Please use this identifier to cite or link to this item:

TitleA study on fiber sedimentation velocity in epoxy/steel fiber composites used for hybrid injection molds
Author(s)Leite, Janaina L.
Pouzada, A. S.
Maia, J. M.
Salmoria, Gean
Ahrens, Carlos
KeywordsEpoxy resin
Steel fibers
Sedimentation velocity
Issue date2014
JournalJournal of Composite Materials
Abstract(s)Composites based on metallic fibers and thermosetting polymers are being increasingly used for molding blocks of hybrid injection molds, thereby improving the mechanical and thermal properties. However, an adequate study on the behavior of steel fibers in a reactive epoxy resin is necessary to understand how to maintain suitable mold properties. In this paper, the sedimentation velocity of short steel fiber suspensions in reactive epoxy resin was estimated using a model emerging from the Stokes equation and considering the resin rheology and correction factors for the fiber shape and concentration. DMP (2,4,6-tris (dimethylamino-methyl) phenol) was the accelerator more suitable for this type of composites because it increases the rate of cure and reduces the gel time more pronouncedly than any of the other common accelerators. Samples were manufactured with epoxy resin, short steel fiber and DMP as accelerator, and using anti-sedimentation equipment. The distribution of the fibers was observed in all composites. The viscosity data were used to predict the time in the anti-sedimentation equipment necessary to reach a minimum sedimentation velocity using the mathematical model. Results showed that this velocity is recommended to be below 3.28 × 10−8 m/s to avoid sedimentation of the steel fibers.
AccessRestricted access (UMinho)
Appears in Collections:IPC - Artigos em revistas científicas internacionais com arbitragem

Files in This Item:
File Description SizeFormat 
Leite JL 2013 r.pdf
  Restricted access
Documento principal404,71 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID