Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/2144

TitleOn semidirectly closed pseudovarieties of aperiodic semigroups
Author(s)Teixeira, M. L.
KeywordsSemigroup
Semigrupoid
Graph
Semidirect product
Pseudovariety
Semidirectly closed
Implicit operation
Pseudoidentity
20M05
20M07
20M35
Issue date2001
PublisherElsevier
JournalJournal of Pure and Applied Algebra
Citation"Journal of pure and applied algebra". ISSN 0022-4049. 160 (2001) 229-248.
Abstract(s)The aim of this work is to study the unknown intervals of the lattice of aperiodic pseu\-do\-va\-rie\-ties which are semidirectly closed and answer questions proposed by J.~Almeida in his book ``Finite Semigroups and Universal Algebra". The main results state that the intervals $[\mathbf{V}^*(B_2),\mathbf{ER}\cap\mathbf{LR}]$ and $[\mathbf{V}^*(B^1_2),\mathbf{ER}\cap\mathbf{A}]$ are not trivial, and that both contain a chain isomorphic to the chain of real numbers. These results are a consequence of the study of the semidirectly closed pseudovariety generated by the aperiodic Brandt semigroup $B_2$.
TypeArticle
URIhttp://hdl.handle.net/1822/2144
DOI10.1016/S0022-4049(00)00073-6
ISSN0022-4049
Peer-Reviewedyes
AccessOpen access
Appears in Collections:CMAT - Artigos em revistas com arbitragem / Papers in peer review journals

Files in This Item:
File Description SizeFormat 
mlurdes_art1.pdf223,84 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID