
WinCE-based Embedded System for Control of an
Industrial Screw Machine

António H. J. Moreira*, Jaime Fonseca+, Adriano Tavaresº
Industrial Electronics Department, 4800-058 Azurém, Guimarães - Portugal.

a42974@alunos.uminho.pt*, jaime@dei.uminho.pt+, atavares@dei.uminho.ptº

Abstract - Nowadays, industrial systems frequently require the
control of some industrial process and monitoring of relevant
data about the process, using a friendly visual environment.
Normally, is used a PLC (Programmable Logical Controller) to
control the process and assure that the timing requirements
(deadlines) are satisfied and a PC to monitor the data. However,
the implementation of such solution presents the following
drawbacks to the system programmer: (1) he or she needs to
know the communication protocol between the two platforms -
PLC and the PC; (2) he or she needs to learn two different
programming languages - the low level PLC language and a high
level PC language. On the other hand, in some cases, the
reserved space to control the systems is reduced, making the
implementation of such solution very hard. This paper presents
an approach based on an embedded PC with real-time
processing capability and data monitoring facility. The proposed
system runs the Windows CE operating system and allows all
software development in C/C++, using the Microsoft Visual
Studio environment. The system was tested on an industrial
screw machine for PCBs.

I. INTRODUCTION

Traditional control and monitoring systems, Fig. 1, uses a
PLC for control and a PC for HMI (Human Machine
Interface), making them very hard to implement, since it’s
necessary to learn different programming languages and
hardware platforms [1]. These systems are widely spread in
control and monitoring tasks because of the improvements in
PC performance, making this kind of approach very cost-
effective [2].

Nowadays, the former approach continues to be valid, but
is not so cost-effective, as the system development time is a
little bit high, due to the use of two different programming
languages.

Fig. 1 Control and monitoring system using PLC and PC

Fig. 2 Control and monitoring system using an embedded system

To make a new product more cost-effective, the embedded
PC approach, Fig. 2, with real-time capability is used to
overcome the problems of development time and costly
control system. With the growing adoption of Windows CE
in industrial environment, due to its real-time and user-
friendly interface capability arose new opportunities to reduce
the system development time and consequently the system
cost.

Since minimal system requirements are needed to run
Windows CE and with characteristics such as: instant power-
up, Low ISR (Interrupt Service Routine), 255 levels of
priority and low thread latency, it becomes perfect to almost
every industrial process. The use of the priority levels in a
preemptive multitasking system, requires a careful
assignment to the different threads to avoid application
deadlock, as the scheduler gives the processor to the thread
with highest priority[3][4]. Also, deadlines missing due to
priority inversion must be avoided by careful uses of
synchronization objects, like mutex, semaphore, critical
section [6].

The choice of Windows CE for this application was natural
as its real-time capabilities cover all the needs of nearly 95%
of all industrial process, given that no more than 100us of IST
(Interrupt Service Thread) latencies is perfect. In fact, for
most part of applications this reduced latency is unneeded [5].
To make even a more complete embedded system, the C++
API isn’t the easiest way to design a user-friendly interface,
since it can be very painful and time consuming. Therefore, it
was chosen, the C++ for critical control tasks and Qt
framework for monitoring the relevant data (non critical
task). In doing so, it’s possible to develop a real-time

PC (HMI)PLC

Process

Embedded
PC (WinCE)
Qt Framework

(HMI)

Process

Screen

Screen

© IEEE 2009 2900 Preprint of IECON 2009 Proceedings

application with the flexibility of Qt framework and using
only one high level language.

This paper is organized in tree major sections: (II) the
application timing requirements, (III) the system description
in terms of hardware and software and (IV) the final results.

II. APPLICATION TIMING REQUIREMENTS

As said before, industrial cells are normally controlled by a
PLC and data monitoring performed by a PC. In this work the
goal is controlling an automatic screwing machine,
constituted by three axes and an electric screw. Each axis is
controlled by its own controller. The major requirements are
concerned with safety protocols, the emergency stops and fast
responsiveness of the system. The user interaction with the
safety systems is very critical because the system needs to
react as fast as possible but the point is: how fast needs it to
be (TABLE 1)?

TABLE 1
LATENCY TIMES FOR DIFFERENT APPLICATIONS

Mobile Phones

Consumer Electronics

Telecom/Datacom

Automotive

Industrial Automation

Depends on the application and as TABLE 1 indicates, the
worst latency time admitted for industrial automation is
between 100us and 1ms, but on automotive applications is
only 50us. Approximately 95% of the industrial working cells
do not process simultaneous signals because the machines
work in a sequential way, i.e., the system only, in few
occasions, has to handle more than one signal simultaneously.

Only one deadline related to the safety equipment
(emergency procedure) must be met, as it is desirable that
when an emergency occurs the system stops and reacts as fast
as possible. For the designed system running Windows CE
that deadline is approximately 1ms as shown in Fig. 3.

Another requirement was the use of Qt framework for a
rapid development of a friendly monitoring interface. This
framework is easy to learn and use and also offers several
ready-to-use controls. Signals and slots make it one of the
most powerful graphical/visual frameworks on the market.
The designed user interface shows on screen some
information related to the screwing status of each screw.

Fig. 3 Latency defined as objective for this application

III. THE WINCE-BASED EMBEDDED SYSTEM

Fig. 4 Orchid and Colibri board from Toradex

The hardware used on this application is an embedded
system running Windows CE 5.0 from Toradex Company,
Fig. 4. The system is composed by the Orchid board and a
520MHz Colibri XScale PXA270 processor. The main
features of this system are: 14 GPIO (General Proposal I/O), 4
analog inputs with a resolution of 10 bits, 4 PWM outputs,
I2C, SPI, RS232, Audio In/Out, VGA, LCD, SD/MMC, USB
and Ethernet. The board can be supply from 7V to 24V.

This board was chosen since it has the flexibility to be
directly connected to the industrial power supplies without
any kind of adaptation, providing also all the peripherals
connection needed for this and future projects.

The digital interface between the Orchid board and the
industrial equipment used in this application presented the
following problems:
 The digital inputs/outputs in the industrial equipment

require a 24V supply voltage and the internal GPIOs of
the Orchid board require a maximum 3.3V supply
voltage.

 The number of the inputs/outputs of the Orchid board
is not enough for implement all requirements of the
screw machine.

 The inputs/outputs of the Orchid board don’t have
electric isolation.

To guarantee digital interface compatibility between the
screw machine and the Orchid board, some external boards
with opto-isolating digital inputs/outputs were designed.
These boards are connected to the industrial equipment by
24V and to the Orchid board using the I2C protocol. The I2C
baudrate offers by the PXA270 is 400kbps that is enough for
most of the industrial applications.

1. Hardware Architecture
The external boards use the MicroChip MCP23017 IC that

offers 16bit output/input signals over I2C connection. Each
board can only be used as inputs or outputs and all 16 pins in
the input and output boards were isolated with the PS2502-4
opto-coupler. Additionally, the input board requires extra
protection provided by a SIOV Metal Oxide Varistor.

PC (WinCE)
EMERGENCY

5ms 2.5ms 1ms 0.5ms 200us 100us 50us 20us

Process

1ms

© IEEE 2009 2901 Preprint of IECON 2009 Proceedings

A. I2C Input Board

Fig. 5 External I2C INPUT board

The external I2C INPUT board, Fig. 5, has 16 inputs, all of
them independent, but if necessary, the inputs could be made
common in four groups of four inputs each by shunting the
four common inputs in the solder side of the board.

B. I2C Output Board

The external I2C OUTPUT board, Fig. 6, has 16 outputs, all
of them independent and like the input board four common
outputs could be shunt in the solder side of the board, making
four common groups of outputs. With this system it’s
possible, in the same I2C bus, to connect eight boards (23 = 8)
of any type (inputs or outputs), achieving at most 128 I/O.

Fig. 6 External I2C OUTPUT board

The Fig. 7 shows the screwing machine were the embedded
system was tested.

C. Screwing machine

Fig. 7 Industrial working cell – Automatic Screwing

This machine is constituted by an electric screw machine
(A) with a controller connected to the external output board to
start or reset the screwing. The indicator signal for the end of
the screw process is connected to the external input board.
Three independent axes, each one with its controller (AEB-
Robotis RBT5), are connected to the output and input boards.
Two belt conveyors with two DC motors (B), one centering
plate that centers the PCB and holds it in place(C).

The centering plate is composed by three pneumatic
actuators, where one of them is used to stop the chassis in the
center of the machine. After the centering process another
pneumatic device pushes the screw machine down. All the
electric valves (centering plate, pneumatic table, stopper) and
the motor drivers are connected to the output board and a
Quicher Screw Feeder (D) is used to feed the electric screw.
Compressed air is used to send the screw to the hole when it
is detected by one of magnetic sensor in the tube. This sensor
and the valve are connected to the input board and output
board, respectively. Safety lights (E) are used to warn the user
about the process and the two buttons (F), one to start the
process and the other one for emergency purposes. The door
also actuates as an emergency when it opens. The screen (G)
is used to show information related to the current process.

The Toradex board and the extension boards are powered
by one 24V power supply and the axes controllers by one
28V power supply.

The next diagram, Fig. 8, shows a simplified view of the
connections between the different system modules.

MCP23017

Opto-couplerVaristors

Address

MCP23017Opto-coupler Address

(E) (F)

(A)

(C)

(D)

(B)

(G)

Interrupts
Output

© IEEE 2009 2902 Preprint of IECON 2009 Proceedings

Fig. 8 Connections Diagram

The INT signal has to be connected to two inputs in the
Orchid board because it is needed to signal the board of any
changes in the inputs of the external I2C input board.

2. Software Architecture
The software application has to be very robust because the

machine must work during 24 hours, 7 days a week. The
following class diagram, Fig. 9, presents the architecture of
the implemented application.

The screwing machine required a sequential execution,
making it easy to change, if necessary, and the control
process core was implemented as a state machine.

At the startup, an APP object is created to initialize the Qt
platform. Then the visual environment object is created and
all needed interrupt requests registered. This GUI object
communicates with the StateMachine object to carry out the
monitoring process.

Fig. 9 UML class Diagram for the screwing machine

The GUI object also initializes all the others object such as
EMERG, DECODE, I2C, INPUT A, INPUT B and even the
StateMachine one.

The INPUT A and B classes configure one Orchid board
I/O to be attached to the ISR (Interrupt Service Routine)
corresponding to that I/O and associates it to one IST
(Interrupt Service Thread) that handles the code execution.

while(1)
{

// Wait for Event (Interrupt)
if(WaitForSingleObject(hEvent,INFINITE) ==
WAIT_OBJECT_0)
{

sendSIGNAL();
InterruptDoneCompat(dwSysIntr);

}
}

The Above code segment shows how to use the
WaitForSingleObject(hEvent,INFINITE) to wait for an
interrupt in one I/O that is registered in hEvent, that later can
be released by:

InterruptDisableCompat(dwSysIntr);
ReleaseSysIntr(dwSysIntr);

Upon the occurrence of an interrupt, a signal is sent to the
I2C object and it will retrieve 8-bits data that is sent to the
DECODE object to analyze if the signal has its value
changed. The DECODE object signal can be sent to the
EMERG object or to the StateMachine object.

If the input related to the emergency procedure has
changed value, the EMERG object is then signaled, starting
the highest priority thread to reset the state machine and
change the values at the output board. Then the state machine
starts from a well-known state and continues working.

The StateMachine class implements a switch statement and
each case statement is divided in two parts: an action and a
condition. The action part implements the needed actions on
the external output board and also on the data to be send to
the screen. The condition part implements the needed
conditions to transit to the next state.

void EXEC_Programa::run()
{

while(1)
{

switch(m_STATE)
{
case 0: STAGE0();

STAGE0W();
break;

case 1: STAGE1();
STAGE1W();
break;

I2C

APP

INPUT B

INPUT A

GUI

StateMachine

DECODE

EMERG

I2C

INT

PC
Toradex

X Axis Controller

Y Axis Controller

Z Axis Controller

Output
Board

Input
Board

Safety Lights

Security Systems

Emergency Button

Start Button

Screen
Electric Screw

INT

© IEEE 2009 2903 Preprint of IECON 2009 Proceedings

 …

 }
 Sleep(1);
 }

}

The Sleep(1) statement stops the thread for 1 ms, allowing
the execution of other lower priority threads.

Qt framework was chosen to design the visual environment
since it is easy to model interactions between objects
(controls) through its signals and slots mechanism. The
signals and slots mechanism is type safe, which means the
signature of a signal must match the signature of the receiving
slot, otherwise it won’t work. Example:

public slots:
 void setValue(int value);
signals:
 void valueChanged(int newValue);

QObject::connect(&a, SIGNAL(valueChanged(int)),
 &b, SLOT(setValue(int)));

This mechanism was used to set the communication
between the different objects (INPUT A/B, I2C, GUI, etc).

The Fig. 10 shows the interface with the operator. (A)
shows the information about the screwing process: Nr (index
number of the screw), torque, angle and status (the final result
of the screwing process OK or NOK) implemented with the
QListWidget class, (B) is the LogOff button implemented
with QPushButton class, (C) indicates information about the
user: name, local, bar code, program, all of them
implemented with the QLineEdit/QLabel classes and (D) on
the top indicates the state of the machine, showing messages
like: Put Piece, Emergency, Initialization needed, Centering
PCB, PCB – OK, PCB – ERROR and others.

Fig. 10 Qt environment created for the screwing application

IV. RESULTS

During the tests running the screwing machine, some
communication times over I2C were measured: (1) to change
the values in the output board and (2) to read values of the
input board. In the Fig. 11 it’s shown the time needed to send
3 bytes (Address, Register and Data) over I2C with ACK
(Acknowledgment).

Fig. 11 I2C communication with the output board

Sending these three bytes, over I2C with 400kbs requires
approximately 120us, Fig. 12. The upper signal, Fig. 11
represents the SCL (clock line) and the down signal
represents the SDA (data line) with the three data bytes.

Fig. 12 I2C Protocol to write on output board

But how much time is needed to achieve some reaction on
the output board if one emergency occurs in the input board?
To answer this question, the interrupt time of the board was
measured, Fig. 13. A 10 kHz square wave was applied in one
pin configured as input and the signal replicated into another
pin configured as output. The time variations between the
input and output signals were measured.

(A)

(B)

(C)

(D)

© IEEE 2009 2904 Preprint of IECON 2009 Proceedings

Fig. 13 Interruption time

This time depends on the operating system (Windows CE)
as also on the system load, but as it can be seen, during this
test which replicates only a square wave with higher priority
and applying different loads during time, the higher worst
time was only 35us and the minimum worst time less than
10us. This time variation could be unacceptable in some
application, but it meets the requirements of the application
described here – remember that the worst case time for the
emergency was previously defined as 1ms.

The I2C and interrupt time present a worst case time of
approximately 155us that was not included in the processing
time. The time required to read the input board is the time
needed to send at 400 kbs the following frame: 2 bytes
indicating the registry, one start bit and 1 byte of opcode
(address) and receive 1 byte, Fig. 14.

Fig. 14 I2C Protocol to read from the input board

Now the total time needed to acquire one interrupt, read the
input board and put some value on the output board, is
calculated as:

Interruption time + Read Time + Write Time (1)
(35us + 160us + 120us) = 315us

The final time does not take into account the processing
time, but since the threads that handle the emergency
interrupt have the highest priority, it satisfies the

requirements of the designed application. Duplicating the
calculated time, only for safety reasons and due to the
unknown processing time (because the unpredictable load
that the system may experiment), the total time is 630us,
which is still less than the 1ms previously pointed as the
emergency procedure deadline.

V. CONCLUSIONS

In this paper is described an application based in a low cost
embedded system from Toradex as an alternative to a system
based on PLC and PC. I/O expansion boards with 16 inputs
or outputs opto-isolated for interface with the industrial
equipment (controllers, pneumatic valves, etc) and capacity to
communicate over I2C bus were developed. This system was
tested on an industrial screwing machine to screw PCBs.

The principal advantages of this system are:
 Cheaper solution than the PLC+PC approach.
 Only needs to learn one programming language, in

this case C++ with Qt Framework, which reduces
the developing time.

 It’s used a high level language on contrary to the
PLC language.

 This system can meet the time requirements of most
industrial applications, namely for this type of
working cells.

 It’s possible to develop different I2C based modules
to achieve the needs of other applications,
becoming a very flexible and expansible system.

 The system presents different connections, including
integration with small touch screens that makes it
suitable to panel control.

 The networking integration is easy because the
board has an Ethernet port.

Presently, the prototype cell is working almost during one
month, 12 hours a day. No reliability problem was registered,
so far, during the working time.

REFERENCES

[1] Jianmin Duan, F. L. (2008). "Research of Key Technologies in a
Windows CE-based Monitoring and Control System". Industrial
Electronics and Applications, ICIEA 2008 , 494-496.

[2] Ogawa, M., & Henmi, Y. (2006). "Recent Developments on PC+PLC
based Control Systems for Beer Brewery Process Automation
Applications". SICE-ICASE, 2006. International Joint Conference ,
1053-1056.

[3] Jacqueson, N. (1999). "Windows CE for Industrial Computing". Real-
Time Magazine, 76-80.

[4] Kawakami, I., Nimura, Y., & Hamada, K. (2000). "Real-time extension
for Windows NT/CE used for control systems". SICE 2000.
Proceedings of the 39th SICE Annual Conference. , 319-324.

[5] Hall, M. (2005). "Windows CE 5.0 for real-time systems". Embedded
Computing Design.

[6] Http://msdn.microsoft.com/en-us/library/aa450594.aspx

Worst Time

© IEEE 2009 2905 Preprint of IECON 2009 Proceedings

