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Abstract

The Raft consensus algorithm allows multiple state machine replicas to behave as a single and robust sys-

tem, capable of tolerating various faults, offering more resilience when compared to a monolithic system.

Raft is known for its ease of understanding and practical implementation, due to its utilization of strong

leadership and division into three relatively independent sub-problems: log replication, leader election

and safety. The combination of its simplicity, strong consistency, and fault tolerance guarantees in data

replication has solidified Raft as one of the most popular algorithms since its creation a decade ago. It

has been widely adopted in production by various systems, including Etcd, CockroachDB, MongoDB, and

Neo4j.

The leader in a Raft cluster has the active role of replicating its log entries on a process-by-process

basis. In contrast, the other processes play a passive role, waiting for the leader’s requests and respond-

ing accordingly. This approach limits Raft in terms of scalability and performance: the larger number

of processes in the system, the higher the leader’s replication workload, causing the leader to become

the system bottleneck. Therefore, the overall performance of a Raft cluster is heavily dependent on the

efficiency of the leader process.

In terms of fault tolerance, a Raft cluster with 2f+1 processes can tolerate f processes to crash,

requiring only a majority of correct processes to ensure availability. Furthermore, Raft allows for messages

to be delayed or lost and can tolerate total network partitions. However, it assumes that messages are

eventually delivered, as the leader needs to maintain constant communication with all processes to retain

its leadership status. If a process does not receive any communication from the leader within a specified

timeout period, it will assume that the leader failed and initiate an election. Therefore, Raft needs a

transitive network to operate efficiently. If there are processes that do not receive messages from the leader,

it increases the likelihood of elections being triggered constantly, leading to a loss of system performance.

A consequence of such an occurrence was the outage experienced by Cloudflare on November 2, 2020,

which lasted for six and a half hours [30].

In this thesis, we present Driftwood, a novel algorithm that expands Raft by incorporating gossip mech-
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anisms to decentralize the leader replication effort. Gossip protocols allow a process to deliver a message

to all processes, even in non-transitive networks, with a high probability. The Driftwood’s leader, instead

of sending its log entries one-by-one, will initiate gossip rounds with a message containing uncommitted

entries so that the processes propagate these entries among themselves and replicate the leader’s log.

Furthermore, this message serves as the leader’s heartbeat when first received, avoiding unnecessary

elections in non-transitive networks. However, the leader still has to receive replication confirmations from

the processes in order to commit entries. So, we also propose new replicated data structures, shared in

the gossip rounds, to discover new committed log entries.

Driftwood is experimentally evaluated and compared with Raft. To this end, we implemented three

algorithms in the Paxi framework: Raft, which serves as the baseline comparison, and two versions of

Driftwood, one that uses the new replicated data structures while the other doesn’t. Through our evaluation,

we determine the differences in performance, scalability, and distributed resource usage between Raft

and Driftwood. We also analyse the behaviour of these algorithms in simulated non-transitive network

scenarios.

Keywords Distributed consensus, Raft algorithm, Gossip
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Resumo

O algoritmo de acordo Raft permite que múltiplas réplicas de uma máquina de estado se comportem

como um único sistema robusto, capaz de tolerar diversas faltas, oferecendo mais resiliência comparado

a um sistemamonolítico. Raft é reconhecido pela sua facilidade de compreensão e implementação prática,

devido ao uso de liderança forte e divisão em três sub-problemas relativamente independentes: replicação

do registo, eleição do líder e segurança. A combinação de simplicidade, e garantias de coerência forte

e tolerância a faltas na replicação de dados solidificou o Raft como um dos algoritmos mais populares

desde a sua criação há uma década, sendo adotado em produção por diversos sistemas, incluindo Etcd,

CockroachDB, MongoDB e Neo4j.

O líder dum sistema de Raft tem o papel ativo de replicar as entradas do seu registo processo a pro-

cesso. Em contrapartida, os outros processos têm um papel passivo no sistema, esperando apenas pelos

pedidos do líder e respondendo de acordo. Esta abordagem limita o Raft em termos de escalabilidade

e desempenho. Com um maior número de processos no sistema, maior será a carga de trabalho de

replicação para o líder, fazendo com que o líder se torne o gargalo do sistema. Assim, o desempenho

dum sistema de Raft é dependente da eficiência do processo líder.

Em termos de tolerância a faltas, um sistema de Raft com 2f+1 processos consegue tolerar f crashes

de processos, necessitando apenas uma maioria de processos corretos para assegurar disponibilidade.

Além disto, Raft permite perda ou atraso de entrega de mensagens e tolera partições totais de rede.

Contudo, é assumido que mensagens são entregues inevitavelmente, uma vez que o líder tem que manter

constante comunicação com todos os processos para manter a liderança. Se um processo não recebe

nenhuma comunicação do líder até um tempo limite, este assume que o líder falhou e inicia uma eleição.

Desta forma, Raft necessita de uma rede transitiva para operar eficientemente. Caso o líder não consiga

comunicar com alguns processos, maior será a possibilidade que eleições aconteçam constantemente,

resultando na perda de desempenho do sistema. Uma consequência desta ocorrência foi uma interrupção

de serviços da Cloudfare a 2 de novembro de 2020 que durou seis horas e meia [30].

Nesta tese apresentamos Driftwood, um novo algoritmo que expande o Raft com a incorporação de

v



mecanismos de propagação epidémica para descentralizar o esforço da replicação pelo líder. Protocolos

de propagação epidémica permitem que um processo entregue uma mensagem a todos os processos,

mesmo em redes não transitivas, com elevada probabilidade. O líder, no Driftwood, em vez de enviar as

entradas do seu registo um-a-um, vai iniciar rondas de propagação epidémica com uma mensagem con-

tendo entradas não confirmadas para que os processos propagarem estas entradas entre si e replicarem o

registo do líder. Além disso, esta mensagem serve como heartbeat do líder quando recebida pela primeira

vez, evitando eleições desnecessárias em redes não transitivas. Contudo, o líder continua a ter que rece-

ber as confirmações de replicação dos processos para descobrir que entradas estão confirmadas. Assim,

propomos novas estruturas de dados partilhadas na propagação epidémica que permitirão aos processos

descobrir as entradas do seu registo que são confirmadas.

Driftwood é avaliado experimentalmente e comparado com Raft. Para tal, implementamos três algo-

ritmos na framework Paxi: Raft que serve de base e duas versões de Driftwood, que diferem no uso de

novas estruturas de dados para avanço das entradas confirmadas. Através da nossa avaliação pretende-

mos determinar a diferença de desempenho, escalabilidade e no uso de recursos distribuídos entre Raft

e Driftwood. Analisamos também o comportamento destes algoritmos em cenários de rede não transitiva

simulada.

Palavras-chave Acordo distribuído, Raft, Propagação epidémica

vi



Contents

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and Related Work 4

2.1 State Machine Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Distributed Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Raft Consensus Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 System Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Leader Election . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.4 Log Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.5 Limitations of Raft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Gossip-Based Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Relevant algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Driftwood 19

3.1 Gossip of AppendEntries Requests . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Adding Replicated Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Function Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Function Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Overview of Version 2 of Driftwood . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Correction Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Implementation 32

4.1 Paxi Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



4.2 Raft Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Messages Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Replica Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Driftwood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Version 1: Addition of Gossip . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2 Version 2: New Replicated Data Structures . . . . . . . . . . . . . . . . . . 38

4.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Experimental Evaluation 40

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Servers Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Replication Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Impact of Concurrent Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6 Use of Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Server Commitment Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.8 Performance with Partial Network Partitions . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion 52

6.1 Driftwood vs. Raft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Driftwood: Aspects to Improve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A Details of Results 63

A.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 Replication Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.4 Impact of Concurrent Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.5 Use of Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.6 Performance in Network Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



List of Figures

1 Replicated state machine architecture with log approach . . . . . . . . . . . . . . . . 8

2 Transition relationship between Raft states . . . . . . . . . . . . . . . . . . . . . . . 9

3 Example of a terms’ view across time . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Example of Raft logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 No stable leader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Comparison of Message Broadcasting Methods . . . . . . . . . . . . . . . . . . . . 15

7 Leader log replication in Raft and Driftwood . . . . . . . . . . . . . . . . . . . . . . 21

8 A condensed summary of the new mechanisms that make the first version of the Drift-

wood consensus algorithm an extension of Raft. Driftwood maintains most of the Raft

logic, so we exclude the RequestVote RPC and the state variables already summarized

in [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 Examples of processes’ states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

10 Possible logs for a five-process cluster . . . . . . . . . . . . . . . . . . . . . . . . . 26

11 Examples of the Merge function . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

12 A condensed summary of the new mechanisms that make the second version of Drift-

wood. We omit again the overlapping logic with Raft as well as the detailed explanations

of the functions to update and merge the new replicated data structures, which are ex-

plained in 3.2.1 and 3.2.2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 29

13 Paxi modules [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

14 Throughput (a) and Latency (b) with increasing number of replicas . . . . . . . . . . . 44

15 Mean response time according to reached throughput . . . . . . . . . . . . . . . . . 45

16 Throughput (a) and latency (b) with increasing number of concurrent clients . . . . . . 46

17 Use of CPU with increasing number of replicas . . . . . . . . . . . . . . . . . . . . . 47

18 Use of CPU with increasing client request throttle . . . . . . . . . . . . . . . . . . . 48

ix



19 CDF of the time interval between a client request received by the leader and committed

in leader/follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

20 Network topologies simulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

21 Performance of systems with 5, 53 and 125 replicas under varying link failures . . . . . 51

x



List of Tables

1 Paxi benchmark parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 CPU architecture information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Best-performing parameters for Version 1 . . . . . . . . . . . . . . . . . . . . . . . 42

4 Best-performing parameters for Version 2 . . . . . . . . . . . . . . . . . . . . . . . 43

xi



xii



Chapter 1

Introduction

Distributed systems are essential to society today, where areas like healthcare, transportation, finance

and telecommunications rely on them to function efficiently and effectively. However, lots of things can

go wrong in a distributed system: packets can be lost, reordered, duplicated, or arbitrarily delayed in the

network and servers might pause or crash, and these issues can lead to data loss, services outage or

decreased performance. Therefore, it is imperative to design and implement distributed systems that are

robust and reliable, even in the presence of faults.

There are many algorithms and protocols for building fault-tolerant systems, with different assump-

tions and guarantees. Some of these protocols are based in the consensus abstraction, that is getting

processes to agree on something, and is one of the most important and fundamental problems in dis-

tributed computing, that has been studied for decades.

One of the first and most important consensus algorithms is Paxos [27], proposed by Leslie Lamport in

1998, that allows consensus over a value under unreliable communication and process crash. In addition

to Paxos, Leslie Lamport also proposes Multi-Paxos [27], a variation of Paxos that considers multiple

concurrent runs of Paxos for reaching consensus on a sequence of values, that is commonly used to

implement a replicated state machine. However, Paxos is known to be very hard to understand due to its

non-intuitive approach and under-specification. This led to the development of the Raft [32] consensus

algorithm by Diego Ongaro and John Ousterhout in 2014, which provides the same guarantees under the

same assumptions as Paxos, but with the key goals being its ease of understanding and implementation.

Raft rapidly became popular, and many systems today are divided between those which use Paxos [14,

20, 34, 38, 40, 41] and those which use Raft [3, 4, 5, 6, 8, 9, 11].

Raft is a consensus algorithm used for replicating (deterministic) state machines. State machine

replication [36] is a popular replication technique that composes a set of unreliable hosts into a single

reliable service that can provide strong consistency guarantees, including linearizability [24]. It requires

that state machines replicated throughout various hosts are all initiated in the same state and in each of
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them the same operations are applied in the same order, assuring all replicas states are, eventually, the

same. Raft achieves this by managing a replicated log of operations in all servers.

1.1 Problem Statement

Raft is a leader-based protocol, where an elected leader process coordinates the other processes and

communicates with clients. This approach limits the algorithm availability and scalability, as the leader

performs more work than the other processes. With increasing number of processes or load to the system,

the leader quickly reaches the limit of its resources. This happens because the leader is the one replicating

its log to all processes. Whenever the leader receives a client request, it appends the request operation

to its log as a new entry, sends the new entries to all processes and when it knows that a majority of

processes have replicated the log correctly to a certain point, the leader applies to its state machine the

new operations up to that point and replies properly to the respective clients.

On November 2nd 2020, Cloudfare experienced a failure for six minutes in a load-balanced switch,

during which time their etcd cluster became unavailable [30]. This caused an outage of around six and

a half hours. The problem in the etcd cluster was caused by a partial network partition in the three-node

Raft cluster.

Raft relies on timeouts to detect leader crashes. However, in environments with highly variable network

delays, processes might (falsely) believe that the leader has crashed due to transient network issues, and

start a new leader election. These kinds of errors do not affect safety properties, however frequent leader

election leads to bad performance because the system can end up more time choosing a leader than

doing any useful work, resulting in loss of liveness [15].

Raft is particularly sensitive to network partitions. Leaders use heartbeats to maintain their leadership,

however consistently unreliable network links between processes can cause situations where leadership

continually bounces between processes, or the current leader is continually forced to resign, and therefore

the system makes no or little progress.

1.2 Objectives

In this thesis, we propose the integration of new gossip-based mechanisms [31] into Raft, presenting a

novel algorithm that we call Driftwood, capable of overcoming Raft limitations mentioned before. Our goal

is to reduce centralization of load on the leader and enhance the resilience of the system to unreliable

networks, more precisely being capable of tolerating network partitions.
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We leverage gossip as the means to overcome network limitations and improve the use of distributed

resources. Gossip protocols [31] are used in group communication due to high scalability and reliability

properties. With gossip, processes communicate by forwarding messages to their neighbours. This way,

processes can communicate even if they are not directly connected. Our approach consists in introducing

on the leader periodic gossip rounds, sent in a permutation [33], for log replication and thus avoiding

elections caused by network partitions. Additionally, we present novel concurrent data-structures shared

through gossip, that allow any process to find out the next log index up to which point entries were correctly

replicated to a majority of processes (i.e. committed) and may be applied.

We implement Raft and Driftwood on Paxi [10], an open-source framework for prototyping and evalu-

ation of replication algorithms in Go [21]. The Raft implementation serves as a baseline comparison for

Driftwood.
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Chapter 2

Background and Related Work

This chapter presents and discusses the relevant background and related work. Section 2.1 introduces the

state machine replication model, a method used to achieve consistent replicated states and fault-tolerance

that requires coordination through the use of consensus algorithms. Section 2.2 describes the consensus

problem in distributed systems and explains some approaches used to solve it. Section 2.3 presents the

Raft consensus algorithm, an algorithm used to coordinate replicated state machines and created with

the purpose of understandability. Section 2.4 explains how gossip-based protocols work. Section 2.5

summarizes some algorithms that have relevance to our work.

2.1 State Machine Replication

State replication is a method used in distributed systems for achieving fault tolerance. It involves main-

taining consistent replicated states, allowing a fraction of the processes to fail. There are two fundamental

approaches: primary-backup (or passive) replication [13] and state machine (or active) replication [26].

In the primary-backup replication model, one process is considered the primary that executes all opera-

tions issued by the clients and, regularly, pushes its state to the other processes considered the backups.

Furthermore, in case the primary fails, a correct backup will take its role, ensuring availability. In the state

machine replication model, clients operations are executed in all processes’ (deterministic) states in a

coordinated way.

State machine replication can be abstracted as a set of state machine replicas that receive operations

from clients and through some coordination technique behave as a single service. A state machine consists

of state variables, which encode its state, and operations, which transforms its state. A given operation

applied to a given state is always deterministic and produces a new state and/or output, meaning that if

any two states are the same and apply the same operation, then they will have the same result. Replicated

state machines requires three properties to hold [37]:
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1. Initial state: All correct processes are initiated with the same state;

2. Determinism: All correct processes receiving the same input on the same state produce the same

output and resulting state;

3. Coordination: All correct processes apply the same sequence of operations.

Assuming a system where only crash-failures happen, we can easily understand how replicated state

machines provide service, as long as at least one process is correct. Provided that each process starts

in the same state and execute the same operations in the same order, then each will do the same and

produce the same outputs; however, such a system is not realistic. In practice, assuring these three

requirements is challenging. Processes can crash and later recover that might result in outdated states

compared to the other processes. Moreover, determinism can introduce some constraints in the system,

as it complicates the use of paradigms such as concurrency and parallelism.

Coordination is the fundamental problem in replicated state machines. To resolve it is necessary to

implement total order broadcast and/or a consensus algorithm [22]. Replicated state machines must

reach consensus about the contents and ordering of operations.

2.2 Distributed Consensus

Distributed consensus is the problem of achieving agreement in asynchronous distributed systems. Tradi-

tional consensus requires that a set of processes agree on a value or decision, and must hold the following

safety properties [29]:

1. Non-triviality: A value can only be chosen if it was proposed by a correct process;

2. Stability: Once a value has been chosen, no process can revert its decision;

3. Consistency: All correct processes decide the same value.

An additional liveness property is usually considered, denominated the Termination property, which

states that eventually all correct processes decide on a value.

There are many variations of the consensus problem depending on the system and failure models.

Most real systems need to make a series of decisions over time, instead of making a single decision once.

A common solution to solve this problem is to append each decisions’ results to a replicated log in an

orderly way. Each process has a copy of the log, and log entries are appended at each process according

to a consensus algorithm that ensures eventual consistency between the replicated logs. Most consensus
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algorithms keep track of a log’s index such that any entry before that index has been agreed upon, allowing

the replicated logs’ entries to differ past that index, which might be agreed upon or discarded in the future.

Many consensus algorithms have been proposed in the literature; one of the first and most influential

is Paxos [27]. Usually, consensus algorithms can be divided in two types

• Symmetric (leader-less): All processes have equal roles, and clients can send requests to any

process;

• Asymmetric (leader-based): At least one process is a leader, making all decisions on behalf of

the system.

The leader-based approach helps processes reach agreement by letting the leader decide, that is

usually faster compared to the leader-less approach. However, in the presence of faults, the leader can

become unreachable to the system. Therefore a fault detector and a mechanism to replace the leader

become necessary, which impacts performance.

A key idea in distributed consensus is voting to reach a decision. The system reaches a decision when

a majority of processes vote for it. If more than one value is proposed, a majority of processes is required

to vote for one value for a decision. This allows some processes to fail, as it is only necessary for a majority

of correct processes to reach agreement.

2.3 Raft Consensus Algorithm

Raft [32] is a leader-based consensus algorithm that achieves strong consistency on replicated state-

machines by managing a replicated log of operations.

As explained in Section 2.1, replicated state machines need to apply the same operation in the same

order to be consistent. In Raft, an elected leader appends clients operation requests to its log, in order,

and replicates its log to the other processes, followers. When the leader knows a majority of followers

have copied the log up to a certain index, the leader can then commit the uncommitted operations up to

that index and respond to the respective clients. The leader informs the followers of the last committed

index so that they can also progress. Raft ensures that in case of leader failure, only a process with an

up-to-date log, i.e. that as copied the previous leader log to the point of the that leader’s committed index,

can become leader. Therefore committed entries are never deleted.

Raft is equivalent in performance and fault-tolerance to (Multi-)Paxos [28], one of the most used and

studied consensus algorithms, but Raft improves it in terms of understandability. Because of that, Raft is
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becoming the preferred consensus algorithm to be taught by distributed systems related lecturers. This

also led to many real-world distributed systems using it such as etcd [6], CockroachDB [1], TiDB [2] and

more.

2.3.1 System Assumptions

Raft operates under the following assumptions:

1. the cluster of processes is an asynchronous distributed system, i.e., no upper bound in computation

and message delivery as well as no global clock available;

2. network communication has to be fully connected, but can be unreliable, allowing network delays,

total partitions, as well as packet loss, duplication, and re-ordering;

3. Byzantine failures will not be tolerated;

4. operations requests are sent to the leader only (clients know which process is the leader);

5. the protocol has access to infinitely large, monotonically increasing values;

6. the state machines running on each process are deterministic and all start in the same state;

7. processes have access to infinite persistent storage that cannot be corrupted, and any write to

persistent storage will be completed before crashing (i.e. using write-ahead logging); and

8. processes are statically configured with a knowledge of all other process in the cluster.

Some of these points can be relaxed by extending Raft.

2.3.2 Overview

Raft and many others consensus algorithms usually describe the system as shown in Figure 1. In each

replicated process exists a clear distinction between the state machine, the replicated log and the consen-

sus module.

The consensus module is handled by the consensus algorithm, in our case Raft. It receives operations

from clients and messages from other processes and makes all decisions, such as, appending and deleting

entries from the log or when to apply operations to the state machine.

7



State Machine

Log

Consensus
Module

State Machine

Log

Consensus
Module...

Node 1 Node n

System
Network

Clients

Figure 1: Replicated state machine architecture with log approach

In a Raft cluster each process, more precisely the process’s consensus module, can be in one of the

following three states, each with its role:

• Follower: all processes start as followers; passively receives requests from the leader and replies

accordingly, never initiating communication.

• Candidate: intermediate state between follower and leader; actively requests votes to become

leader.

• Leader: responsible for log replication and communicating with clients; no more than one leader

exists at the same term.

Processes transition between states in accordance with certain events, shown in Figure 2. These

events are either temporal, such as timeouts happening; or spatial, such as receiving RPCs.

Time in Raft is logically divided into terms. A term is a monotonically increasing natural number, that

acts as a logical clock to achieve global partial ordering of events. A process’s term is only updated when

it starts (or restarts) an election, or when it learns from another node that its term is out of date, i.e., is

smaller. All messages exchanged between processes include the senders’ term. The receiver will compare

its term with the message’s term. If its term is larger, a negative reply is sent, otherwise its term, and

possibly state, will be updated. In each term, only one leader can be elected, and it serves as a leader until

the end of the term. An example of a process’s vision of terms across time can be visualized in Figure 3.
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(6) discovers new term
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Figure 2: Transition relationship between Raft states

time

Term 1 Term 2 Term 3 Term 4

election started leader emerged leader failure detected election failed

Figure 3: Example of a terms’ view across time

Communication between processes is done through remote procedure calls (RPCs). Raft requires only

two types of RPCs:

• RequestVote RPCs: initiated by candidates during elections; and

• AppendEntries RPCs: initiated by the leader to replicate its log and provide a form of heartbeat.

The leader, in order to replicate its log, sends AppendEntries carrying log entries for followers to

copy. Additionally, the leader sends AppendEntries, without log entries, periodically to followers as a

form of heartbeat. If a follower doesn’t receive an AppendEntries RPC during a period of time, called

Election Timeout, it assumes there is no viable leader, so it transitions to candidate and starts an

election.

For simplicity, the Raft algorithm is divided in three relatively independent sub-problems: leader elec-

tion, log replication and safety. Candidates send RequestVote RPCs to gather votes from other pro-

cesses. In the Section 2.3.3 we further describe the leader election process.

2.3.3 Leader Election

Leader election is triggered by a follower, when a period of time (Election Timeout) elapses without

receiving any AppendEntries. Leaders send periodic heartbeats (AppendEntries that carry no log
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entries) to all followers to maintain their leadership. Evidently, if the leader crashes it will stop emitting

RPCs to followers, and a new election will be eventually started.

On startup, all processes start as followers. When a follower’s Election Timeout elapses, it

transitions to the candidate state and emits RequestVote RPCs to all other processes to acquire votes in

order to become leader. A candidate stays in that state until one of the following happens:

a) the candidate wins the election;

b) another process establishes itself as leader; or

c) a period of time passes without a leader appearing.

A candidate wins an election if it receives votes from a majority of processes with the same term as

the candidate (candidates vote for themselves). Each process votes once in a given term, for the first

candidate with a log up to date whose vote request was received first (explained in Section 2.3.4). The

majority rule ensures only one leader can be elected at any term. Once a candidate wins an election, it

transitions to the leader state and starts sending heartbeats to advertise its election victory and maintain

leadership.

In case the candidate receives an AppendEntries from another process claiming to be the leader,

if the leader’s term (included in the request) is equal or larger than candidate’s term, then if recognizes

the leader as legitimate and transitions to follower, else if the leader’s term is smaller than the candidate’s,

it replies that its term is higher and continues the election.

During a candidate’s election, it’s possible that a leader is not elected, when votes are split between

many candidates. The candidate assumes this happened when the election timeout elapses again.

When this happens, the candidate will start a new election by incrementing its term and emits another

round of RequestVote RPCs.

A RequestVote message includes the following parameters:

• Term: candidate’s current term, i.e. election term;

• LastLogIndex: index of candidate’s last log entry; and

• LastLogTerm: term of candidate’s last log entry.

Raft uses randomization to avoid split votes to repeat indefinitely. Each process chooses an election

timeout randomly from a fixed interval (for example 150 to 300 ms for a broadcast time of 15 ms) every

time it starts an election. Therefore, in most cases only a single process will time out, win the election
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and start sending heartbeats before the others processes time out. If a candidate starts an election but

can’t become leader, another random process will, eventually, time out and start a new election.

Followers and candidates, if the Election Timeout elapses become/remain candidates and start

election by doing the following:

1. Increment their current term;

2. Vote for itself;

3. Emit RequestVote RPCs to all other processes.

Processes, upon receiving a RequestVote message, reply with their current term and whether they

grant their vote to the candidate. A process grants its vote if its current term is smaller or equal to

RequestVote's Term, it hasn’t voted in anyone yet in the RequestVote’s Term and candidate’s log

is up-to-date with its log. In the following section we explain Raft’s log properties and how it’s replicated

by the leader.

2.3.4 Log Replication

Once a process is elected leader, as well as sending heartbeats, it starts receiving requests from clients

and replicating its log. Clients send operations requests to be applied to the replicated state machine. On

reception, the leader appends the operation as a new entry to its log. Then it issues AppendEntries

RPCs to the followers to replicate the newly appended entry. Once the leader knows that the entry has been

safely replicated to a majority of processes, the leader applies the entry’s operation to its state machine

and responds the execution result to the respective client. The leader ensures its log is replicated by

sending AppendEntries indefinitely until the log is fully replicated to the respective follower.

Each log entry stores one client operation and term of reception. The entry’s log index and stored

term are necessary to detect inconsistencies between logs. Log entries are called committed when the

leader decides they are safe to apply to the state machines. Figure 4 shows an example of logs states in

a raft cluster with 5 processes, where operations are writes to a key-value store state machine, e.g. in the

entry in index 4 of leader’s log has associated the operation x← 5 (assign 5 to x) and was appended to

the log by the leader of term 2.

Followers keep a local monotonically increasing value, the CommitIndex, that is the index of the last

entry committed. Leader informs other processes through AppendEntries of the last index that can
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Figure 4: Example of Raft logs

be committed, i.e. leader’s CommitIndex. When a follower receives a leader’s CommitIndex higher

than its own, the follower updates it and can therefore apply the uncommitted entries in order up until the

updated CommitIndex.

Raft ensures that if two logs contain an entry with the same index and term, then the logs are identical

in all entries up through the given index, known as the Log Matching Property.

An AppendEntries request includes the following parameters:

• Term: the term of the current leader (i.e. sender’s term);

• PreviousLogIndex: the index of the log entry preceding new ones (i.e. entries sent to be

replicated);

• PreviousLogTerm: the term of the log entry preceding new ones;

• LogEntries: partition of leader’s log sent to be replicated; and

• LeaderCommit: leader’s entry index of last committed entry (i.e. leader’s CommitIndex).

Each process answers an AppendEntries request with its term and if its log matches the leader,

i.e. the term of the entry with index PrevLogIndex in its log is equal to PrevLogTerm (Log Matching

Property). Once a majority of processes answers with success, the leader can commit the new entries.

Followers upon receiving an AppendEntries message do the following:

1. If follower’s current term is higher than AppendEntries term, returns false.
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2. If logs don’t match up until PrevLogIndex, returns false.

3. If there are any entries after PrevLogIndex then they are deleted.

4. Append LogEntries to its log.

5. If the follower’s current CommitIndex is smaller than LeaderCommit, then it updates its commit

index to the minimum of LeaderCommit and index of last entry in log; then it can apply, in order,

the entries with an index larger than the last CommitIndex and smaller than or equal to the current

CommitIndex.

6. Return true.

Leaders, upon receiving an AppendEntries reply message must consider the following two cases:

a) If the reply’s term is higher than its own, it realizes it’s no longer the leader and becomes a follower;

b) Else if it receives false, then the sender’s log is outdated and needs updating, but the entries

previously sent aren’t enough, so it re-sends an AppendEntries request to that process, with

log entries starting from an earlier point in the log. This way, it may get false several times, until it

reaches a point where leader’s log and that process’ log match.

Raft ensures any process elected as leader has all the previous leader’s committed log entries, because

a majority of processes has the leader’s committed log entries replicated and processes can only vote to

processes with an up-to-date log. A candidate’s log is more up-to-date than another log if the candidate’s

last log entry’s term is higher than the other’s last log entry’s term; or if the candidate’s last log entry’s

term is equal to the other log last entry’s term, the longest is considered more up-to-date.

To ensure safety, Raft also adds a restriction for committing entries from older terms. A leader recog-

nizes that an entry is committed only when an entry with higher index and term equal to the current term

was stored in a majority of processes. The leader cannot conclude that an entry from an older term was

committed if it was stored in a majority of processes because it’s possible for a future leader to delete it.

2.3.5 Limitations of Raft

Leader bottleneck

Leader-based protocols, such as Raft, assign a leader that has a central role in the system usually per-

forming more work than the non-leader ones, and this can cause the system to scale poorly. Raft’s leader
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handles all communication with clients and has an active role compared to the followers, since it makes

decisions and sends AppendEntries to replicate its log and serve as heartbeat. Because of this, Raft

is an algorithm suited for systems with few replicas [23].

As the leader uses more resources than followers, it can become a bottleneck to the system. This can

happen with respect to system resources such as CPU and network bandwidth, since the leader handles

more messages, due to having to broadcast AppendEntries to followers every client request, so the

leaders’ network bandwidth can become saturated, or the CPU might reach its limit first if the average

request is small.

Network partitions

Raft assumes the network is transitive, messages may arbitrarily drop or delay (omission faults), but

messages sent from a point will eventually be delivered to another point; however this is not viable for

certain networks, like SDNs [18], where network partitions can exist. A real world example of an outage

caused by this failure is the Cloudflare’s November 2020 outage in their etcd cluster [30].

We now describe a scenario with network partitions where there is no stable leader. In the example

on Figure 5 all processes are up-to-date, R1 (in red) is the leader and the links (R1, R3), (R1, R4) and (R2,

R5) fail. R3 and R4 are not connected to the leader, so one (or both) will time out and become a candidate

incrementing their term and sending RequestVote RPC, to their neighbours that will inform R1 and make it

step down to follower. Either R3 or R4 will become leader, however they can’t communicate with R1, so it

will time out and become candidate and possibly leader again, then we are back at the initial setup again.

In this setup, no process can become a stable leader because there is always a process that can’t receive

RPCs from the respective leader. This demonstrates how network partitions can cause loss of liveness in

Raft.

R2

R1

R4R3

R5

Figure 5: No stable leader

14



2.4 Gossip-Based Protocols

Gossip protocols [31], also known as epidemic protocols, are used in group communication due to their

high scalability and reliability. They can be used to detect failures, aggregate or replicate data, reach

consensus, etc.

The idea underlying most gossip protocols is that when a process intends to deliver a message m

to all processes, it sends m to t random nodes (t is a configuration parameter called fanout); processes

upon receiving m for the first time do the same [25]. This way m will, with high probability, be delivered

to all processes at least once.

Figure 6 illustrates the difference between conventional one-to-one message broadcasting and the

gossip-based approach in a system with five processes. On the left, Process P3 sends a message directly

to each recipient, whereas with gossip, P3 sends the message to two randomly selected processes (fanout),

which then forward the message upon receipt.

(a) Normal message broadcast (b) Example of a message broadcast with gossip

Figure 6: Comparison of Message Broadcasting Methods

Gossip-based protocols are decentralized, since they rely on multiple processes participating in the

dissemination of information, so the load is uniformly distributed. This approach can provide in some cases

more efficient use of computing resources. Additionally, gossip-based protocols are reliable because of

their ability to tolerate failures. Even if a process fails or some messages are omitted, as long as one

process receives the message, the message can still be disseminated to the rest.

The simplistic approach of gossip-based protocols makes them easy to implement in practice. How-

ever, they can be less efficient and slower than other protocols due to the inherent redundancy in the

dissemination of messages and because messages have to go through multiple processes before reach-

ing all processes (more hops).
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Parameters

There are two fundamental parameters that must be considered carefully in any gossip-based protocol:

• Fanout: number of random processes selected by a process to disseminate a received message

for the first time. Higher values increase fault tolerance and broadcast reliability, however also

increases redundant network traffic.

• Maximum rounds: maximum number of times a message is retransmitted by processes. Each

message has an associated round value with initial value zero and increases monotonically each

time a process retransmit the message. Processes only retransmit the message if its round value is

smaller than the maximum rounds parameter. Some gossip protocols don’t define this parameter,

and the message dissemination terminates once all retransmitted messages reach processes that

have received the message once. Defining maximum rounds can decrease message redundancy

and keep high probability of achieving atomic delivery.

Strategies

There are several different approaches to implementing gossip-based protocols. We distinguish the follow-

ing three basic approaches:

• Eager push approach: Processes, as soon as they receive a message for the first time retransmit,

it to randomly selected peers;

• Pull approach: Periodically, processes request information from randomly selected peers about

recently received or available messages. When a process becomes aware of a message it did not

receive from a peer, it explicitly requests that peer for the message. This is a strategy that works

best as a complement to a best-effort broadcast mechanism (e.g., IP Multicast [19]);

• Lazy push approach: When a process receives a message for the first time, it transmits only the

message identifier. Receivers that have not yet received the message, make an explicit request for

the message to the sender.

2.5 Relevant algorithms

In this chapter, we summarize some related algorithms involving the consensus and gossip paradigms.

We start by introducing the mutable consensus algorithm, which utilizes strong failure detectors and stub-
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born channels that can be easily mutated, with an interesting mutation being gossip-based. Then we

explain Paxos atop Gossip, that simply implements Paxos atop a gossip communication layer, that can

be approached using any other consensus algorithm besides Paxos and introduces the idea of seman-

tic gossip. Afterwards we discuss S-Paxos, a Paxos variant that decentralizes the leader, decreasing the

leader’s bottleneck problem. Finally, we discuss Mandator-Sporades which joins Sporades, an omission

fault-tolerant consensus algorithm and Mandator, an asynchronous and consensus-agnostic client request

dissemination protocol.

Mutable Consensus

The Mutable Consensus protocol [33] achieves consensus in asynchronous distributed systems where pro-

cesses are considered to be fully connected using stubborn channels and may crash, so eventual strong

failure detectors, ⋄S, are assumed. Stubborn channels satisfy that messages received were previously

sent (No-Creation property) and the last message sent by a process is eventually received if no following

message is sent (Stubborn property). The protocol proceeds in asynchronous rounds, each with its des-

ignated coordinator. Each round has two phases where the coordinator tries to impose its decision. In

the first phase, the coordinator’s proposal is approved if a majority of the processes endorses it. When

a process suspects that the coordinator has failed, then it enters the second phase and requests other

processes to do the same, and as soon a majority does so, they proceed to the next round. Based on

the implementation of the stubborn channel several mutations of the protocol are possible, being the first

four mutations proposed: early, centralized, ring and permutation gossip. The correction of the protocol

doesn’t depend on the mutation. With great importance to us is the gossip permutation, in this imple-

mentation messages are immediately sent to f processes (gossip fanout) and delays it to the remaining

processes. The permutation gossip mutation allows the protocol to scale to numerous processes.

Paxos atop Gossip (Semantic Gossip)

Gossip communication can complement consensus algorithms. In [17] a gossip communication layer is

added to the Paxos consensus algorithm running over partially connected networks. The implementation

of Paxos does not require any change. The paper introduces Semantic Gossip, which optimizes the clas-

sical gossip approach for consensus algorithms through two techniques, semantic filtering and semantic

aggregation. Semantic filtering involves the use of a set of rules in order to decide if a message should

be sent to a peer or if it can be discarded, according to the consensus semantics. Semantic aggregation

involves aggregating multiple pending messages to be sent to a peer in accordance with a set of rules that
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identify those that are prone to aggregation and define how messages are aggregated. These techniques

reduce the number of messages exchanged without sacrificing the protocol and gossip properties.

S-Paxos

S(calable)-Paxos [16] is a variant of Paxos, sharing the same system assumptions, that tries to resolve

the limitations of leader-centric protocols. In Paxos the leader is responsible for receiving requests from

clients and distributing them to all processes so to decrease the leader’s workload S-Paxos distributes this

task to all processes. In S-Paxos any process can receive a request, with a unique global identifier, and

the receiver is responsible for disseminating the request to the other processes. The leader utilizes the

request identifiers instead of full requests to order them through the Paxos protocol. Each client’s request

is properly replied to by the receiver after executing it. This algorithm allows the system to scale, as adding

more processes for fault-tolerance can improve performance.

Mandator-Sporades

Mandator-Sporades [39] is a modular state machine replication algorithm that enables high performance

and resilience in the wide-area setting. Like Raft, the algorithm is tolerant to crashes and omission faults.

Mandator and Sporades are the two building blocks of the algorithm.

Mandator is a protocol for disseminating clients requests, that is asynchronous and has no code-

pendency with the consensus protocol. Mandator can reliably and efficiently replicate clients requests in

batches over a wide-area network, and the workload for all processes is the same. The consensus layer

can then refer to request batches by their unique identifiers, making communication lighter and faster.

Sporades is an omission fault-tolerant consensus algorithm, that consists of two modes of opera-

tions - synchronous and asynchronous - that always ensures liveness. The synchronous mode offers high

performance under synchronous networks, that commits a batch of client requests in a single network

round-trip. The asynchronous mode offers high resilience and liveness under asynchronous networks and

process failures, that commits client requests with quadratic message complexity. Sporades dynamically

switches between the synchronous and the asynchronous modes depending on the network condition.
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Chapter 3

Driftwood

In this chapter, we present the novel mechanisms that will extend Raft creating Driftwood. Driftwood aims

to improve the performance and scalability of Raft by decentralizing log replication, maintaining the leader

election procedure, and safety properties of Raft. The leader in Driftwood uses gossip to replicate its log

in a decentralized way: specifically, AppendEntries requests are gossiped instead of emitting RPCs to

every follower (Section 3.1). However, we felt that we could further decentralize log replication by adding

new replicated data structures that make it possible for followers to progress the CommitIndex, further

decentralizing the system (Section 3.2). We distinguish between Driftwood with and without the replicated

data structures by referring to the base as Version 1 and the version with replicated data structures as

Version 2. Section 3.3 presents the correction argument for the replication procedure of Driftwood by

referencing the safety properties of Raft.

3.1 Gossip of AppendEntries Requests

Raft uses RPCs for communication between processes to directly replicate missing log entries in the

receiver, as exemplified in Figure 7a. While this approach makes it easier to reason about the algorithm,

it is also one of its limitations. As the number of replicas increases, the leader will need to handle more

RPCs, and therefore more messages, to replicate its log.

To ensure the followers consistently replicate the leader’s log, a partition of the leader’s log with

new entries matching each follower’s log must eventually be delivered. Raft uses RPCs because it is an

efficient way to replicate the missing entries. However, Raft allows redundant entries to be included in the

AppendEntries request, allowing the leader to broadcast a single AppendEntries request containing

the largest log partition necessary to replicate the log between all the followers.

Gossip is a decentralized broadcast mechanism designed to deliver messages to all participants with

high probability and reliability. In order to use this mechanism for replication, we need to consider would
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be the leader’s log partition that would maximize the number of entries not yet replicated while minimizing

the number of redundant entries (entries that have already been replicated). If the gossiped message

is successfully delivered to all participants, then sending the uncommitted entries will allow at least the

majority of processes to replicate the log, allowing the system to progress. However, followers with logs

missing committed entries will not be able to replicate the leader’s log by receiving only the uncommitted

entries. In this case, the leader needs to gossip a message containing entries from an earlier point or

directly replicate the missing entries, following the original algorithm.

In Driftwood, the leader initiates gossip rounds to broadcast uncommitted log entries through a single

AppendEntries request, as exemplified in Figure 7b. Followers, upon receiving a request for the first

time, reply to the leader about the replication’s success. Occasionally, followers might fail to replicate

some entries due to network faults or crashes, causing their log to be behind the leader’s CommitIndex.

In these instances, these followers will reply that the replication was unsuccessful. In response, the leader

will initiate the usual AppendEntries RPC, as in Raft, to ensure that the missing entries in that follower’s

log are replicated and its log is up-to-date with the entries broadcasted in the subsequent gossip rounds. If

the reply doesn’t reach the leader, the follower will reply unsuccessfully again to the next AppendEntries

request.

The leader initiates periodic gossip rounds with AppendEntries requests containing uncommitted

entries. This is advantageous as it gives time for the gossiped request to be delivered and for followers

to reply before the next gossip round initiates and permits temporal batching of log entries. We refer to

this as AppendEntries Gossip, and, unlike the RPC mechanism, the leader in this case doesn’t wait

for followers’ replies, and the followers only reply to newer AppendEntries requests (i.e., from newer

gossip rounds).

AppendEntries gossip rounds employ a permutation-basedmethod to select the gossip targets [33].

A process, upon becoming leader, calculates a permutation of followers, which is circularly traversed in

each gossip round, as specified in Algorithm 1.

Figure 8 provides a concise overview of the new mechanisms that make Driftwood. Within each

process’s state, we introduce a new integer variable, RoundLC, which helps followers distinguish between

AppendEntries messages disseminated in each gossip round. RoundLC is set to zero at the start

of a new term and is only incremented by the leader when it initiates a new gossip round. When a

follower receives an AppendEntries gossip request, it checks the value of RoundLC contained within

the request. If the received value is higher than its own copy, the follower knows that it is the first time
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(a) Raft’s replication approach

(b) Driftwood’s replication approach

Figure 7: Leader log replication in Raft and Driftwood

Algorithm 1: Permutation gossip round for the process Pi, i ∈ 0..n− 1

State:
F← fanout value
c← 0
u← random permutation from 0 to n− 1 except i
Function Round(m):

for i← 0 to F do
send m to u[(c + i) mod F];

end
c← c + F;

receiving this message and proceeds to process it accordingly. By consistently updating RoundLC with

the highest received values, the follower effectively filters out messages from older rounds.

To differentiate between RPC and gossip AppendEntries requests, the leader includes a boolean

variable within the request. When set to true, the request is a RPC, indicating that the receiver should

process the message and respond accordingly without propagating it.

According to Raft, the leader also uses two variables to keep track of the followers’ log states: the

MatchIndex which states, for each process, the index of the highest log entry known to have been

successfully replicated, and the NextIndex, which specifies, for each server, the index of the next log

entry to be sent to that process. To assist the leader in updating these variables, the follower includes in

the AppendEntries reply the lowest of the two indices: the index of the last entry in its log and the index
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immediately preceding the entries sent in the AppendEntries request. Consequently, when the leader

receives an unsuccessful AppendEntries reply, it starts an AppendEntries RPC that continues until

the entries being sent match the respective follower’s log, successfully replicating the leader’s log.

Figure 8: A condensed summary of the new mechanisms that make the first version of the Driftwood
consensus algorithm an extension of Raft. Driftwood maintains most of the Raft logic, so we exclude the
RequestVote RPC and the state variables already summarized in [32].

3.2 Adding Replicated Data Structures

Driftwood’s gossip mechanism reduces the number of messages that a Raft leader would have to handle

by sending uncommitted entries in batches and delegating the dissemination of these entries go to the

followers. However, we maintain the approach where the leader advances the CommitIndex only after

receiving acknowledgments from a majority of followers indicating the successful replication of the log

entries.

We further extend Driftwood by adding new replicated data structures, referred to as CommitStatus,

that synergize with the gossip mechanism, allowing the CommitIndex to progress in a decentralized way.

The processes use gossip to propagate their data structures so that they can progress.
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Each process maintains the CommitStatus in their local state, which consists of the following vari-

ables:

• Bitmap: an array of bits that keeps track of the processes known to have successfully replicated

their local log up to the index NextCommit. Each index in the array corresponds to a specific

process, and that process sets its value to “one” when the posterior condition is verified;

• MaxCommit: maximum value that can be assigned to the CommitIndex. It is the highest log

index that can be committed, indicating that the log entries up to this index have been successfully

replicated to a quorum of processes;

• NextCommit: log index being considered as the next MaxCommit value in the current term.

Processes share their CommitStatus in AppendEntries requests, ensuring the convergence and

progression of the values. The Bitmap is used to find out when a quorum of processes has replicated

their log successfully up to the NextIndex. Each process must assign its value in the Bitmap to “one”

if the index NextIndex in its log has the same term as its current term. According to the log matching

property, this condition signifies that the log is an accurate replica of the leader’s log up to an index higher

or equal to NextIndex.

We define two functions to advance the CommitStatus:

• Update: to progress the values when a majority is reached in the Bitmap;

• Merge: to converge the values with those received from the other processes.

3.2.1 Function Update

Function Update, according to Algorithm 2, advances the values of MaxCommit and NextCommit,

and resets the Bitmap when a majority is reached (line 1). This means that a majority of processes

set their value in the Bitmap of the current NextIndex and Term, i.e., these processes successfully

replicated the current leader’s log up to the NextCommit, and therefore NextCommit and MaxCommit

can advance. When this happens, MaxCommit is set to NextCommit and the Bitmap is reset with

“zeros” (lines 2 and 3). Then, NextCommit advances according to the current state of the local log: if

NextCommit is in a point more advanced than the log or the log doesn’t have an entry with its term equal

to the current term (line 4), then NextCommit is incremented by one; else the log has an entry with index

higher than the current NextCommit with term equal to the current term, so the value of NextCommit is

set to the higher value that the process knows will be replicated in the current term, i.e., the highest entry
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index in the local log (line 7) and, under these conditions, the process can put its value in the updated

Bitmap to “one” (line 8).

Algorithm 2: Fuction to update NextCommit and MaxCommit when Bitmap shows a ma-
jority for process Pi, i ∈ 0..n− 1

Local State: bitmap; maxCommit; nextCommit;
Function Update():

1 if count of “1”s in bitmap ≥ majority size then
2 maxCommit← nextCommit;
3 bitmap← {0, 0, ..., 0};
4 if nextCommit ≥ index of last entry or term of last entry ̸= current term then
5 nextCommit← nextCommit + 1;
6 else
7 nextCommit← index of last entry;
8 bitmap [i]← 1;
9 end

10 end

This algorithm restricts the NextCommit from advancing to a point that can possibly be higher than

the leader’s log by comparing the highest term in the log with the current term, as entries from previous

terms can be removed from a follower’s log when a new term begins. However, this is not enough to

ensure that after a new term begins, all followers’ NextIndex is smaller or equal to the last entry index

+ 1 in the new leader’s log. In order to satisfy this condition, we regress NextCommit and Bitmap to a

value that is safe for any possible process elected. When a process discovers a higher term, it resets the

Bitmap to “zeros” and sets the NextIndex to the value of MaxCommit + 1.

This comes from Raft’s safety restriction that says that the leader can’t commit entries from previous

terms until it can commit an entry from its own term. In Driftwood, the same property is valid for the

MaxCommit, where this value can only advance after a majority of processes have an entry in the current

term.

Examples

To further illustrate how the Update function operates, we will explore three examples with process ab-

stractions in Figures 9 and an example of a system abstraction in Figure 10 are provided.

We start with Figure 9a where process Pi’s log has three entries, and the term of the last entry is

equal to its current term. Pi notices a majority in its Bitmap and proceeds to update its CommitStatus.

This means that a majority of processes successfully replicated the log up to the NextCommit which
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corresponds to its last log index. So Pi sets the MaxCommit to the current NextCommit; NextCommit

is then set to the index after that, which corresponds to the next entry that will possibly be received; and

resets the Bitmap to “zeros”. This means that Pi’s log is completely committed.

The next example, in Figure 9b, shows a process Pj with a state similar to that of Pi, but its log is

longer. It becomes evident why advancing the NextIndex to a higher value is more efficient. Pj has an

entry with a higher index value within the current term, i.e., added by the current leader. Therefore, Pj

sets the NextIndex to the last log index. Since it has successfully replicated the log up to this index, Pj

resets the Bitmap and can set its value to “one.”

The third example, in Figure 9c, shows a process Pk with a state similar to that of Pj , only the

current term is higher. In this case, Pk necessarily has an outdated log as it discovered that other replicas

replicated the leader’s log up to an entry with term 3, as they could turn its value in Bitmap to “one”

but Pk itself couldn’t. So in this case, Pk discovers a majority, but Pk doesn’t know if the entries from

previous terms are present in the leader’s log, so Pk increments its NextIndex by one and resets the

Bitmap, but it can’t set its value to “one” because it doesn’t possess an entry from the current term.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 9: Examples of processes’ states

Another example in Figure 10, illustrates the logs of five processes in a cluster. In this scenario,

followers 2 and 3 can’t vote in the Bitmap for term 5 because they don’t possess an entry with term 5

in their logs, resulting in an inconsistency with the leader’s log, as seen in follower 2’s log. However, they

can still advance the replicated structures by observing a majority due to the Merge function, which uses

the bitwise or operation to merge bitmaps. For safety, in this case, if followers 2 or 3 observe a majority

in their Bitmap and are not able to replicate the received entries, they only increment the NextCommit

by one (equivalent to the updated MaxCommit + 1).
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Figure 10: Possible logs for a five-process cluster

In this scenario, if the leader doesn’t append more entries and maintains leadership, then eventu-

ally the NextCommit value will reach 9. After its log is replicated to a majority, the MaxCommit and

NextCommit will be updated to 9 and 10 respectively, indicating that the log was totally committed and

the next entry to be committed is the next entry to be appended by the leader.

3.2.2 Function Merge

Each process, upon receiving an AppendEntries request with a term equal to or higher than their

current term, merge the CommitStatus of the sender included in the request with their own using the

function Merge, according to Algorithm 3.

Firstly, the MaxCommit is updated to the highest value between local and received value (line 1). Then,

if the local NextCommit is smaller or equal to the value received (nextCommit'), the information on the

received Bitmap can be merged into the local Bitmap using a bitwise or operation (lines 2 to 4). This is

possible because the processes with “one” bits in the Bitmap have successfully replicated the log up to the

respective NextCommit, and thus have replicated successfully any log prefix. At this point, it is important

to ensure that the NextCommit is not behind the updated MaxCommit. If the local NextCommit is

smaller than the updated MaxCommit, it means that the process’s variables are outdated, and waiting for

the local Bitmap majority is redundant. So, in this situation, the received variables are necessarily more

advanced, so we can safely set the local variables to match the received ones (lines 6 and 7).

The NextCommit value being smaller than MaxCommit is nonsensical and counterproductive, as

it represents a redundancy in the system. Therefore, as a safety requirement, Driftwood ensures that

NextCommit is always greater than MaxCommit both before and after the execution of the functions

Merge and Update.
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Algorithm 3: Function to merge CommitStatus in AppendEntries requests received for
the process Pi, i ∈ 0..n− 1

Local State: bitmap; maxCommit; nextCommit
Function Merge(bitmap’, maxCommit’, nextCommit’):

1 maxCommit← Max(maxCommit, maxCommit’);
2 if nextCommit ≤ nextCommit’ then
3 bitmap← BitwiseOR(bitmap, bitmap’);
4 end
5 if nextCommit ≤ maxCommit then
6 bitmap← bitmap’;
7 nextCommit← nextCommit’;
8 end

The Merge function exhibits asymmetry, meaning that if we invert the local CommitStatus and the

received one, the resulting local CommitStatus might not be the same.

Examples

We showcase the function Merge in action through several examples in Figure 11. These examples

demonstrate the outcome of merging the local CommitStatus with one received in an AppendEntries

request.

In the first example, shown in Figure 11a, as expected, when the received NextCommit and MaxCommit

values are the same as in the local state. In this case, the bitmaps are merged and the NextCommit

and MaxCommit are unchanged.

In the second example, in Figure 11b, the received NextCommit and MaxCommit values are higher

than the ones in the state. In particular, the received MaxCommit is higher than the NextCommit in

local state, which indicates that the local values are outdated and keeping the current NextIndex is

redundant. So these must be replaced with the received values which are more up-to-date.

The third example, in Figure 11c, is similar to the second example but, in this case, the received

MaxCommit is smaller than the local NextCommit, so the local NextCommit is still valid. Merging the

bitmaps makes sense since the received NextCommit is higher than the local NextCommit, and the

received Bitmap is valid for any prefix up to the received NextCommit.

In the fourth example, in Figure 11d, we reverse the local and received CommitStatus presented

in the third example. As the values in the state are more up-to-date, then there is nothing to be gained

from the received information. In this scenario, the process cannot merge the bitmaps because it cannot

ascertain whether the other processes’ logs were successfully replicated up to the local NextCommit. As

shown in the third and fourth examples, the function Merge displays asymmetry.
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(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Figure 11: Examples of the Merge function

3.2.3 Overview of Version 2 of Driftwood

In Version 1 of Driftwood, followers propagate AppendEntries requests between these, excluding the

leader. However, in Version 2 of Driftwood, followers also forward gossip messages to the leader, en-

abling him to also advance its own CommitStatus. One significant distinction in Version 2 is that the

CommitIndex can be ahead in some followers when compared to the leader’s, which is not possible in

the original Raft or Version 1.

Each processe’s CommitIndex increasesmonotonically according to their log state and MaxCommit.

The CommitIndex is the maximum between the last entry’s index in the log and MaxCommit, if the term

of the last log entry is equal to the current term.

Functions Merge and Update are used upon receiving AppendEntries requests. The process will

only merge the received CommitStatus from AppendEntries requests with terms equal to or higher

than the current term. If this condition is met, the process merges the structures, which may result in

reaching a majority. In this case, if the process is the leader, it can call the Update function and try

advancing its CommitStatus. Followers can attempt to update their CommitStatus after trying to add

the entries received in the request. Before calling the Update function, processes should also check if

they are eligible to set their value in the bitmap.

On a new term, when a process starts an election or discovers a higher term, the variables RoundLC,

Bitmap and NextCommit are reset.

Figure 12 summarizes the Version 2 of the Driftwood algorithm.
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Figure 12: A condensed summary of the new mechanisms that make the second version of Driftwood. We
omit again the overlapping logic with Raft as well as the detailed explanations of the functions to update
and merge the new replicated data structures, which are explained in 3.2.1 and 3.2.2, respectively.

3.3 Correction Argument

In this section, we discuss the safety of Driftwood, referring to Raft’s established safety properties. These

properties encompass Election Safety, Leader Append-only, Log Matching, Leader Completeness, and

State Machine Safety. Given that Driftwood primarily modifies the Log Replication procedure, our focus is

directed towards the Leader Append-only and Log Matching properties.

The Leader Append-only property, which stipulates that the leader never overwrites or deletes en-
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tries, is trivially verified by the algorithm’s specification. Just as in Raft, when a process is in the Leader

state, it only appends new entries to its log upon receiving client requests. Additionally, Driftwood’s leader

just tries to replicate the new entries in subsequent gossip rounds until they are committed.

The Log Matching property specifies that when two logs contain entries with the same index and

term, all entries with indexes smaller than or equal to the matching entry are guaranteed to be identical. In

Driftwood, all processes initialize with an empty log, satisfying this property. When a leader is elected, upon

receiving client requests, it initiates periodic gossip rounds until all the entries in its log are committed.

When the AppendEntries gossip message is delivered to a follower, two scenarios can happen:

• The follower’s log matches the leader’s log up to the entry preceding AppendEntries’ entries

(i.e., validates the Log Matching property). Then the follower adds the received entries to its log,

replacing any mismatched entries and ensuring its log is an equal replica of the leader’s log.

• The follower’s log doesn’t match the leader’s log at the entry preceding AppendEntries’ en-

tries, meaning there is some inconsistency between the logs. The follower informs the leader of

unsuccessful replication and requests entries from a previous point. The leader obliges and starts

an AppendEntries RPC, directly sending entries until the logs reach a matching point and the

follower can replicate the leader’s log.

The method used by the leader to identify committed entries differs between the two Driftwood ver-

sions:

• In Version 1, the followers notify the leader of their successful replication of the log. Upon receiving

this confirmation from a majority of followers, the leader can commit the log up to the corresponding

entry if it was created in the leader’s term.

• In Version 2, followers that have successfully replicated the leader’s log up to the NextIndex can

set their bit in the Bitmap if they possess an entry from the current term. When the Bitmap

reaches a majority of bits “1”, the MaxCommit is set to the NextCommit. This change signi-

fies that a majority of processes have successfully replicated the leader’s log up to the updated

MaxCommit. The leader identifies committed entries when it receives a MaxCommit value higher

than the previous values it has received. Followers can commit their log entries once they possess

an entry added by the current term’s leader, indicating that their log is a prefix of the leader’s log,

and discover a MaxCommit higher than the index of their log’s last committed entry.
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In Driftwood, similar to Raft, the leader’s strategy for dealing with log inconsistencies involves making

followers totally replicate their own log, which can lead to overwriting entries from older terms. To guarantee

that the leader doesn’t overwrite committed entries from previous terms, Raft introduces a vital restriction

that prevents leaders from assuming that entries from previous terms are committed by counting replicas

that have successfully replicated these entries. The commitment of these entries is only recognized when

a leader confirms that an entry from the current term has been successfully replicated. Version 1 of

Driftwood maintains this restriction, as the commitment discovery process by the leader is identical to

Raft’s.

In Version 2 of Driftwood, since the commitment discovery process is different, this restriction is

applied to the Bitmap. Specifically, a follower can only set its bit in the Bitmap if the last index in its

log is greater than or equal to NextCommit and its term is equal to the current term. This behaviour is

equivalent to Raft, where a follower informs the leader of its log’s successful replication up to the entry

with index NextCommit, and the leader only commits this entry if it receives the confirmation from a

majority of processes that have successfully replicated an entry added by the leader. Consequently, in

Version 2, MaxCommit can only progress when a majority of replicated logs contain at least one entry

added by the current term’s leader. Therefore, entries from previous terms can be considered committed

when this condition is met. This approach aligns with Raft’s safety properties, ensuring that committed

entries are never overwritten by new leaders.
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Chapter 4

Implementation

We implement Raft and the two versions of Driftwood in Paxi [10, 12], a prototyping framework for mod-

elling strongly-consistent replication protocols, used mostly to evaluate and compare different replication

protocols. In this chapter, we start by describing the Paxi framework in Section 4.1, in order to understand

how it’s used to implement replication algorithms and benchmark them. Then, in Section 4.2, we explain

our Raft implementation, which will serve as the baseline comparison for Driftwood. We expanded the

Raft implementation to Driftwood Version 1 and Version 2, explained in Section 4.3. Both the algorithms

and implementations feature various parameters that must be carefully considered, described them in

Section 4.4.

4.1 Paxi Framework

The Paxi framework [10, 12] was developed to empirically compare strongly-consistent replication proto-

cols. Paxi includes components that implement common parts of many replication algorithms for network-

ing, message handling, data storage, etc., with only two modules having to be developed to describe the

distributed consensus/replication protocol. Each component resides in its own loosely coupled module

which can be extended or replaced if necessary to better accommodate the distributed protocol, provided

that the new module follows the existing interface. Paxi architectural overview is shown in Figure 13, where

the two shaded blocks correspond to the two modules necessary to implement a distributed protocol. Of-

ten, it is only necessary to specify the protocol message structures and extend the node interface to reflect

process behaviour according to the protocol.

Paxi also provides benchmarking support that can both generate tunable workloads in accordance

with a fixed configuration file and collect respective performance data. Paxi is implemented in the Go [21]

programming language.

We will now provide small explanations of the Paxi components relevant to developing and evaluating
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the implemented protocols.

Figure 13: Paxi modules [12]

Configurations

Paxi has many configurable parameters for the processes and benchmarking. A configuration in Paxi is

provided to all processes in a JSON file, containing vital information for the system such as: a list of peers

with their reachable addresses, buffer sizes, message serialization and networking parameters, and other

configurable settings. Once a configuration is loaded by a process, the configuration parameters remain

fixed for it.

Networking

The message-passing model in Paxi is non-blocking and allows any algorithmic logic to be expressed as

a set of event handlers. The networking module handles message encoding, decoding and transmission,

simplifying message passing between nodes through the use of Send(), Recv(), Multicast() and Broadcast()

interfaces. The transport layer used for communication between processes can be either TCP, UDP or Go

channels.

33



Data store

Paxi comes with an in-memory multi-version key-value data store that is private to every process and is used

as a deterministic state machine abstraction. The framework allows other data models to be implemented

and used; however, this might influence client implementation.

RESTful Client and Benchmarking

Communication between the system and clients is done through a RESTful API that can request Read

and Write operations. Client operation requests are sent, by default, to any process in the system. We

used the Paxi client library for benchmarking, although any other benchmarking or testing tools could be

easily used instead.

The benchmarker component in Paxi generates a workload for the system according to workload

definition parameters defined in the configuration file. These parameters are summarized in Table 1.

Parameter Default Value Description
T 60 Run for T seconds
N 0 Run N operations if (N>0)
K 1000 Total number of keys

Throttle 0 Requests sent per second (0 if unlimited)
W 0.5 Write ratio

Concurrency 1 Number of concurrent clients
LinearizabilityCheck True Check linearizability at the end of benchmark

Distribution “uniform”
Name of distribution used for key generation
include “uniform”, “normal” and “zipfian”

Min 0 Random: Minimum key number
Conflicts 100 Random: percentage of conflicting keys

Mu 0 Normal: Mean
Sigma 60 Normal: Standard Deviation
Move False Normal: Moving average (mu)
Speed 500 Normal: Moving speed in milliseconds

Zipfian_s 2 Zipfian: s parameter
Zipfian_v 1 Zipfian: v parameter

Table 1: Paxi benchmark parameters
[12]

The benchmarker allows us to test and evaluate the implemented protocols in terms of their per-

formance, consistency, availability and scalability. Latency and throughput metrics are measured and

registered throughout an experiment’s runtime by the benchmarker. It registers, at the end of an experi-

ment, the number of requests made, throughput, and latency metrics such as mean, minimum, maximum,

median and 95, 99 and 999 percentiles of client response time.
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In order to test and evaluate replication and consensus protocols under faults, Paxi has fault injection

operations that can be used to simulate any node or network failure. Paxi provides the following four

functions to inject faults into a node’s network modules:

• Crash(t): node stops communication with others during t seconds;

• Drop(i, t): node stops sending messages to node i during t seconds;

• Flaky(i, d, t): node stops sending messages with d probability during t seconds;

• Slow(i, d, t): node delays sending every message d milliseconds to node i during t seconds;

Moreover, Paxi has a consistency checker component capable of verifying client linearizability and

consensus between the processes state machines.

4.2 Raft Implementation

The implementation of Raft’s logic is mostly synchronous, utilizing a handler function that processes events

in a reactive loop. Within this loop, we prioritize timeout events, ensuring progress. In the absence of

timeout events, we shift our attention to pending messages, processing the next message in the buffer

with its respective handler function.

4.2.1 Messages Module

To implement Raft in Paxi we started by specifying the message data structures. Raft uses two kinds of

RPCs: AppendEntries RPC and RequestVote RPC. So for each RPC, we specify a pair of data struc-

tures, one for the request and the other for the respective reply. We define the struct types AppendREQ

and AppendREP for the AppendEntries RPC, and the struct types VoteREQ and VoteREP for the

RequestVote RPC. The fields in each message data structure are defined as per the Raft algorithm and

contain an additional field indicating the sender of the message.

In our approach, a Raft’s RPC is equivalent to sending a request message and subsequently awaiting

(in a non-blocking manner) for the reply to be processed by the event handler. This might negatively impact

the algorithm’s performance, as in Raft, RPCs can be issued in parallel.

We can see a code snippet of the VoteREQ struct type. All messages contain the From and Term

fields and then their own unique fields as defined in the Raft paper [32].
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1 type VoteREQ struct {

2 From paxi.ID // sender's ID

3 Term Term // sender's term (candidate term)

4 CandidateID paxi.ID // candidate requesting vote

5 LastLogIndex int // index of candidate's last log entry

6 LastLogTerm Term // term of candidate's last log entry

7 }

Listing 4.1: VoteREQ type struct code snippet

4.2.2 Replica Module

The Raft algorithm proposes that processes can be in one of three states: follower, candidate or leader.

In our implementation, processes keep track of their states through a private variable.

We utilize the Golang built-in type Ticker to implement timeout events. The Ticker allows us to

define a duration or interval, and it will send time events at regular intervals based on that duration. One

of the advantages of using a Ticker is that we have the flexibility to stop or reset it as needed. This

flexibility allows us to adapt the timeout behaviour according to our requirements. We define two tickers:

• Election Ticker: used by followers and candidates to detect when a certain random interval

of time passes without a correct leader being detected, and this is achieved by resetting the ticker

when a valid AppendEntries request is received;

• Heartbeat Ticker: used by leader to periodically send AppendEntries requests to all fol-

lowers.

The Raft implementation possesses a main event handler that handles all events like timeouts and

pending messages. Each message structure type has its own function handler that is called when the

message arrives at the event handler. The code snippet 4.2 shows the handler function for VoteREP

messages.

1 func (r *Replica) handleVoteREP(m VoteREP) {

2

3 if m.Term > r.currentTerm {

4 r.stepDown(m.Term) // transitions to or remains Follower

5

6 }else if r.state == Candidate && m.Term == r.currentTerm && m.

VoteGranted {
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7

8 r.voteCount += 1

9

10 if r.voteCount > (paxi.GetConfig().N() / 2) { // has majority

11 r.stepUp() // transitions to Leader

12 }

13 }

14 }

Listing 4.2: Code snippet of the VoteREP handler function

When a leader process handles a client request, it appends the received operation as a new entry

to the log and sends an AppendEntries request to each follower. Upon confirmation that a follower

has successfully replicated the entries in the request, the leader updates the corresponding MatchIndex

and NextIndex, effectively ceasing to send entries that have already been replicated in the follower’s

log. On the other hand, if a follower fails to replicate the entries, the leader will reduce the corresponding

NextIndex and send a new AppendEntries request to that follower. This process repeats until the

entries match the follower’s log. However, it’s possible that either the AppendEntries request or reply is

not delivered, leaving the leader uncertain about whether the entries have been successfully replicated. To

ensure full log replication across all followers, even in the presence of message loss, the leader periodically

sends AppendEntries requests to each follower. These requests also serve as heartbeats and include

the entries that have not yet been replicated by the respective receiver (according to the NextIndex).

This implies that new entries are not efficiently batched, leading to an increase in the number of

exchanged messages during periods of heavy client loads, which adversely affects performance.

The algorithm assumes that clients should send the request directly to the leader. In our implementa-

tion, clients can send requests to any process, which will then forward the request to the leader if it exists;

otherwise, it will respond with an error.

4.3 Driftwood

We have developed two versions of Driftwood. In Version 1, we extend the Raft implementation by introduc-

ing gossip rounds of AppendEntries. In Version 2, we go a step further by incorporating new replicated

data structures, CommitStatus, into the gossip mechanism to discover committed log entries.
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4.3.1 Version 1: Addition of Gossip

In Driftwood, the leader periodically sends AppendEntries requests using gossip to the followers while

there are uncommitted entries in the log. To achieve this, we’ve introduced a new event in the event

handler. This event is triggered by a dedicated Ticker that generates the event at fixed time intervals

while it’s active. The ticker starts when a new client request is received and the ticker is not already active.

It’s halted when the last entry in the log is committed. When the event occurs, the process initiates a

permutation gossip round function. This function creates an AppendEntries request containing the

uncommitted entries and sends it out using permutation gossip. You can find a description of the event

handler behaviour in Algorithm 4.

The permutation of process identifiers used by each process is created on start-up and is fixed.

Algorithm 4: Event handler function in Driftwood implementation

Function EventHandler():
Select

Case Heartbeat Timeout do
// Is leader;
start permutation gossip round of new heartbeat

End
Case Permutation Gossip Timeout do

// Is leader;
start permutation gossip round

End
Case Election Timeout do

// Is follower or candidate;
transitions to the candidate state and initiates an election

End
Case Message Pending do

handle next message in buffer
End

End

4.3.2 Version 2: New Replicated Data Structures

The implementation of Version 2 closely resembles the structure of Version 1, building upon its core

components. Version 2’s main difference includes the addition of CommitStatus to the state of each

process, introducing three new variables:

• NextCommit: an integer initialized to 0;
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• MaxCommit: an integer initialized to 1;

• Bitmap: an array of bytes, with its size equal to one-eighth of the system’s size, initialized with

zeros, where each bit corresponds to a specific process in the system.

The updating and exchange of these structures follow the related logic outlined in Figure 12. In Version

2, the leader can also receive AppendEntries requests to advance its own structures and identify new

committed entries efficiently.

4.4 Parameters

The Raft and Driftwood implementations have certain parameters that must be thoughtfully configured

based on the specific system properties, the number of replicas, network characteristics, and computa-

tional resources.

The election timeout value should be randomly selected from a predefined interval with specific mini-

mum and maximum parameters. To prevent split votes, it’s crucial to set a longer interval when there are a

larger number of replicas, reducing the likelihood of multiple followers initiating elections simultaneously.

The heartbeat timeout is another parameter to consider. It should be set to a value smaller than the

minimum election timeout to prevent unnecessary elections caused by message loss or delays. However,

setting it to an excessively small value is also undesirable, as it can negatively impact performance.

Driftwood also includes another timeout, referred to as the round timeout, which dictates the interval

between initiating gossip rounds. The chosen value must account for the time it takes for messages to be

propagated to all processes in order to avoid a situation where messages from subsequent rounds arrive at

certain replicas before those from previous rounds. Such a scenario could lead to unsuccessful replication

causing the necessity of individual log replication, which should be avoided to decrease leader’s workload.

Related to gossip, we must also take into account the fanout value. A commonly chosen value is the

natural logarithm of the system’s size, as it balances fault tolerance and rapid message delivery.

Theoretically, the Raft algorithm considers that the message has no maximum size, allowing the log

entries in AppendEntries to grow infinitely. However, this is not practically viable, so we define a

maximum limit for the number of entries sent in the message. The higher this value, the better the

performance under high workloads.
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Chapter 5

Experimental Evaluation

This chapter discusses the experimental evaluation of Raft and the two versions of Driftwood. We refer

to the servers as the set of processes that constitute the replicated system. In other words, each server

corresponds to one replica instance. Similarly, we define a client as a single thread of the Paxi client

responsible for generating read and write requests to the servers.

We start by describing the experimental setup in Section 5.1. Then, in Section 5.2, we explain our

reasoning for the parameters chosen for the consensus algorithm. Section 5.3 evaluates how replication

scales, including Paxos for comparative analysis with our Raft implementation, by examining their per-

formance with an increasing numbers of replicas. Section 5.4 assesses the algorithms’ performance in

a highly replicated system (125 replicas) by analysing them under increasing client request generation.

Section 5.5 evaluates the impact of concurrent client requests on the system’s performance. Section 5.6

examines resource usage, particularly CPU utilization, by the leader and followers to determine the point

at which the leader becomes the system’s bottleneck. Section 5.7 analyses the commitment latency be-

tween the leader and followers. Section 5.8 analyses how the algorithms behave in simulated networks

with randomized partial partitions.

5.1 Experimental Setup

Each experiment involves Paxi servers (process replicas) and a Paxi client used for benchmarking the

system. All experiments were conducted on a single machine equipped with 128 CPUs. Detailed CPU

architecture information is provided in Table 2. Each Paxi server is allocated a dedicated CPU to minimize

variations in results due to resource sharing.

Paxi servers and the client use the local loopback network for inter-process communication via the

TCP/IP protocol, resulting in virtually zero message latency. Message (de)serialization uses the Golang

Gob library [7]. To limit the size of AppendEntries messages, we capped the maximum number of
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Architecture aarch64
Byte Order Little Endian

CPU(s) 128
Thread(s) per core 1
Core(s) per socket 64

Socket(s) 2
CPU max MHz 2600
CPU min MHz 200

BogoMIPS 200
L1d cache 64K
L1i cache 64K
L2 cache 512K
L3 cache 65536K

Table 2: CPU architecture information

entries sent at 100 per message.

The Paxi client serves a dual role in our experiments: generating workloads and collecting metrics for

benchmarking. During execution, the client generates requests based on the predefined configuration. It

can operate with multiple threads, enabling concurrent request submission, with or without a specified

throttle parameter. These threads can function in one of two ways: after sending a request, the thread will

either wait indefinitely for a response, or it will wait for a defined period of time for the response before

resending the request to avoid scenarios where the thread can block due to the server failing to reply. In

most experiments, we used blocking threads, as the requests are typically expected to reach a correct

leader and the Paxi client employs ten threads to concurrently issue requests to the system.

To assess the new replication mechanisms, the servers are initially configured with a designated leader,

allowing us to focus solely on the replication phase of the algorithms. As a result, elections do not occur,

given that faults are not expected to occur. The exception to this is when we analyse the behaviour of the

algorithms in non-transitive networks.

We conducted each experiment three times, using the same parameters, and then aggregated the

resulting metrics by calculating the mean. The client issues requests for one minute, with the servers

being initiated anew for each experiment. One minute sufficed for benchmarking most systems, as they

remained stable with a correct leader operating consistently. However, for systems where the leader’s

stability was in question, which could lead to random halts due to frequent elections, we extended the

experiment duration to two minutes. This extension was particularly essential when testing Raft in partially

partitioned networks, where we observed notable performance variability in some scenarios.
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5.2 Servers Parameters

The parameters for server settings, including election and heartbeat timeouts, were kept consistent across

all algorithms since they use the same election procedure. These values were selected with consideration

for a system size of up to 125 server replicas. The election timeout ranged from a minimum of 500 ms

to a maximum of 5000 ms, while the heartbeat timeout was set at 50 ms.

For Driftwood, we needed to choose values for the leader’s round timeout and gossip’s fanout, both

of which impact the overall system performance. The round timeout value directly affects the leader’s

CPU utilization. A higher value can cause the leader to remain idle for extended periods, increasing

request latency, while smaller values prompt the leader to expend more CPU resources due to increased

message exchange frequency. The selection of the round timeout value should take into account network

message latency to ensure that gossiped messages have sufficient time to be delivered to all followers.

This mitigates scenarios in which followers might receive messages from higher rounds before lower ones,

which could potentially result in unsuccessful log replications. This isn’t a concern in our experiments,

since message latency is negligible. The selection of the fanout value has a relatively minor influence on

the overall system’s performance. This is because the necessary value for ensuring reliable gossip delivery

is typically small, and thus, higher values have minimal impact on CPU usage.

The values for the round timeout and fanout used are based on extensive experimentation with various

configurations, including different system sizes with 10 client threads generating requests concurrently.

The configurations with the best performance results for Version 1 and Version 2 can be found in Table 3

and 4, respectively.

Round Timeout (µs) Fanout Throughput (req/s) Mean Latency (ms)
#Replicas

5 300.00 2.00 9837.23 1.01
11 500.00 3.00 7217.69 1.38
19 700.00 4.00 4960.71 2.01
31 900.00 4.00 4093.73 2.44
53 1250.00 5.00 2975.93 3.36
77 2000.00 5.00 2127.21 4.70
101 3000.00 5.00 1565.41 6.38
125 3500.00 5.00 1244.87 8.03

Table 3: Best-performing parameters for Version 1
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Round Timeout (µs) Fanout Throughput (req/s) Mean Latency (ms)
#Replicas

5 200.00 2.00 6269.36 1.59
11 300.00 3.00 4068.22 2.45
19 400.00 3.00 3408.77 2.93
31 500.00 3.00 2801.67 3.56
53 600.00 3.00 2360.51 4.23
77 700.00 3.00 2109.35 4.74
101 700.00 3.00 1932.47 5.17
125 800.00 3.00 1721.50 5.80

Table 4: Best-performing parameters for Version 2

Version 1 performs better with a higher round timeout value compared to Version 2’s, primarily because

Version 1’s leader must process replication replies from followers. The fanout value used for Version 1

had minimal impact on performance, as the CPU cost of gossiping a message is relatively insignificant.

Version 2 obtained better performance with small fanout values due to enabling the CommitStatus to

propagate through more processes and advance more rapidly.

5.3 Replication Scalability

We assess the performance of the algorithms as we increase the number of replicas. Additionally, we also

conducted these experiments with the classical Multi-Paxos [10] algorithm implementation to compare it

with our Raft implementation.

Figure 14 shows the results of our experiments. We can easily understand that Raft scales poorly as

throughput decreases and client response time increases with the increasing number of replicas. This

also justifies the reason why Raft is best used when a low number of replicas, 3 to 7, are necessary.

According to the obtained results, our Raft implementation exhibits a similar behaviour to the Multi-Paxos

implementation, albeit with lowers performance.

Both versions of Driftwood outperform Raft, mainly due to the leader efficiently sending log entries

for replication in batches in the gossip rounds. For smaller systems with 5 replicas, Version 1 surpasses

Raft’s performance, reaching 9837.2 req/s, which is 1.5 times higher than Raft. Meanwhile, Version 2’s

performance is on par with Raft’s with 6269.4 req/s, just 0.95 times lower.

As the number of replicas increases, the performance gap between the two versions of Driftwood

narrows. With 77 replicas, they both achieve similar performance of about 2100 req/s (3.8 times higher

than Raft). However, with a higher number of replicas, Version 2 starts exhibiting better performance than
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Figure 14: Throughput (a) and Latency (b) with increasing number of replicas

Version 1. For the systems with 125 replicas, Version 1 reaches 1244.9 req/s (4.8 times higher than Raft)

and Version 2 reaches 1721.5 req/s (6.7 times higher than Raft).

In terms of latency, Raft exhibits a steeper linear increase, reaching an average response time of 38

ms for systems with 125 replicas. In contrast, both versions of Driftwood experience a much more gradual

increase, with an average response time of under 10 ms.
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5.4 Performance

To evaluate the algorithms’ performance with 125 replicas and 10 clients concurrently issuing requests

according to a varying throttle parameter and analyse the mean response times.

We observe, in Figure 15, that Raft quickly reaches its limit at 256.9 req/s with a response time of

38.9 ms when confronted with 10 concurrent clients. However, Version 1 performs significantly better,

maintaining a mean response time below 9 ms and achieving 1231.2 req/s. Version 2 further excels with

a throughput of 1810.3 req/s and a mean response time below 6 ms.
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Figure 15: Mean response time according to reached throughput

5.5 Impact of Concurrent Clients

In this section, we analyse the performance of the systems with 125 replicas and an increasing number

of clients issuing requests to assess the algorithms’ scalability under growing workloads.

Figure 16a shows that Raft’s already low performance diminishes as the number of clients increases.

In contrast, the two versions of Driftwood exhibit an initial performance boost, followed by a decrease.

Version 1 displays better scalability, reaching 2421.9 req/s and 2429.6 req/s at 30 and 50 clients, re-

spectively, and then experiencing a gradual decline to 1673.6 req/s with 100 clients. On the other hand,

Version 2 reaches its peak sooner at 10 clients, hitting 1829.5 req/s, but subsequently experiences a

sharp drop, obtaining 255.3 req/s with 100 clients.

Driftwood exhibits better scalability due to its efficient replication of batched entries. However, its

performance starts to decline at a certain point. In Version 1, this decline was attributable to the in-
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creasing workload on the leader. In contrast, Version 2 experienced a decline earlier, primarily due to a

higher number of concurrent requests that resulted in greater disparities between replicas’ log positions.

These inconsistencies delay the advancement of the CommitStatus and subsequently hinder overall

performance.

0 20 40 60 80 100
Number of Clients

0

500

1000

1500

2000

2500

T
hr

og
hp

ut
 (

re
q/

s)

Raft Driftwood v1 Driftwood v2

(a)

0 20 40 60 80 100
Number of Clients

0

200

400

600

800

1000

1200

1400

T
hr
og

hp
ut
 (
re
q/
s)

Raft Driftwood v1 Driftwood v2

(b)

Figure 16: Throughput (a) and latency (b) with increasing number of concurrent clients

5.6 Use of Resources

To demonstrate Driftwood’s decentralization of the leader’s effort compared to Raft, we measured the CPU

usage of each server process. The CPU utilization of each server is measured using the psutil Python
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library [35] and is shown as a percentage of the dedicated core being utilized.

We start by evaluating the use of CPU by the leader and the mean follower CPU use with increas-

ing numbers of replicas in the system. In Figure 17, we observe notable differences between Raft and

Driftwood. Raft’s leader rapidly consumes all available CPU resources, becoming the bottleneck of the

system, while its followers show decreasing CPU usage as the number of replicas increases. In contrast,

Driftwood’s leader exhibits a more gradual increase in CPU utilization as the number of replicas grows, and

its followers also experience more CPU usage due to participating in the gossip mechanism. In Version

2, the leader’s CPU utilization decreases as the number of replicas increases, aligning with the reduction

in followers’ CPU usage. This can be attributed to the fact that in Version 2, all replicas play an equal

role in replication, while the leader also handles the additional task of communicating with clients. Conse-

quently, the leader does not become the bottleneck of the system. Furthermore, Version 2’s followers, in

comparison to Version 1, exhibit higher CPU usage because they are actively discovering the committed

entries.
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Figure 17: Use of CPU with increasing number of replicas

We also analyse the CPU utilization according to client request throttle in a system with 125 replicas.

In Figure 18 it is evident that Raft is a highly centralized system, with the leader using all of its CPU

resources, compared to the followers that use almost none.

In Version 1, the leader’s CPU usage grows exponentially, reaching its peak of approximately 90%

much earlier at a throttle of 400 req/s. In contrast, in Version 2, the leader’s CPU usage increases more

gradually, reaching a maximum of around 40% at 1400 req/s. We also observe that the followers of Version

2 exhibit significantly higher CPU usage compared to the followers of the other algorithms.
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Figure 18: Use of CPU with increasing client request throttle

5.7 Server Commitment Discovery

We compare the commitment discovery times between a follower and the leader, specifically the time it

takes for a server to commit an entry from the moment it is added to the leader’s log. To achieve this,

the leader records the timestamp when it adds entry i to its log and when it successfully commits entry i.

Simultaneously, one follower also registers, in a separate file, when the entry i was committed to its log.

Figure 19 presents the cumulative distribution function (CDF) of the results.

We can observe that in Raft and Version 1, the leader commits entries faster than the followers because

it is responsible for advancing the commitment by obtaining acknowledgments. In contrast, Version 2

shows a different pattern, where the leader’s commitment advancement is similar to that of the followers.

This is because any server can independently discover new committed entries first.

5.8 Performance with Partial Network Partitions

In this section, we analyse the performance and behaviour of the three algorithms in partially partitioned

networks. To simulate this scenario, we introduce link failures between nodes, essentially making it im-

possible for some servers to exchange messages directly. However, for testing purposes, each server can

still forward client requests to the server it thinks is the leader to simulate requests being directly sent to

the leader, consistent with the algorithms’ assumptions.

Numerous elections can potentially result in log entries being deleted, causing clients to become

blocked while waiting for the corresponding reply. To avoid this, we alter the clients’ behaviour to retry

sending the request if a timeout occurs (set to 100 ms).

If a follower who is unaware of the current leader or a candidate receives a request, it responds with
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Figure 19: CDF of the time interval between a client request received by the leader and committed in
leader/follower

an error. The client, upon receiving an error, will wait for 20 ms before attempting to send the request

again, allowing time for a leader to emerge.

We ran the experiments with different numbers of link failures and system sizes. Figure 20 illustrates

the network topologies simulated, each featuring a distinct number of link failures, for a system with 5

replicas.

Let’s begin by examining the behaviour of the 5-replica systems, as illustrated in Figure 21a. In all
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Figure 20: Network topologies simulated

experiments, the process 1 is the first to initiate an election.

We start by discussing Raft’s behaviour. In scenarios with 1 or 2 link failures, Process 1 can suc-

cessfully assume leadership since it maintains communication with all other servers, ensuring the system

operates normally; therefore, the performance remains similar to the scenario with 0 link failures. How-

ever, in the topology with three link failures, Process 1 becomes the leader by securing a majority of votes.

Unfortunately, Process 5 remains unaware that a leader exits and will time out, initiating elections but

failing to become the leader due to its outdated log. This cycle repeats until Process 3, the only process

capable of communicating with all others, becomes the leader. As a result, we observed a temporary

decrease in system performance. In network topologies with more than three link failures, there aren’t

any processes capable of communicating with all others, which means there is no stable leader possible.

Consequently, elections occur constantly, significantly impairing system performance.

Version 1 shows a small decrease in performance with higher numbers of link failures. This decline

can be attributed to the occasional failure of a gossip round to replicate the log for some followers. This,

in turn, can lead to requiring various successive gossip rounds for the leader to commit entries.

Version 2 exhibits a more significant decrease in performance, primarily because of reduced exchanges

of CommitStatus, which subsequently delays the discovery of committed entries by the leader. More-

over, we observed a notable stalling in the system’s progress in the network, with six link failures. We

discovered that this phenomenon is caused by a liveness restriction. For the CommitStatus to advance,

it’s necessary to have a subgraph within the network that includes a majority of nodes, including the leader,

to be fully connected. If this condition isn’t met, it’s possible for processes to update the CommitStatus

simultaneously with different NextCommit values, preventing any process from obtaining a majority on

their Bitmap, thus halting progress. For example, in the network with six link failures depicted in Fig. 21,
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node 5 can fall behind the entries being gossiped and stop replicating the leader’s log because it can’t re-

quest the missing log entries since it’s unable to communicate with the leader. As a result, it will be unable

to set its bit on the Bitmap. Meanwhile, node 1 is the only node capable of exchanging CommitStatus

messages between nodes 2, 3, and 4. It’s possible that the leader updates its NextCommit to a higher

value while the other nodes update their NextCommit to a smaller value. In this scenario, the leader’s

Bitmap won’t merge with the Bitmaps of the other nodes, and the nodes themselves will only merge

with node 1’s Bitmap. As nodes 2, 3, and 4 can’t communicate with each other, the Bitmaps will never

show a majority, and the CommitStatus won’t advance.
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Figure 21: Performance of systems with 5, 53 and 125 replicas under varying link failures

For systems with 53 and 125 replicas, we intentionally use a varying number of link failures that is

divisible by the number of replicas. Raft’s performance consistently decreases. However, Version 1’s

performance remains stable and even slightly increases with a higher number of link failures due to a

decrease in message redundancy. In Version 2, the performance once again decreases with increasing link

failures in systems with 53 replicas. In contrast, in systems with 125 replicas, the performance remains

consistent due to the higher number of nodes participating in the exchange of the CommitStatus.
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Chapter 6

Conclusion

Driftwood presents a new way to efficiently replicate data in distributed systems. The addition of gossip en-

hanced fault tolerance and allows partial networks to occur without substantial performance degradation.

Simultaneously, the leader’s workload in log replication was effectively decentralized through the follow-

ers, which resulted in an overall performance increase as we expected. Since Driftwood is built upon Raft,

only modifying the process by which the leader replicates its log entries and introducing a novel approach

to discovering committed log entries, it inherits the core understandability associated with Raft. Thus, if

someone can grasp Raft, comprehending Driftwood becomes a relatively straightforward process.

In this thesis, we present two versions of Driftwood, differentiated by the way they make commitment

progress. Both versions use gossip mechanisms to decentralize the leader’s workload on log replication.

The leader periodically gossips about uncommitted entries. In cases where a follower, due to missing

messages, falls behind in replicating committed entries, it directly requests the missing entries from the

leader. Version 1’s leader discovers which entries are committed the same way as in Raft, by receiving

the replies from all followers with information about the replication’s success. On the other hand, Version

2’s processes exchange, through the gossip, a replicated data structure that we called CommitStatus,

with compact information about every process’s log replication status on the current term. Every process

can advance the CommitStatus and determine which entries are committed. To accurately advance

CommitStatus we present two functions: one for merging with a CommitStatus received from another

process, and another for updating it when new entries can be committed.

6.1 Driftwood vs. Raft

The evaluation results for Version 1 reveal that the leader can more effectively replicate its log entries

through the followers by utilizing periodic gossip rounds. The performance is optimized by periodically

replicating uncommitted entries in batches, in contrast to our Raft implementation, where the leader sends
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an individually created messages containing the missing entries of the recipients to all followers whenever

a new entry is appended to its log. In a system with 5 replicas, Version 1 achieved a throughput of 9837

req/s, outperforming Raft by 1.4 times. It’s worth noting that this performance boost can be attributed

to the presence of multiple clients requesting concurrently. In a scenario with a single client, the mean

latency can be determined by the gossip round interval. However, as the number of concurrent requests

increases, Version 1 demonstrates an efficient method of batching. As demonstrated in the evaluation, in

a system with 125 replicas, the throughput started at 269 req/s with a single client. As the number of

clients increased to 50, the throughput reached its peak at 2430 req/s before gradually receding to 1674

req/s at 100 clients.

Version 1’s performance exhibits a more gradual decline as the number of replicas increases, com-

pared to Raft, due to the decentralization of the replication process through gossip. Specifically, with 5

replicas, Version 1 achieved a throughput of 9837 req/s, which then decreased to 1245 req/s with 125

replicas. This represents a throughput reduction of 7.9 times, significantly less compared to Raft, which ex-

perienced a 26-fold reduction. Additionally, Version 2 presented better replication scalability by advancing

commitment in a decentralized manner. This meant that the leader no longer had to gather the followers’

replication success responses, reducing his workload and allowing him to reach its limit at a later stage.

With 77 replicas, both versions of Driftwood demonstrated similar throughput. However, as the number

of replicas increased, Version 2 began to surpass Version 1 in terms of throughput. Specifically, with 5

replicas, Version 2 achieved 6269 req/s, decreasing to 1721 req/s at 125 replicas, resulting in a 3.6-fold

decrease.

The addition of periodic gossip rounds allowed the leader to decentralize its replication workload across

all followers, as was intended. Unlike Raft, Driftwood’s followers actively participate in log replication

through gossip of messages with uncommitted entries, rather than the leader solely replicating log entries

to all followers. In Driftwood, the leader’s CPU usage is based mainly on the round interval parameter. In

a system with 125 replicas, we observed that Raft’s leader rapidly reached its CPU usage limit, becoming

the bottleneck of the system, while Version 1’s leader was able to handle the 10 clients without exhausting

its CPU. We also observe that Version 1’s followers also use more CPU due to participating in the gossip.

In the case of Version 2, the leader consumes less CPU because it doesn’t need to collect replication

success replies from followers to discover committed entries, while the followers do more substantial work

due to more frequent gossip rounds and advancing the CommitStatus.

Gossip serves a dual purpose in our system. Beyond its role in log replication, it also plays a crucial

role in disseminating heartbeats across the network. This heartbeat dissemination is vital for preventing
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unnecessary elections caused by link failures and improving the system reliability in partially connected

networks. We observed that Version 1 can tolerate a substantial number of link failures due to gossip

delivery reliability. The evaluation further demonstrates that Version 1 not only sustains its performance

in partially connected networks, but can even enhance it due to the leader receiving fewer followers’

replication replies. However, in Version 1, the leader still needs to be capable of communicating with a

majority of followers to receive a corresponding majority of replication responses and ensure the progress

of the commitment process, which in turn guarantees system liveness. Moreover, in both versions of

Driftwood, for the leader to replicate its log to a majority of followers, it needs to be correctly connected

to a majority of followers, as the gossip can fail to deliver replication messages and followers might need

to request missing entries directly to the leader. This requirement applies to both versions of Driftwood,

as gossip replication doesn’t guarantee message delivery, and consequently, there’s the possibility that

followers may need to directly request the leader for missing entries in its log.

Version 2 of Driftwood demonstrates that log entries for both the leader and followers are committed at

a consistent rate, a consequence of the decentralized commitment advancement process. This stands in

contrast to Raft and Version 1, where the leader first discovers and commits log entries and then informs

the followers to do the same. A low follower commitment latency opens up the possibility for clients to opt

for relaxed consistency guarantees, allowing them to directly make read requests to any replica, thereby

reducing client response latency.

6.2 Driftwood: Aspects to Improve

The Driftwood algorithm we’ve developed offers a promising alternative to Raft. It upholds Raft’s safety

rules and election procedure while modifying the leader replication process. Nevertheless, there are as-

pects that can be further improved by introducing new mechanisms and making necessary alterations that

could potentially enhance both performance and fault tolerance.

We will begin by addressing the round interval parameter, which significantly impacts the system’s

performance. In our experiments, we set the round interval to an optimal value for performance. However,

this approach can be less suitable for real-world systems due to their inherent unpredictability.

In Appendix A.1, we can observe how the round interval and fanout parameters impact the perfor-

mance within a system comprising 125 replicas for Version 1 with 10 clients. Throughout our experiments,

we observed that systems with a greater number of replicas tend to benefit from a higher round interval

value, particularly in the case of Version 1. In this version, the leader’s CPU resources are more strained
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due to the processing of followers’ replies. In contrast, Version 2 distributes the replication workload

more evenly across processes. This means the leader has greater flexibility when starting gossip rounds.

Additionally, the increased use of gossip rounds in Version 2 contributes to faster advancements of the

CommitStatus.

In real-world scenarios, the number of incoming requests can fluctuate over time, in contrast to our

simulated benchmark, where it has a constant maximum. Opting for a higher round interval value can

result in larger batch sizes and longer client latencies, even if the leader has ample resources to initiate

more frequent gossip rounds. Conversely, selecting a value that’s too small may lead to the leader spend-

ing more time processing followers’ replies than handling client requests, leading to higher latency. To

address this challenge, a dynamic round interval can be implemented, adjusted based on the leader’s

CPU utilization. This ensures that the CPU is neither fully utilized with too small a value nor underutilized

with a value that’s too high, thereby optimizing resource allocation for replication.

The gossip round in Driftwood employs an eager push, where the entire message payload is trans-

mitted. However, this method has a significant impact on bandwidth usage. An alternative approach is

known as lazy push, where processes send a message advertisement, not the complete payload, and if

the recipient hasn’t received it yet, they make an explicit pull request.

In the context of Driftwood, most of the gossip message’s payload consists of batched log entries. It’s

possible that some or all of these entries are redundant because the recipient may have already replicated

them. Instead of transmitting the full batch, the payload could be optimized by sending only the indices

and terms of the first and last entries. This way, the recipient can check whether their log already contains

these entries. If they do, the leader will gossip the message when it’s received for the first time. If not, it

makes a pull request for the missing entries.

The pull mechanism further decentralizes the algorithm from the leader, decreasing the frequency

with which the leader has to replicate the log directly with followers. Instead, followers with updated logs

can replicate the current leader’s log entries for those with logs lagging behind.

In Version 1, similar to Raft, a process can only become the leader if it can communicate with the

majority of other processes. However, if there are link failures and the leader loses communication with a

majority of followers, it cannot receive a majority of replication replies and commit entries. Nevertheless,

the leader continues to gossip heartbeats to maintain its leadership status. In this situation, it’s possible

that a follower is capable of communicating with the majority of processes and could potentially become

a stable leader. To address this issue, the leader requires a failure detector to recognize whether it can

communicate with the majority of followers. If it detects this, it will transit to the follower state and await
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the election of a new leader.

The Raft election procedure could also be enhanced by incorporating gossip. Instead of candidates

individually soliciting votes from each process, they could disseminate a gossip message containing a

bitmap that collects votes during exchanges. When the number of votes in the bitmap reaches a majority,

a direct message is sent to the candidate to notify it of its election victory. This approach revises the

election liveness constraint [15], which in Raft requires the existence of a process with an up-to-date log

and the ability to communicate with a majority to ensure a leader appears. With this new mechanism, a

leader can be elected even if a process is unable to communicate with the majority of processes. It’s worth

noting that the leader of Version 1 might encounter issues in replicating the log to a majority of followers

and in committing new entries if it is unable to communicate directly with a majority of the processes, as

discussed earlier.

We initially anticipated that Version 2 would not encounter the above problem due to its fully decentral-

ized commitment discovery process. However, we discovered that the developed Merge function does not

consistently converge and advance in certain scenarios involving partially connected networks. To address

this issue, we need to modify the Merge function to make it asymmetric, ensuring convergence while

preserving the pre- and post-conditions. An alternative approach involves replacing the CommitStatus

in the current state with the CommitStatus received if it has a NextCommit value either lower (but

higher than MaxCommit) or higher than the current NextCommit.

Version 2 exhibited lower performance than expected, primarily because the CommitStatus ad-

vanced too slowly within the gossip mechanism. To address this, we enhanced performance by increasing

the frequency of gossip rounds. Another potential alternative solution could involve increasing the number

of times the gossip message is forwarded by the followers or implementing a time-to-live mechanism in

the gossip protocol, thereby encouraging more frequent message exchanges. This would differ from the

current behaviour, where followers stop forwarding the gossiped message after receiving it for the first

time. Furthermore, the efficiency of CommitStatus in advancing commitment may not meet the initial

expectations, primarily due to the Merge function. The alterations mentioned earlier to this function could

potentially enhance its performance.

6.3 Final Remarks

In this thesis, we present two versions of Driftwood that significantly improve Raft. These versions ef-

fectively decentralize the leader’s replication workload among the followers and enhance fault tolerance,
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particularly by improving liveness in partially connected networks. Both versions have shown promising

results in various aspects when compared to Raft, all without significantly increasing the overall algorithm’s

complexity.

Driftwood retains most of Raft’s logic, which provides a strong foundation for its reliability. Never-

theless, the novel replication mechanisms of Driftwood introduce an element of unpredictability. While

we tried to maintain consistency with Raft’s principles, the intricacies of these new mechanisms require

a closer examination. Formal verification is essential to confirm that these changes do not unknowingly

undermine Raft’s safety properties.

The algorithms were evaluated under normalized conditions, where the latency between processes was

basically negligible. Such environments are seldom encountered in real-world scenarios, emphasizing the

need to conduct further analysis to ascertain how Driftwood performs under more realistic conditions.
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Appendix A
Details of Results

In this Appendix, we provide detailed results that were used to create the graphs presented in Section 5.

These metrics are abbreviated and explained as follows:

• Replicas: Number of replicas in the system, which is equivalent to the number of servers (server

configuration);

• Fanout: Fanout parameter used in gossip (server configuration);

• Interval: parameter that determines the time interval between starting gossip rounds by the leader,

in microseconds (µs);

• Clients: Number of concurrent clients issuing requests (client configuration);

• Throttle: Client request throttle setting (client configuration);

• Throughput: Measured throughput;

• Mean: Average latency measured;

• Min: Minimum response time obtained for a request;

• Max: Maximum response time obtained for a request;

• P95: 95th percentile of latency;

• P99: 99th percentile of latency;

• Leader CPU: CPU usage of the leader process;

• Follower CPU: CPU usage of a follower process.

63



A.1 Parameters

Throughput Mean Min Max P95 P99
Interval Fanout

3500 3 1278.39 7.82 2.04 141.98 18.97 27.32
4 1258.73 7.94 1.90 144.33 19.22 27.32
5 1230.64 8.12 1.93 134.45 19.67 28.54

4000 3 1209.93 8.26 2.08 151.60 18.48 25.98
2 1208.55 8.27 2.43 158.31 18.47 27.47
4 1199.35 8.33 2.04 176.59 18.73 26.72
5 1198.86 8.33 2.00 144.99 19.05 27.64

4500 5 1137.69 8.78 2.02 138.82 18.39 27.90
3000 4 1129.81 8.85 2.29 159.43 21.58 30.28
3500 2 1126.86 8.87 2.80 143.68 19.66 29.77
5000 5 1101.84 9.07 1.96 160.15 18.52 29.32
3000 5 1098.76 9.09 2.41 149.46 22.06 31.93

2 1091.92 9.15 2.80 144.30 20.66 30.71
3 1086.30 9.20 2.39 123.05 21.15 30.21

5500 5 1051.44 9.50 1.99 167.37 18.31 29.01
2500 2 1040.77 9.60 2.59 138.70 21.82 31.46
6000 5 1020.89 9.79 1.97 168.52 18.08 29.69
2500 3 993.71 10.06 2.44 155.96 22.73 31.50

4 961.22 10.40 2.44 154.17 23.90 33.78
2000 2 927.09 10.78 2.60 153.28 23.59 34.23
2500 5 925.83 10.79 2.52 149.92 24.80 37.86
2000 3 905.25 11.04 2.36 141.38 24.72 35.44

4 862.55 11.59 2.52 152.25 26.21 39.03
1500 2 853.15 11.72 2.79 143.19 25.59 37.46
2000 5 817.10 12.24 2.38 145.00 28.21 42.96
1500 3 813.78 12.29 2.60 147.28 28.10 41.05

4 765.35 13.06 2.51 155.70 30.90 46.16
5 707.55 14.13 3.25 156.70 34.29 52.50

1000 5 558.53 17.90 3.68 205.89 43.32 63.77
500 5 203.91 48.84 4.88 191.86 82.02 99.45

Analysis of Optimal Parameters for Version 1 in a System with 125 Replicas and 10 Clients

A.2 Replication Scalability

The following experiments were conducted with 10 clients simultaneously issuing requests, with each client

immediately sending another request upon receiving a response (i.e. throttle was set to 0).
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Requests Throughput Mean Min Max P95 P99
Replicas

5 552599.33 9209.98 1.06 0.19 57.00 1.40 2.70
11 295601.33 4926.66 2.02 0.33 25.68 2.68 3.57
19 174362.00 2906.02 3.44 0.51 21.78 4.62 5.57
31 107075.00 1784.57 5.60 1.19 24.75 7.64 8.88
53 54161.67 902.65 11.10 2.18 30.05 14.82 16.78
77 32986.00 549.74 18.19 2.96 45.63 23.95 26.36
125 20426.50 340.42 29.38 4.81 145.39 40.56 45.42

Replication Scalability: Paxos Results

Requests Throughput Mean Min Max P95 P99
Replicas

5 394164.00 6566.40 1.52 0.20 169.96 2.27 14.35
11 218820.33 3646.57 2.74 0.34 91.39 4.61 13.94
19 130858.67 2180.95 4.58 0.66 87.34 8.00 14.40
31 79305.33 1321.74 7.56 1.06 33.56 14.40 20.35
53 43132.67 718.85 13.91 1.85 48.91 25.55 34.02
77 33068.67 551.14 18.91 2.59 65.17 33.64 44.00
101 22552.67 375.84 27.28 3.14 75.62 45.91 56.56
125 15412.33 256.93 38.92 5.50 91.46 60.74 70.33

Replication Scalability: Raft Results

Fanout Interval Throughput Mean Min Max P95 P99
Replicas

5 2.00 300.00 9837.23 1.01 0.23 341.16 1.48 8.86
11 3.00 500.00 7217.69 1.38 0.32 85.08 2.25 11.01
19 4.00 700.00 4960.71 2.01 0.38 180.80 2.96 10.62
31 4.00 900.00 4093.73 2.44 0.55 120.37 3.41 10.83
53 5.00 1250.00 2975.93 3.36 0.83 244.88 6.62 15.46
77 5.00 2000.00 2127.21 4.70 1.17 79.72 10.33 18.07
101 5.00 3000.00 1565.41 6.38 1.57 108.74 14.34 21.04
125 5.00 3500.00 1244.87 8.03 1.93 204.44 19.30 28.14

Replication Scalability: Version 1 Results
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Fanout Interval Throughput Mean Min Max P95 P99
Replicas

5 2.00 200.00 6269.36 1.59 0.28 385.60 2.96 13.17
11 3.00 300.00 4068.22 2.45 0.40 63.02 6.40 16.76
19 3.00 400.00 3408.77 2.93 0.59 105.00 6.58 15.40
31 3.00 500.00 2801.67 3.56 0.93 103.27 7.31 14.76
53 3.00 600.00 2360.51 4.23 1.24 95.11 7.91 14.11
77 3.00 700.00 2109.35 4.74 1.65 105.09 8.47 15.02
101 3.00 700.00 1932.47 5.17 1.78 78.43 9.29 15.14
125 3.00 800.00 1721.50 5.80 1.95 212.01 10.47 16.57

Replication Scalability: Version 2 Results

A.3 Performance

The following experiments were performed with a system size consisting of 125 replicas, with a fanout of

5 and for Version 1 and 2 for Version 2. Additionally, 10 clients simultaneously issued requests with a

varying throttle.

Requests Throughput Mean Min Max P95 P99
Throttle

50 3001.67 50.02 3.84 3.34 13.02 4.69 9.37
100 6001.33 100.01 3.92 3.22 22.28 5.89 10.66
150 9001.67 150.01 4.35 3.11 28.87 10.12 18.63
200 12001.33 200.02 5.50 3.08 38.03 16.92 26.00
250 15001.00 250.02 11.53 3.14 61.57 30.29 41.42
300 15417.33 256.93 38.88 4.22 87.79 61.39 70.76

Performance: Raft Results
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Requests Throughput Mean Min Max P95 P99
Throttle

0 73873.50 1231.15 8.12 1.91 200.91 19.88 28.92
50 3000.33 50.01 2.67 1.98 109.95 2.65 12.46
100 6000.00 99.99 2.86 1.90 128.92 5.50 13.79
200 12000.50 199.99 4.25 1.81 122.46 14.90 20.63
400 23974.50 399.56 8.52 1.87 172.89 23.74 30.81
600 35931.00 598.84 8.91 1.80 146.18 23.95 32.11
700 41749.00 695.75 8.67 1.84 139.58 23.34 31.94
800 46671.50 777.82 8.52 1.80 137.25 22.55 32.19
900 51029.00 850.47 8.36 1.84 139.25 22.17 31.79
1000 55126.50 918.73 8.23 1.83 164.40 21.90 31.67
1100 58671.00 977.83 8.25 1.84 154.16 21.71 32.09
1200 62799.50 1046.58 8.07 1.84 169.04 21.17 31.99
1300 66731.50 1112.17 7.99 1.86 126.62 20.76 30.53
1400 70255.50 1170.82 7.98 1.88 149.00 20.30 29.80

Performance: Version 1 Results

Requests Throughput Mean Min Max P95 P99
Throttle

0 108620.33 1810.30 5.52 1.96 134.34 9.55 16.97
50 3001.67 50.01 3.24 1.62 99.81 4.36 5.22
200 12000.00 200.00 3.21 1.63 127.37 4.36 5.48
800 47707.67 795.11 4.83 1.51 144.50 7.51 14.39
1000 59441.33 990.68 5.17 1.55 161.05 8.49 14.48
1200 71142.33 1185.69 5.47 1.60 143.98 9.10 14.99
1400 82350.00 1372.48 5.57 1.68 145.80 9.36 15.29
1600 93134.33 1552.21 5.52 1.83 154.87 9.27 14.92
1800 102308.00 1705.12 5.46 1.87 173.88 9.28 15.14

Performance: Version 2 Results

A.4 Impact of Concurrent Clients

The following experiments were performed with a system size consisting of 125 replicas, with a fanout of

5 for Version 1 and 3 for Version 2.
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Throughput Mean Min Max P95 P99
Clients

1 235.23 4.24 3.32 25.08 5.08 14.63
10 256.84 38.93 4.52 98.22 60.77 70.50
30 173.59 172.57 27.35 307.96 212.78 243.56
50 125.30 397.47 88.20 708.04 538.51 593.17
75 92.80 802.72 181.51 1380.75 1085.60 1177.03
100 73.53 1344.02 202.51 2699.56 1893.27 2139.08

Impact of Concurrent Clients: Raft Results

Throughput Mean Min Max P95 P99
Clients

1 269.46 3.71 1.93 93.68 8.13 18.32
10 1233.30 8.11 1.94 145.81 19.80 28.28
30 2421.91 12.39 2.28 179.85 29.18 39.95
50 2429.58 20.58 2.42 202.37 40.84 58.46
75 1988.03 37.74 2.50 347.74 74.11 109.53
100 1673.58 59.80 2.66 609.26 126.97 200.84

Impact of Concurrent Clients: Version 1 Results

Throughput Mean Min Max P95 P99
Clients

1 317.52 3.14 1.53 153.96 4.35 5.26
10 1829.52 5.46 2.00 142.63 9.47 16.51
30 1005.25 29.84 3.63 238.57 53.85 83.99
50 654.29 76.37 4.00 465.05 166.51 211.08
75 351.00 213.70 7.40 664.69 409.77 508.65
100 255.29 391.75 7.39 1194.60 660.69 912.40

Impact of Concurrent Clients: Version 2 Results

A.5 Use of Resources

The following experiments were conducted with 10 clients simultaneously issuing requests, with each client

immediately sending another request upon receiving a response (i.e. throttle was set to 0).
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Leader CPU Follower CPU
Replicas

5 88.66 50.32
11 99.03 22.61
19 99.96 11.81
31 99.99 6.83
53 100.03 3.70
77 100.00 2.37
101 99.96 1.76
125 99.98 1.37

Use of Resources: Raft Results

Fanout Interval Throughput Mean Leader CPU Follower CPU
Replicas

5 2.00 300.00 9321.23 1.06 72.06 65.08
11 3.00 500.00 7093.91 1.40 75.61 49.64
19 4.00 700.00 5005.68 1.99 68.36 39.07
31 4.00 900.00 4155.20 2.40 74.04 34.35
53 5.00 1250.00 2998.66 3.33 93.49 34.80
77 5.00 2000.00 2120.76 4.71 87.81 23.12
101 5.00 3000.00 1550.97 6.44 87.28 16.51
125 5.00 3500.00 1227.01 8.14 92.58 14.20

Use of Resources: Version 1 Results

Fanout Interval Throughput Mean Leader CPU Follower CPU
Replicas

5 2.00 200.00 6128.64 1.63 75.62 65.45
11 3.00 300.00 4024.28 2.48 76.82 61.33
19 3.00 400.00 3452.85 2.89 68.72 53.80
31 3.00 500.00 2813.36 3.55 63.28 49.58
53 3.00 600.00 2390.66 4.18 58.84 45.10
77 3.00 700.00 2167.41 4.61 54.55 41.63
101 3.00 700.00 1965.50 5.08 55.45 43.00
125 3.00 800.00 1776.58 5.62 51.05 40.52

Use of Resources: Version 2 Results
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A.6 Performance in Network Partitions

5-Replica Systems

Throughput Mean Min Max P95 P99
Faults

0 6368.78 1.55 0.24 99.92 2.15 15.37
1 6518.44 1.52 0.23 99.95 2.04 14.88
2 6465.93 1.53 0.23 99.47 2.08 15.24
3 2768.77 4.73 0.21 96.84 16.07 29.63
4 966.89 0.48 0.22 64.74 0.78 2.40
5 864.75 0.50 0.22 57.35 0.90 2.66
6 915.09 0.47 0.21 88.58 0.74 2.01

Performance in Network Partitions with 5 Nodes: Raft Results

Fanout Interval Throughput Mean Min Max P95 P99
Faults

0 2.00 300.00 9588.51 1.04 0.26 335.01 1.59 8.77
1 2.00 300.00 9632.12 1.03 0.25 342.78 1.56 8.81
2 2.00 300.00 9962.55 1.00 0.25 409.54 1.52 6.95
3 2.00 300.00 8858.21 1.13 0.25 306.74 2.00 5.71
4 2.00 300.00 9367.47 1.06 0.25 317.25 1.87 4.22
5 2.00 300.00 8663.78 1.15 0.24 311.24 1.97 4.17
6 2.00 300.00 7113.38 1.41 0.24 215.85 2.04 3.88

Performance in Network Partitions with 5 Nodes: Version 1 Results

Fanout Interval Throughput Mean Min Max P95 P99
Faults

0 2.00 200.00 6347.66 1.57 0.27 207.33 2.93 13.14
1 2.00 200.00 6371.96 1.56 0.26 271.93 2.91 12.78
2 2.00 200.00 6423.74 1.55 0.27 240.24 2.86 11.87
3 2.00 200.00 5390.53 1.85 0.28 197.23 3.73 8.85
4 2.00 200.00 4768.93 2.11 0.28 143.03 4.38 8.39
5 2.00 200.00 4738.35 2.11 0.28 150.38 4.57 8.14
6 2.00 200.00 12.41 3.19 0.40 10.29 7.03 9.55

Performance in Network Partitions with 5 Nodes: Version 2 Results
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53-Replica Systems

Throughput Mean Min Max P95 P99
Faults

0 703.16 14.22 1.57 50.19 26.36 34.57
53 526.21 13.37 1.26 96.96 25.55 34.44
106 525.15 12.75 1.14 94.04 25.26 35.88
159 454.76 11.56 1.15 98.87 24.61 37.34
212 476.62 10.55 1.02 93.67 23.84 34.80
256 437.32 10.03 1.10 98.76 22.80 36.68
318 364.59 8.00 1.05 99.88 20.19 31.72

Performance in Network Partitions with 53 Nodes: Raft Results

Fanout Interval Throughput Mean Min Max P95 P99
Faults

0 5.00 1250.00 3014.07 3.31 0.81 133.80 6.61 15.65
53 5.00 1250.00 3056.68 3.27 0.82 149.17 6.27 15.18
106 5.00 1250.00 3109.17 3.21 0.82 149.45 6.00 14.46
159 5.00 1250.00 3157.98 3.16 0.81 118.04 5.70 13.78
212 5.00 1250.00 3228.23 3.09 0.82 117.93 5.25 13.12
256 5.00 1250.00 3221.88 3.10 0.82 111.13 5.20 12.90
318 5.00 1250.00 3240.30 3.08 0.83 134.08 4.98 12.48

Performance in Network Partitions with 53 Nodes: Version 1 Results

Fanout Interval Throughput Mean Min Max P95 P99
Faults

0 3.00 600.00 2386.95 4.18 1.34 68.15 7.87 13.90
53 3.00 600.00 2343.01 4.26 1.31 102.83 7.51 13.23
106 3.00 600.00 2293.79 4.35 1.38 89.09 7.35 13.01
159 3.00 600.00 2229.95 4.48 1.46 106.54 7.23 12.53
212 3.00 600.00 2142.24 4.66 1.39 93.61 7.40 12.40
256 3.00 600.00 2112.62 4.73 1.49 92.94 7.40 12.12
318 3.00 600.00 1990.39 5.02 1.45 107.08 7.77 12.03

Performance in Network Partitions with 53 Nodes: Version 2 Results
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125-Replica Systems

Throughput Mean Min Max P95 P99
Faults

0 245.74 40.70 4.16 84.09 61.90 70.45
125 214.04 40.53 4.60 97.80 60.38 69.56
250 190.93 40.39 2.93 99.11 61.10 71.78
375 162.71 40.08 2.40 98.89 59.56 73.32
500 165.91 40.17 4.24 98.71 61.57 74.36
625 163.88 39.31 3.05 98.79 60.07 73.99
750 149.58 38.78 3.33 99.61 59.75 78.48

Performance in Network Partitions with 125 Nodes: Raft Results

Fanout Interval Throughput Mean Min Max P95 P99
Faults

0 5.00 3500.00 1239.07 8.07 1.93 68.10 19.54 27.89
125 5.00 3500.00 1240.72 8.06 1.94 70.73 19.47 27.33
250 5.00 3500.00 1254.67 7.97 1.94 77.04 18.94 27.48
375 5.00 3500.00 1255.17 7.96 1.94 84.17 18.72 27.49
500 5.00 3500.00 1257.53 7.95 1.90 84.78 18.88 26.77
625 5.00 3500.00 1270.61 7.87 1.93 75.65 18.66 26.59
750 5.00 3500.00 1289.47 7.75 1.92 73.54 18.01 26.02

Performance in Network Partitions with 125 Nodes: Version 1 Results

Fanout Interval Throughput Mean Min Max P95 P99
Faults

0 3.00 800.00 1713.99 5.83 1.70 98.10 10.77 17.80
125 3.00 800.00 1724.43 5.79 1.97 89.87 10.41 17.91
250 3.00 800.00 1736.05 5.75 1.96 97.15 9.92 16.80
375 3.00 800.00 1755.03 5.69 1.85 99.16 9.61 15.17
500 3.00 800.00 1749.01 5.71 1.95 85.35 9.48 15.01
625 3.00 800.00 1723.53 5.79 2.13 98.91 9.44 14.92
750 3.00 800.00 1696.36 5.89 2.03 95.85 9.47 14.71

Performance in Network Partitions with 125 Nodes: Version 2 Results
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