parameters for MM3 and OPLS that successfully reproduce all structures of the benzene dimer and showed improved accuracy over DFT-D in most dimer geometries. Semiempirical models were, unexpectedly, less accurate than MM methods. The most accurate semiempirical method for the benzene dimer is PM6-DH2. DFT-D was the only Hamiltonian that reproduced the variations of energy with geometry from CCSD(T) calculations accurately and is the method of choice for energies of periodic and molecular calculations of graphitic systems. In contrast, MM represents an accurate alternative to calculate geometries.
Publisher version
AccessRestricted access (UMinho)
Appears in Collections:CCTC - Artigos em revistas internacionais

Files in This Item:
File Description SizeFormat 
  Restricted access
Paper Original Format1,47 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID