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Abstract

In this paper, we present a new stochastic hybrid technique for constrained
global optimization. It is a combination of the electromagnetism-like (EM) mecha-
nism with an approximate descent search, which is a derivative-free procedure with
high ability of producing a descent direction. Since the original EM algorithm is
specifically designed for solving bound constrained problems, the approach herein
adopted for handling the constraints of the problem relies on a simple heuristic
denoted by feasibility and dominance rules. The hybrid EM method is tested on
four well-known engineering design problems and the numerical results demon-
strate the effectiveness of the proposed approach.
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1 Introduction

The problem that is addressed in the paper considers finding a global solution of a
nonlinear optimization problem in the following form:

minimize f(x)
subject to g(x) ≤ 0, x ∈ Ω,

(1)

where f : IRn → IR and g : IRn → IRp are nonlinear continuous functions and Ω = {x ∈
IRn : l ≤ x ≤ u} is a closed set. We assume that the objective function f is nonconvex
and possesses many local minima in the feasible region. This class of global optimization
problems is very important and frequently encountered in engineering applications.
The most common approach for solving constrained optimization problems is based
on penalty functions. Penalty terms are added to the objective function to penalize
constraints violation. The penalty techniques transform the constrained problem into
an unconstrained problem by penalizing f when constraints are violated and then
minimizing the penalty function using methods for unconstrained problems [1, 4, 12, 14].
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The approach herein adopted for handling the constraints g(x) ≤ 0 of problem (1)
relies on a simple heuristic consisting on three selective rules, denoted by feasibility and
dominance (FAD) rules [10, 17]. Other techniques that aim to preserve feasibility are
adopted in [8, 9, 15, 16].

In this paper, we are interested in the electromagnetism-like (EM) algorithm pro-
posed in [2]. This is a population-based algorithm that simulates the electromagnetism
theory of physics by considering each point in the population as an electrical charge.
The method uses an attraction-repulsion mechanism to move a population of points
towards optimality. The EM algorithm is specifically designed for solving optimization
problems with bound constraints [1, 2, 3]. Like other hybrid population set-based al-
gorithms, the original EM algorithm incorporates a local search algorithm to exploit
the local minima around the best point of the population. In this paper, we will use
a derivative-free heuristic method to produce an approximate descent direction for the
objective function, at the best point of the population, followed by a backtracking line
search.

The paper is organized as follows. In Section 2 we describe the EM algorithm that
incorporates the FAD rules for constraint-handling. Section 3 presents the hybridization
of the EM algorithm with the descent search heuristic and Section 4 contains the results
of the numerical experiments on four benchmark engineering optimization problems. We
conclude the paper in Section 5.

2 The electromagnetism optimization algorithm

In this section we describe the EM algorithm for solving problem (1). The algorithm
starts with a population of randomly generated points from the feasible set Ω. Analo-
gous to electromagnetism, each point is a charged particle that is released to the space.
The charge of each point is related to the objective function value and determines the
magnitude of attraction of the point over the others in the population. The better the
objective function value, the higher the magnitude of attraction. The charges are used
to find a direction for each point to move in subsequent iterations. The regions that
have higher attraction will signal other points to move towards them. In addition, a
repulsion mechanism is also introduced to explore new regions for even better solutions
[2, 3]. The EM algorithm is presented below and comprises four main procedures.

Algorithm 1 (Electromagnetism)
input: Nitmax, LsItmax δ;
k ← 0
Initialize()
while k ≤ Nitmax do
F ← CalcF()
Move(F)
Local(LsItmax, δ)
k ← k + 1

end while
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A more detailed explanation of the EM algorithm for solving constrained problems
follows. In the Initialize procedure, a population of psize points is randomly generated
from the feasible region Ω. Let xi be the ith point of the population. Then each
coordinate of a point, denoted as xi

k (k = 1, . . . , n), is computed by

xi
k = lk + λ(uk − lk) (2)

where λ ∼ U(0, 1). Then, all points are evaluated and compared in order to identify
the best point, xbest.

The comparison between two points to the selection of the most promising point is
made according to the so called FAD rules, as follows,

(1) among two feasible points, the one that has better objective function value is
preferred;

(2) any feasible point is preferred to any infeasible solution;

(3) among two infeasible points, the one that has smaller constraints violation is
preferred.

The constraints violation is measured by

CViol(x) =




p∑

j=1

(max {0, gj(x)})2



1/2

.

Hence, a point xi with CViol(xi) = 0 is feasible, whereas the point is infeasible if
CViol(xi) > 0. The reader is referred to [13] for more details.

For the CalcF procedure, the Coulomb’s law of the electromagnetism theory is used.
It states that the force exerted on a point via other points is inversely proportional to
the square of the distance between the points and directly proportional to the product
of their charges. In each iteration, we compute the charges of the points according to
their objective function values. As the charge qi of point xi determines the power of
attraction or repulsion for that point, the charge is computed according to the objective
function value by

qi = exp

(
−n|f(xi)− f(xbest)|∑psize
j=1 |f(xj)− f(xbest)|

)
for i = 1, . . . , psize. (3)

In this way the points that have better objective function values possess higher charges.
This is a scaled distance of the function value at xi to the function value of the best
point in the population.

Since the charges (3) are all positive, the direction of a force F i
j depends on the

comparison of the points xi and xj , according to the FAD rules. Hence, the statement
xj is better than xi means that xj is the preferred point according to the FAD rules
and the point xj attracts xi and consequently the direction of the force should be

−−→
xixj .
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Otherwise, if xi is the preferred point according to the FAD rules then xj repels xi and
the direction of the force is

−−→
xjxi. Thus,

F i
j =





(xj − xi) qiqj

‖xj−xi‖3 if xj is better than xi

(xi − xj) qiqj

‖xj−xi‖3 otherwise,
(4)

for j 6= i. Then the total force vector F i exerted on each point xi by the other psize− 1
points is calculated by adding the individual component forces, F i

j ,

F i =
psize∑

j 6=i

F i
j , i = 1, . . . , psize.

In the Move procedure, the total force vector, F i, is used to move the point xi in the
direction of the force by a random step length λ ∼ U(0, 1) as follows

xi
k =





xi
k + λ

F i
k

‖F i‖(uk − xi
k) if F i

k > 0

xi
k + λ

F i
k

‖F i‖(x
i
k − lk) otherwise

(5)

for each coordinate k (k = 1, 2, . . . , n) and for i = 1, . . . , psize and i 6= best. Notice that
the best point, xbest, is not moved and is carried out to the subsequent iteration.

The Local procedure performs a local refinement and is applied to one point in the
population. The local search presented in [2] is a random line search algorithm that is
applied coordinate by coordinate only to the best point in the population. First, based
on the parameter δ, the procedure computes the maximum feasible step length,

smax = δ( max
1≤k≤n

(uk − lk)).

Then, for each coordinate k (k = 1, 2, . . . , n), a random number λ between 0 and 1
is selected as a step length and a new point y is componentwise calculated along that
direction by

yk = xbest
k + λ smax.

If an improvement is observed, according to the FAD rules, within LsItmax iterations,
the best point is replaced by y and the search along that coordinate k ends.

3 Electromagnetism-like hybridization

In this section, a hybridization of the electromagnetism-like algorithm with a descent
search is described. The basic idea behind this hybridization is the combination of global
techniques from the EM method with local techniques of a derivative-free heuristic
method that produces an approximate descent direction and consequently generates a
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new promising point. Thus, instead of using the Local search procedure described in
Section 2 we apply a descent local search procedure to refine the best point.

This local search procedure is an iterative stochastic optimization method that
generates a sequence of approximations of the optimizer by assuming an approximate
descent direction. It relies on:

(1) a set of two exploring points, randomly generated from the neighborhood of the
best point;

(2) an approximate descent direction for f at xbest;

(3) a generation of a new promising point along the unit length descent direction with
a prescribed scalar step size;

(4) the selection of the most promising point according to the so called FAD rules.

In the following subsections, a brief presentation of the procedures involved in the
hybridization of the electromagnetism-like algorithm with a descent search is made. The
local search algorithm in the hybrid EM algorithm is then presented.

3.1 Generating exploring points

Here, we introduce the algorithm that aims to randomly generate two random exploring
points xrand

i , i = 1, 2, in the neighborhood of the best point xbest. Each xrand
i is

generated so that
‖xbest − xrand

i ‖ ≤ εr for i = 1, 2,

for a sufficiently small positive value of εr, as described in the following algorithm:

Algorithm 2 (Generate)
input: εr, xbest

for k = 1, . . . , n do
for i = 1, 2 do

λ1 ← U(0, 1)
λ2 ← U(0, 1)
if λ1 > 0.5 then

xrand
i,k ← xbest

k + λ2εr

else
xrand

i,k ← xbest
k − λ2εr

end if
end for

end for
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3.2 An approximate descent search

Here, we describe a strategy to generate an approximate descent direction, d, for the
objective function f , at the best point xbest. Based on the two random exploring points
previously described, a descent direction is generated by

d = − 1∑2
j=1 |∆fj |

2∑

i=1

∆fi
xbest − xrand

i

‖xbest − xrand
i ‖ , (6)

where ∆fj = f(xbest)− f(xrand
j ).

Theoretical properties related to this direction vector are shown in [7].

3.3 Generate new point

The descent direction, d, is used to move the best point in that direction, as can be
seen in Algorithm 3, where 0 < α ≤ 1 represents the step size. We remark that
bound constraints feasibility is maintained by using the normalized descent direction
and scaling it with the allowed range of movement towards the lower bound lk, or the
upper bound uk, of the set Ω.

Algorithm 3 (New point)
input: α, d, u, l, xbest

for k = 1, . . . , n do
if dk > 0 then

yk ← xbest
k + α dk

‖dk‖(uk − xbest
k )

else
yk ← xbest

k + α dk
‖dk‖(x

best
k − lk)

end if
end for

3.4 The hybrid EM algorithm

We now present a more detailed and formal description of the local search in the
electromagnetism-like mechanism with the descent search hybridization (Algorithm 4).

In this hybrid EM algorithm we implement a backtracking line search to progress
towards optimality, as follows. First, we generate two exploring points and a descent
direction. These two steps in the Algorithm 4 are executed whenever flag is set to 1.
Then, a new point y is calculated and, according to the FAD rules, either y or xbest is
preferred. If xbest is the preferred point, then y is discarded, the step size is halved (i.e.,
α ← α/2) and a new point is evaluated along the same descent direction (flag is set
to 0 in the Algorithm 4). However, when y is preferred, another approximate descent
direction for f , at y, is computed (flag is set to 1 and the step size, α, is re-initialized
to 1) and the process is repeated.

Algorithm 4 below describes the steps of the local search procedure in the hybrid
EM method. The setting of parameters used in this algorithm is discussed later on in
Section 4.
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Algorithm 4 (Local search in the hybrid EM)
input: LsItmax, xbest

flag ← 1, α ← 1, k ← 0
while k ≤ LsItmax do

if flag = 1 then
Generate(xrand)
Compute descent direction d using (6)

end if
New point(y)
if both y and xbest are feasible then

if f(y) < f(xbest) then
xbest ← y, α ← 1, flag ← 1

else
α ← α/2, flag ← 0

end if
end if
if y is feasible and xbest is infeasible then

xbest ← y, α ← 1, flag ← 1
end if
if y is infeasible and xbest is feasible then

α ← α/2, flag ← 0
end if
if both y and xbest are infeasible then

if CViol(y) > CViol(xbest) then
α ← α/2, flag ← 0

else
xbest ← y, α ← 1, flag ← 1

end if
end if
k ← k + 1

end while

4 Numerical experiments

Problems of practical interest are important for assessing the effectiveness of a given
approach. Thus, to evaluate the performance of the herein proposed hybrid electro-
magnetism-like algorithm for constrained problems, a set of 4 benchmark engineering
problems, described in full detail in [11] (see also [9] and [16]) is used. A comparison
with other published results is also included.

The algorithm is coded in the C programming language and it contains an interface
to connect to AMPL so that the problems coded in AMPL could be easily solved [6].
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AMPL is a mathematical programming language that allows the codification of opti-
mization problems in a powerful and easy to learn language. The set of coded problems
may be obtained from the first author upon request.

We tested two versions of the EM algorithm both incorporating the FAD rules for
constraint-handling: the EM with the original local search procedure, as described in
Section 2, denoted in the subsequent tables only by EM; and the hybrid EM with the
local descent search as presented in Section 3. For all problems, the used parameters
are as follows: δ = 0.001, LsItmax = 10, Nitmax = 5000, εr = 0.001. As required by
any stochastic algorithm, we record values of the best function value, fbest, the average
best function values, favg, the standard deviation, SD, and the worst function value,
fworst, obtained after 100 independent runs, each starting from a random population
with different seeds. Here, we consider a population size of 20 points and use a limit of
Nitmax iterations to terminate the algorithms.

4.1 The problems set

We now summarize the characteristics of the chosen engineering problems:

• Design of a welded beam [9, 11]. In this problem we minimize the cost of
a welded beam, subject to constraints on the shear stress, bending stress in the
beam, buckling load on the bar, end deflection of the beam, and side constraints.
There are 4 design variables (h, l, t and b) and 7 inequality constraints;

• Design of a tension/compression spring [9, 11]. This problem minimizes the
weight of a tension/compression spring, subject to constraints on the minimum
deflection, shear stress, surge frequency, limits on outside diameter and on design
variables. The problem has 3 design variables (d, D and N) and 4 inequality
constraints;

• Design of a gear train [11]. This problem minimizes the cost of a gear ratio
of a gear train, subject to constraints on the design variables. The problem has 4
design variables (nA, nB, nC and nD) constrained in [12, 60];

• Design of a pressure vessel [9, 11]. This problem consists of minimizing the
total cost of the material, forming and welding of a cylindrical pressure vessel. The
problem has 4 design variables (Ts, Th, R and L) and 4 inequality constraints.

4.2 Comparative results

We begin by reporting the results obtained when solving the welded beam design
problem. Table 1 contains the best, average and worst results obtained by the EM
and hybrid EM algorithms. For comparison, the best results reported in [11] are also
included. The population based algorithm therein proposed is a standard Unified
Particle Swarm Optimization (UPSO) that has been implemented for four values of a
particular parameter u: 0, 0.2, 0.5 and 1. This is a combination of the standard global
and local PSO versions. The EM algorithm found a solution having objective function
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Table 1: Best, average and worst results for the welded beam design problem.

Method fbest favg SD fworst

UPSO(u = 0.5) [11] 1.76558 1.96820 1.55415e-1 2.84406
EM 1.726785 1.776614 3.045007e-2 1.862183
hybrid EM 1.725311 1.750363 1.965722e-2 1.802470

value within 0.1% of the best-known solution, in 115308 function evaluations, while
the hybrid EM found a solution within 0.03% of the best-known solution, in 155082
function evaluations. Table 2 contains the values of the design variables, as well as the
values of the constraints at the best solution found, over the 100 runs. For comparative
purposes, we include similar results published in [5], which implements a genetic-based
algorithm, and in [9] and [16], which are PSO type methods.

Table 2: Comparative results for the beam problem.

Values Best solution found
EM hybrid EM in [5] in [9] in [16]

h 0.204359 0.205651 0.2088 0.20573 0.201381
l 3.500343 3.473614 3.4205 3.47049 3.23192
t 9.036422 9.036222 8.9975 9.03662 10.0
b 0.205740 0.205759 0.2100 0.20573 0.201381
g1 -6.534397e-2 -4.009198 3.37812e-1 0.0 -2.92784e-2
g2 -1.183849e-1 -1.679412 -353.902604 0.0 -4972.77
g3 -1.381052e-3 -1.081644e-4 -1.20e-3 -5.551115e-11 -3.58641e-7
g4 -3.430331 -3.432551 -3.411865 -3.432984 -3.32625
g5 -7.935900e-2 -8.065100e-2 -8.380e-2 -8.07296e-2 -7.63803e-2
g6 -2.355401e-1 -2.355405e-1 -2.35649e-1 -2.355403e-1 -2.39099e-1
g7 -7.888930e-1 -2.432333 -363.232384 -9.094947e-13 -3.91764e-3
f 1.726785 1.725311 1.74830941 1.72485084 1.81429

Tables 3 and 4 contain the results of the spring design problem. The best solution
found by EM is 0.003% below the best-known solution, after 109769 function evalu-
ations, while the hybrid EM found a solution 0.006% below the best-known solution,
using 155076 objective function evaluations.

Table 5 contains the fbest, favg and fworst obtained after 100 runs for the UPSO
method of [11], as well as for the EM and hybrid EM algorithms, when solving the
gear train design problem. EM found a solution in 115069 function evaluations, while
the hybrid EM needed 155033 objective function evaluations. Table 6 presents detailed
results concerning the design variables of the problem.
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Table 3: Best, average and worst results for the tension/compression spring design
problem.

Method fbest favg SD fworst

UPSO(u = 0.5) [11] 1.28158e-2 4.67351e-2 2.14505e-1 1.57998
EM 1.266581e-2 1.283445e-2 1.997469e-4 1.380261e-2
hybrid EM 1.266535e-2 1.269072e-2 3.039597e-5 1.279914e-2

Table 4: Comparative results for the spring problem.

Values Best solution found
EM hybrid EM in [5] in [9] in [16]

d 0.051610 0.051755 0.051480 0.051466369 0.05
D 0.354808 0.358310 0.351661 0.351383949 0.310414
N 11.402126 11.196240 11.632201 11.60865920 15.0
g1 -3.941677e-6 -3.553156e-7 -2.080e-3 -3.336613e-3 -3.30997e-6
g2 -1.782013e-5 -1.234269e-6 -1.10e-4 -1.0970128e-4 -1.73742e-2
g3 -4.049882 -4.056911 -4.026318 -4.0263180998 -186.267
g4 -7.290545e-1 -7.266231e-1 -7.31239e-1 -7.312393333e-1 -7.59724e-1
f 0.01266581 0.01266535 0.0127047834 0.0126661409 0.0131926

Table 5: Best, average and worst results for the gear train design problem.

Method fbest favg SD fworst

UPSO(u = 0) [11] 2.70085e-12 3.92135e-8 7.71670e-8 6.41703e-7
EM 1.307208e-21 2.136513e-16 3.884946e-16 3.192848e-15
hybrid EM 2.040657e-18 8.998912e-15 1.855748e-14 1.093523e-13

Table 6: Comparative results for the train problem.

Method nA nB nC nD f

EM 54.208242 15.842449 15.825780 32.056642 1.307208e-21
hybrid EM 55.036626 17.362821 26.994790 59.026132 2.040657e-18
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Table 7: Best, average and worst results for the pressure vessel design problem.

Method fbest favg SD fworst

UPSO(u = 0.5) [11] 6.15470e3 8.01637e3 7.45869e2 9.38777e3
EM 5.894836e3 6.383338e3 4.766863e2 7.320809e3
hybrid EM 5.911713e3 6.462390e3 5.665410e2 8.944713e3

Table 8: Comparative results for the vessel problem.

Values Best solution found
EM hybrid EM in [5] in [9] in [16]

Ts 0.783512 0.780817 0.8125 0.812 0.778169
Th 0.387376 0.393103 0.4375 0.4375 0.384649
R 40.596075 40.45676 40.3239 42.09845 40.3196
L 196.186997 198.147519 200.0 176.6366 200.0
g1 -7.866810e-6 -1.593979e-6 -3.4324e-2 0.0 -9.94553e-9
g2 -8.984847e-5 -7.145636e-3 -5.2847e-2 -3.588e-2 -3.80778e-9
g3 -3.943287e-2 -246.0737 -27.105845 -5.8208e-11 -5.84856e-4
g4 -43.813003 -41.852481 -40.0000 -63.3634 -40.0
f 5894.835806 5911.713232 6288.7445 6059.131296 5885.33

Finally, when solving the pressure vessel design problem, we obtain the results
reported in Tables 7 and 8. The best results obtained by the EM and hybrid EM
algorithms are better than most of the until now published. The solution obtained
by EM is 5894.835806 (with 115310 function evaluations). The hybrid EM found the
solution 5911.713232 after 155079 function evaluations.

5 Conclusions

This paper presents a new version of the electromagnetism-like optimization algorithm
for solving global constrained optimization problems. This version relies on simple
rules to maintain feasibility instead of implementing a penalty technique [1], avoiding
therefore the update of the penalty parameter that is associated with the penalization
of the constraints in the penalty function. Further, we hybridize the electromagnetism-
like mechanism and a local descent search in order to get a better movement and to
refine the best point in the population. A basic backtracking line search technique is
also included to give faster progress towards optimality.

To assess the performance of the proposed hybrid EM algorithm, a set of four
constrained engineering problems of practical interest is solved. A comparison with
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other stochastic-type methods is included. The results show the effectiveness of our
hybrid EM method. Embedding a fitness function that does not need any penalty
parameter in the charge calculation of the EM algorithm is a matter for future research.
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