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Abstract

Database management systems have a long history of development and research, with systems like Post-

greSQL and languages like SQL already being well-established in the industry. Transactional memory

emerges as a new concurrency control mechanism for concurrent programming, inspired by ideas and

concepts from the database world. As is the case with database transactions, transactions in transac-

tional memory can (and will) conflict when multiple transactions try to modify the same data. This can

lead to the appearance of hot spots in contended memory regions, quickly degrading the performance of

an application.

In this dissertation, we propose new optimisation techniques for transactional memory hot spots,

based on previous research on splitting techniques for numeric database records. We implement the

optimisations on an existing transactional memory system and measure their impact on performance,

using custom-made and reference benchmarks.

Keywords transactional memory, concurrent programming, hot spot optimisation
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Resumo

Sistemas de gestão de bases de dados possuem uma longa história de desenvolvimento e investigação,

estando sistemas como PostgreSQL e linguagens como SQL já bem estabelecidos na indústria. Memória

transacional surge como um novo mecanismo de controlo de concorrência para a programação concor-

rente, inspirada por ideias e conceitos do mundo das bases de dados. Tal como se sucede nas transações

em bases de dados, as transações em memória transacional podem (e irão) entrar em conflito quando

múltiplas transações tentarem modificar os mesmos dados. Isto leva ao surgimento de hot spots em

regiões contendidas de memória, rapidamente degradando a performance de uma aplicação.

Nesta dissertação, propõem-se novas otimizações para hot spots emmemória transacional, baseadas

em investigação prévia de técnicas de divisão de registos numéricos em bases de dados. As otimizações

foram implementadas sobre um sistema de memória transicional já existente, sendo o seu impacto na

performance medido recorrendo tanto a um benchmark feito à medida como a um de referência.

Palavras-chave memória transacional, programação concorrente, otimização de hot spots

v



Contents

1 Introduction 1

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main aims and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4

2.1 Transactional memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Fundamental concepts/terminology . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Implementation types and examples . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Language support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Hardware support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Production-ready STM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Immutable data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Performance of Transactional Memory 13

3.1 Transactional memory optimisations . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Transactional boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Type-aware transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Delayed actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Database splitting techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Multi-Record Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Phase Reconciliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.3 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 General-purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.2 Specific for STM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



3.3.3 Energy profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Contribution 22

4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Microbenchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 STAMP Vacation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Common implementation details . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.2 Multi-Record Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.3 Phase Reconciliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Evaluation 46

5.1 Test environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Optimal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Microbenchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.2 STAMP Vacation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Energy consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Conclusions and Future Work 55

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Prospect for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vii



List of Figures

1 Example of a radix tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Example of an update to a radix tree. . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Transformation of a value into a MRV. . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Example of a MRV lookup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Example of a PR write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Example of a report from perf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Example of a flame graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Vacation schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9 Generic architecture for both techniques. . . . . . . . . . . . . . . . . . . . . . . . 32

10 Atomic counter for transactional statuses on a MRV object. . . . . . . . . . . . . . . . 33

11 Atomic counter for transactional statuses on a PR object. . . . . . . . . . . . . . . . . 33

12 Throughput comparison of different RNG engines. . . . . . . . . . . . . . . . . . . . 36

13 Write throughput on different vectors. . . . . . . . . . . . . . . . . . . . . . . . . . 37

14 Microbenchmark results for different abort rate targets. . . . . . . . . . . . . . . . . 40

15 Vacation (high contention) results for different abort rate targets. . . . . . . . . . . . . 41

16 Microbenchmark (0% reads) results for different balance strategies. . . . . . . . . . . . 42

17 Microbenchmark (50% reads) results for different balance strategies. . . . . . . . . . . 43

18 Vacation results for different balance strategies. . . . . . . . . . . . . . . . . . . . . 44

19 Phase transition intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

20 Pure write workload with variable number of clients. . . . . . . . . . . . . . . . . . . 47

21 Mixed (50 %) workload with variable number of clients. . . . . . . . . . . . . . . . . . 48

22 Pure write workload for eight clients with a variable amount of padding. . . . . . . . . . 49

23 Mixed (50 %) workload for eight clients with a variable amount of padding. . . . . . . . 49

24 Microbenchmark results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



25 Vacation (low contention) results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

26 Vacation (high contention) results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

27 Energy consumption results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

28 Performance results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

29 Energy efficiency results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



List of Tables

1 Frequency of Vacation transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Transactional throughput (writes/s) with and without explicit alignment, for 256 bytes. . 31

3 Transactional throughput (writes/s) with and without explicit alignment, for 64 bytes. . . 31

x



Listings

2.1 A pseudocode comparison between locking and TM. . . . . . . . . . . . . . . . . . . 5

2.2 An atomic block from the C++ draft specification. . . . . . . . . . . . . . . . . . . . 8

2.3 Example of a Wyatt-STM transaction. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Example of an idiomatic approach for Wyatt-STM transactions. . . . . . . . . . . . . . 11

4.1 Conversion of a Vacation transaction to Wyatt-STM. . . . . . . . . . . . . . . . . . . 28

4.2 Interface for value-splitting objects. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Specifying an explicit alignment for variables in C++. . . . . . . . . . . . . . . . . . . 30

4.4 Updating the transaction status counters. . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Implementation of the RNG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Simplified function for a MRV record removal. . . . . . . . . . . . . . . . . . . . . . 39

xi



Acronyms

ACID Atomicity, Consistency, Isolation, and Durability.

API Application Programming Interface.

ASF Advanced Synchronization Facility.

CPU Central Processing Unit.

DDL Data Definition Language.

DSTM Dynamic Software Transactional Memory.

DTM Durable Transactional Memory.

GCC GNU Compiler Collection.

GPU Graphics Processing Unit.

HLE Hardware Lock Elision.

HTM Hardware Transactional Memory.

HyTM Hybrid Transactional Memory.

MRV Multi-Record Value.

NUMA Non-Uniform Memory Access.

NVML NVIDIA Management Library.

OCC Optimistic Concurrency Control.

OS Operating System.

xii



PhTM Phased Transactional Memory.

PM Persistent Memory.

PR Phase Reconciliation.

PTM Persistent Transactional Memory.

RAPL Running Average Power Limit.

RNG Random Number Generator.

RRB-Tree Relaxed Radix Balanced Tree.

RTM Restricted Transactional Memory.

SMT Simultaneous Multithreading.

SQL Structured Query Language.

STAMP Stanford Transactional Applications for Multi-Processing.

STL Standard Template Library.

STM Software Transactional Memory.

STO Software Transactional Objects.

TM Transactional Memory.

TME Transactional Memory Extension.

TSX Transactional Synchronization Extensions.

UTM Unbounded Transactional Memory.

xiii



Chapter 1

Introduction

1.1 Context and motivation

Computing hardware has evolved exponentially since the days of the first microprocessors. In 1965,

Gordon Moore—who would later found Intel—predicted that the number of transistors in a chip would

double every year over the following ten years. This statement, despite being merely a forecast based

on his observations, has since then been known as the “Moore’s law” [Britannica] and ended up being

exceeded long after 1975.

At the turn of the 21st century, microprocessors were hitting physical limits, restricting further advances

in computing power. Manufacturers sidestepped this problem with the introduction of multiprocessor

architectures.

However, this created a new problem, as programs written in a typical sequential fashion are not able

to exploit the power of multiple processors. Instead, parallel programming techniques must be employed,

such as the usage of threads. These, in turn, require additional coordination, so multiple threads do not

concurrently modify the same data and cause inconsistent results. Mutual exclusion (or locking) is one

such synchronisation mechanism, in which a thread must acquire a lock before accessing its respective

data. This approach has some well-known limitations, such as being susceptible to deadlocking, not being

composable, and requiring additional effort to implement correctly. Thus, Transactional Memory (TM)

emerges as a programming paradigm well-suited to multicore systems, avoiding the complexity and error-

proneness of locking mechanisms [Harris et al., 2010].

Despite the ease-of-use benefits, TM has not seen wide adoption with developers [Zardoshti et al.,

2019]. There are two main factors usually attributed to this: the non-existence of generally agreed-upon

transaction syntax/semantics and performance concerns. The latter point, particularly, is one of great im-

portance; after all, concurrent programming is usually employed to improve the performance of a system.

In database systems, hot spots arise in workloads where just a few popular data items are updated
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by a significant number of transactions. Value-splitting is a strategy that aims to mitigate this problem,

resorting to the division of a numeric value into multiple variables to reduce contention in transactional

accesses and updates.

1.2 Main aims and results

Improving the performance of TM systems is the main goal of this work, specifically in workloads that

are prone to high levels of contention on numeric values. To achieve this, we have adapted to TM two

value-splitting techniques that have been previously proposed for databases, namely Multi-Record Val-

ues (MRVs) [Faria and Pereira, 2023] and Phase Reconciliation (PR) [Narula et al., 2014]. These

techniques allow the splitting of an integer value into multiple partial chunks, enabling threads to progress

independently and reduce conflicts in contended items. We evaluate our work within a single target TM

system, using the STAMP benchmark suite [Minh et al., 2008] and a custom-made microbenchmark.

We consider both performance and energy efficiency metrics.

Our contribution includes a publication made in the context of this dissertation, based on earlier

results:

• Rui Ribeiro, José Pereira and Nuno Faria. An Experimental Evaluation of Value Splitting in Transac-

tional Memory Systems. INForum 2023.

1.3 Structure of the document

The rest of this document is organised as follows:

Chapter 2 Introduction of the essential concepts that are needed to understand the core of this disser-

tation. We focus on the main ideas behind TM and how it works.

Chapter 3 Presentation of the state-of-the-art research directly related to this work’s core, such as the

aforementioned value-splitting techniques, other related TM optimisations, different profiling applications,

immutable data structures, and the production-ready Software Transactional Memory (STM) system

that has been picked as our target.

Chapter 4 Specification of our contribution, namely the value-splitting techniques and benchmarks

created/adapted to test them. We detail the reasoning behind the main decisions made during the devel-
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opment process.

Chapter 5 Evaluation of the value-splitting techniques with the aforementioned benchmarks. We target

performance and energy efficiency metrics.

Chapter 6 Final remarks and prospects for future work.
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Chapter 2

Background

This chapter introduces the concepts and terminology needed to understand the core of this dissertation.

We mainly focus on Transactional Memory, as it is the target of optimisation of our work. We present

an overall description of what it is, why it is important, and how it works. We also give special attention to a

TM system used in production, as it allowed the evaluation of our work in a more realistic setting. Finally,

we introduce a library of immutable data structures for C++, as it was the foundation of the implementation

we describe in the following chapters.

2.1 Transactional memory

A transaction, as first defined by Gray [1981], is a transformation of state. It is atomic (either all or none of

the changes are made), durable (its effects are able to withstand failures), and consistent (the state keeps

being correct after the transformation, assuming it was before). These three properties were later used

by Haerder and Reuter [1983] when coining the Atomicity, Consistency, Isolation, and Durability

(ACID) principles, with the added isolation (effects of concurrent transactions are not visible to each

other).

Transactional Memory (TM) is a concurrency control mechanism that allows the coordination of

threads without the explicit use of locks or other manual synchronisation mechanisms; the TM system

automatically handles any concurrency issues and conflicts.

The concept of TM first appeared as an alternative to locked data structures [Herlihy and Moss, 1993].

Its ideas were based on the transactions used in database systems, applying the same ACID properties.1

TM has the main goal of making the development of programs for multiprocessor systems easier while

avoiding the pitfalls usually associated with locks, with some benefits being:

• Easier to write: Programmers do not need to worry about keeping track of locks and can write

1 The D of durability is ignored here since the transactions do not leave the volatile domain.

4



code as usual.

• Deadlock elimination: Transactions can be aborted to make others able to proceed.

• Composability: Transactions can be combined to form larger transactions.

• Easier to maintain data consistency: Changes are only applied upon a commit; intermediate

states are discarded and not visible outside the transaction.

Listing 2.1: A pseudocode comparison between locking and TM.

1 // External locking.

2 queue1_lock.lock();

3 queue2_lock.lock();

4 var item = queue1.pop();

5 queue2.push(item);

6 queue1_lock.unlock();

7 queue2_lock.unlock();

1 // Internal locking.

2 var item = queue1.pop();

3 queue2.push(item);

4

5 LockQueue::push(item) {

6 this.lock.lock();

7 this.queue.push(item);

8 this.lock.unlock();

9 }

1 // Transactional version.

2 atomic {

3 var item = queue1.pop();

4 queue2.push(item);

5 }

Listing 2.1 shows a comparison between a usual locking mechanism and a generic lexically-scoped

TM transaction, when removing an item from a queue to insert it in another. The first locking version

is susceptible to deadlocks if another thread tries to lock the queues in the reverse order. The second

locking version avoids this problem by having the data structure itself lock its accesses, but in doing so

no longer allows for an atomic modification of both queues. This makes the intermediate state exposed to

other threads, when the item has been popped off queue1 but not pushed to queue2. The transactional

version wraps the critical section inside an atomic block, both simplifying and reducing the footprint of

the code, while solving the problems of both locking implementations.

It is worth pointing out that, while the programmer using the TM constructs has an easier time pro-

gramming, the complexity of concurrent memory accesses does not simply disappear; this responsibility

is instead passed on to the libraries/compilers that provide the underlying TM implementation.

2.1.1 Fundamental concepts/terminology

Read/write sets In order to detect conflicts, there needs to be a mechanism in place to track which

memory regions have been accessed and modified by a transaction. Addresses that have only been read

and not modified are part of the transaction’s read set, while those that have been modified are part of

the write set.
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Conflict detection Conflicts occur when a transaction’s read set overlaps with another transaction’s

write set. The detection of conflicts usually happens on one of two occasions: at the time that a transaction

tries to commit, which known as a lazy approach, or at the time that a memory address is accessed, which

known as an eager approach.

Version management A version management mechanism is responsible for handling the storage of

both new and old versions of data, when writes occur in a transaction. Both need to be stored since the

outcome of a transaction is unknown: it can either commit, in which case the new version replaces the

original data, or abort, in which case the new changes are discarded and the original version remains.

As with the detection of conflicts, versions of modified data can either be managed lazily or eagerly. A

lazy strategy avoids writing to the target location until the transaction commits, instead storing the data on

the side. An eager strategy performs in-place changes, at the moment that the targeted memory location

is modified, and stores the old data on the side.

This “on the side” where data is buffered can be implemented as a log: either as a redo log, where

changes are stored so that they can be applied upon a commit (lazy), or an undo log, where the original

data is stored so that it can be restored upon an abort (eager).

Granularity/metadata In software, TM generally admits two distinct levels of granularity: it can be

object-based or word-based. As the naming implies, word-based systems offer finer control over object-

based systems since they associate metadata to individual memory addresses, instead of whole objects.

This reduces the probability of false positives in regard to conflict detection, which can happen on object-

based designs when two distinct transactions modify different fields of the same object. However, there

can be a bigger overhead on word-based designs due to the need for overall more metadata.

Concurrency control Concurrency control is a mechanism that ensures data integrity and correctness

when being accessed and modified by concurrent transactions. It is usually divided into two distinct

categories, depending on the approach: pessimistic and optimistic.

Pessimistic concurrency control assumes the worst by default, that there will always be more than

one transaction trying to modify the same data at any given time, regardless of the probability of conflicts.

Therefore, it employs some sort of locking mechanism before accessing the data, be it a shared or exclusive

lock. On the other hand, Optimistic Concurrency Control (OCC) assumes that conflicts are rare and

lets the transactions run freely. In the case of conflict, only one transaction is committed and the rest are

discarded.
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Disjoint-access parallelism An implementation of word-based TM can be described as disjoint-

access parallel [Israeli and Rappoport, 1994] if transactions that act on disjoint sets of memory words

are able to progress concurrently without conflicting with each other.

2.1.2 Implementation types and examples

There are two major types of TM implementation: in hardware, known as Hardware Transactional

Memory (HTM), or in software, known as Software Transactional Memory (STM).

The first TM design was proposed in hardware, by Herlihy and Moss [1993]. It worked by extending

cache coherence protocols and adding a dedicated cache for holding uncommitted data. However, it had

two major limitations: long transactions were prone to being aborted due to interrupts or synchronisation

conflicts and the transactional cache was not able to handle large data sets, if their size exceeded its

capacity. This meant that programmers needed to be aware of such restrictions in order to develop

programs effectively, undermining the desired TM benefits. Implementations with these limitations were

later labelled as best-effort.

In contrast, unbounded hardware systems are able to process both large and long-running transac-

tions. Ananian et al. [2005] proposed the first design of this kind, called Unbounded Transactional

Memory (UTM). As a trade-off, it has a more complex implementation than best-effort systems.

Also aiming to solve the best-effort hardware limitations, Shavit and Touitou [1995] introduced the first

STM. By being based on software, it did not rely on specialised hardware features and was more portable

and resilient, in regard to timing anomalies and processor failures. It did not, however, strive to achieve

the same level of performance. The proposed implementation also only supported static transactions,

which can only access a pre-determined set of memory locations, although later implementations allowed

for dynamic transactions, like the one described by Herlihy et al. [2003].

In addition to both Hardware Transactional Memory (HTM) and STM, there are more two note-

worthy alternative designs that exploit the advantages of both hardware and software and try to mitigate

their inherent problems and limitations.

The first one is known as Hybrid Transactional Memory (HyTM), with the first architectures being

designed in 2006 by both researchers from Sun Microsystems [Damron et al., 2006] and Intel [Kumar

et al., 2006]. These hybrid approaches aim to make use of best-effort HTM when available, to improve

performance, and fallback to STM otherwise. Kumar et al. [2006] built upon the Dynamic Software

Transactional Memory (DSTM) of Herlihy et al. [2003], an STM implementation with support for

dynamic-sized data structures, by proposing an HTM architecture to work alongside it. In contrast, the
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approach of Damron et al. [2006] did not require new hardware to function, enabling developers to release

programs that would be able to run fully in software in the systems of the time.

The second one is Phased Transactional Memory (PhTM) [Lev et al., 2007], a different kind

of hybrid approach that alternates between hardware and software modes (or phases). In contrast with

typical HyTM implementations, PhTM does not need to handle the concurrent execution of hardware

and software transactions, since it only runs transactions in one mode at a time. This avoids the need

for conflict detection between hardware and software and allows for a more streamlined design. A more

refined version of this architecture was proposed by de Carvalho et al. [2019], called PhTM*. It uses a

more sophisticated algorithm to decide when to switch modes, as well as a third mode which executes

transactions in sequential order, using a single global lock.

2.1.3 Language support

Built-in support for transactions in programming languages is rare, being mostly limited to the functional

paradigm. For example, Haskell has the STM monad [HaskellWiki] and Clojure has Refs [Clojure].

Outside the functional realm, our research indicates that C++ is the language with the most develop-

ments in regard to TM, with ongoing work to add official support in the standard. There is a published

draft of a technical specification for C++ [ISO, 2015] that is supported by the GNU Compiler Collection

(GCC) [FSF] since version 6.1. The specification proposes a new type of transactional block, called atomic

(exemplified in Listing 2.2). It comes in three variants, each with different approaches in regard to what

happens when an exception is thrown. Only functions that are transaction-safe can be called inside an

atomic block.

Listing 2.2: An atomic block from the C++ draft specification.

1 auto get_next_ticket() -> int {

2 // Static variable: only initialised on first call to the function.

3 static int counter = 0;

4 atomic_noexcept {

5 counter++;

6 return counter; // An unique number is returned every time.

7 }

8 }

Zardoshti et al. [2019] proposed a different design for TM support in C++, due to low adoption both

by developers and compiler vendors. Instead of using lexically scoped transactions, the programmer

would instead define a transaction inside a lambda expression: tm_exec([&]() { /* ... */ }). The
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transition to lambdas implies other considerations, such as changes in control flow (e.g. if used in the

example from Listing 2.2, the return statement would only return from the lambda and not from the

get_next_ticket() function, as it currently does).

Following the previous design, Spear et al. [2021] proposed a new lightweight version of TM support,

in hopes of generating interest in the technology at the cost of some features. It has similar syntax to

the one from ISO [2015], simply adding a single atomic do { /* ... */ } construct. However, the

proposal is still in its early stages and does not contemplate an implementation.

2.1.4 Hardware support

Intel introduced Transactional Synchronization Extensions (TSX) [Reinders, 2012] by adding HTM

support for its CPUs and providing two software interfaces, Hardware Lock Elision (HLE) and Re-

stricted Transactional Memory (RTM). It was released in 2013, included in the 4th generation Intel

Core product line. Since then, several issues have been discovered, from bugs in the implementation

[Intel, 2015] to memory ordering problems [Intel, 2021]. These issues have led to the deprecation of

TSX across several families of microprocessors. In addition, CPUs since the 10th generation are being

released without support for the technology.

AMD also had plans to implement HTM in their microprocessor line-up, as early as 2008, upon the

first public release of the specification of Advanced Synchronization Facility (ASF) [AMD, 2009]. No

products implementing the technology ended up being released at the time of writing.

Arm released Transactional Memory Extension (TME) [Mann, 2019] in 2021, integrated in their

Armv9-A architecture [Arm]. Of the three mentioned companies, it is the only with active support for HTM.

2.2 Production-ready STM

Wyatt-STM [Hall] is an object-based STM library for C++. It is inspired by the Haskell implementation of

STM, with additional features to help in handling side effects.

At the core of the library are transactional objects, which encapsulate typical C++ values. These can

only be accessed inside of transactions, where the system is able to track concurrent transactions and

handle potential conflicts.

Wyatt-STM provides a rich feature set:

• Nested transactions: Transactions can run inside other transactions. These nested transac-

tions are self-contained, i.e. a nested transaction can be cancelled without cancelling the outer
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transaction.

• Inconsistent transactions: Read-only transactions where no validation is done at the end.

• Explicit retries: If a given condition is not met, a transaction can call a retry mechanism of Wyatt-

STM to cancel the transaction and make a new attempt. This blocks the thread until a variable in

the read set of the transaction is changed, avoiding unnecessary wasted work. This feature could

be considered akin to waiting on a conditional variable when using locks.

• Event actions: Programmer-defined functions that run when a given event is triggered, e.g. after

a transaction commits or is cancelled.

Unlike the Haskell implementation, Wyatt-STM does not enforce that the transactions it executes are

pure (free from side effects), so the programmer must take extra care to avoid unwanted side effects.

Listing 2.3 shows a direct adaptation to Wyatt-STM of the counter function of Listing 2.2. All the

transactional code is explicit in this version, with transactional values being encapsulated in transactional

objects. Every read/write must be done inside a transaction, by passing the WAtomic object to the

Get()/Set() methods.

Listing 2.3: Example of a Wyatt-STM transaction.

1 auto get_next_ticket() -> int {

2 static WSTM::WVar<int> counter(0);

3

4 int value = WSTM::Atomically([&](WSTM::WAtomic& at) -> int {

5 int value = counter.Get(at);

6 value += 1;

7 counter.Set(value, at);

8 return value;

9 });

10

11 return value;

12 }

A more idiomatic approach is presented in Listing 2.4. The counter variable can now be global, since

WVar will only allow transactional accesses to it—the C++ proposal does not provide any safety guarantees

to non-transactional accesses to transactional variables. Moreover, the get_next_ticket() function

itself can now be used in a composable manner. Since it receives a WAtomic object as a parameter, it

can be used inside other transactions.
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Listing 2.4: Example of an idiomatic approach for Wyatt-STM transactions.

1 WSTM::WVar<int> counter(0);

2

3 auto get_next_ticket(WSTM::WAtomic& at) -> int {

4 int value = counter.Get(at);

5 value += 1;

6 counter.Set(value, at);

7 return value;

8 }

Overall, Wyatt-STM has a special interest due to its use in a production environment, in an application

built by Wyatt Technology. Most of the mentioned STM systems in this dissertation have been developed

for research purposes, with no immediate real-world applicability.

2.3 Immutable data structures

Thread safety can be achieved with two distinct approaches: by avoiding shared state or enforcing thread

synchronisation. Immutable data structures are part of the first strategy, since no thread can modify

them after initialisation. Write operations on these structures create a new copy with the applied changes.

Conversely, TM is a thread synchronisation technique.

Puente [2017] introduced immer, a C++ library comprised of immutable data structures based on a

variation of Relaxed Radix Balanced Trees (RRB-Trees). It avoids expensive copies by sharing as

much as possible of the underlying tree on each update, while still using nodes that are large enough to

take advantage of spatial locality.

t r a n cs a c t ci o n a cl ␣ m e

c

cm o r y

c

c

Figure 1: Example of a radix tree.

Figures 1 and 2 demonstrate how an update would occur in a vector of characters, with the change
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of a lowercase “o” to an uppercase one. To perform the update, we would first need to look up the target

position and create a new node with the updated data. Then, we would recursively update the node’s

parents, ending on an updated root node. As we can see, the immutability is preserved, since all the old

nodes of the original tree still exist; the newly added nodes for the update (in blue) do not interfere with it.

t r a n cs a c t ci o n a cl ␣ m e

c

cm o r y

c

c

c

c

cm O r y

Figure 2: Example of an update to a radix tree.

There are situations where we might need to perform more than a single update to the data structure,

e.g. pushing a range of values to a vector. This could be achieved by inserting all the values one at

a time, but there would be unnecessary copies of the vector on every update. To avoid this, immer

provides a transient Application Programming Interface (API) for its data structures, where one can

request a transient version of a given immutable object and modify it in a way similar to mutable Standard

Template Library (STL) objects. Once all the changes are applied, the transient object can be converted

back into an immutable one. Other references to the original immutable object are not affected.
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Chapter 3

Performance of Transactional Memory

This chapter presents research and concepts that, directly or not, are relevant to the improvement and

analysis of TM performance. We start with a brief summary of optimisations that target TM, with the aim

of improving performance and generally reducing conflicts. Then, we detail the value-splitting techniques

as they were originally developed for database systems—these are the ones in which we based our work.

Finally, we present several profiling tools with different goals, namely for general-purpose performance,

specifically for STM, and for energy consumption.

3.1 Transactional memory optimisations

3.1.1 Transactional boosting

STM systems do not take into account the semantics of the objects that transactions interact with, some-

times making transactions conflict when, semantically, there should not be a need to. Herlihy and Koski-

nen [2008] propose transactional boosting, a methodology for enabling higher concurrency in contended

transactional objects.

As an example, the authors present a set implemented as a sorted linked list. Semantically, in the

set {1, 7, 30}, two transactions that perform the concurrent addition of 3 and 17 should not conflict with

each other, since they are different numbers that will be added in different positions. In practice, however,

assuming both transactions must read every item from the head of the linked list up until the point where

the new number should be added, the read set of one transaction inevitably overlaps with the write set of

the other.

In order to boost an object, there needs to be a specification of its semantics, comprised of the inverses

of all object operations along with rules that state how the operations are able to commute. The inverses

are required for the reversal of aborted transactions, while the commutativity rules are required to let the
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STM know when to let concurrent transactions act on the same object without conflicting.

3.1.2 Type-aware transactions

Like transactional boosting, the work of Herman et al. [2016] aims to leverage object semantics to improve

concurrency in a STM system. Their design, called Software Transactional Objects (STO), works by

leaving up to the object the management of its modifications, locking, and version verification. The STO

system itself only works with reads and writes on an abstract level on these data types.

As an example, the authors present an increment-only counter. In a typical STM system, an incre-

ment would both read the counter and write to it the updated value, inevitably leading to conflicts. In

STO, however, since increment is an inherently commutative operation, it can be executed in concurrent

transactions without the need to abort any of them.

The STO library offers transactional versions of several data structures from the C++ STL, for general

purpose use; the implementation of other custom types is also available, but it is only targeted at advanced

developers, in contrast with the transactional boosting approach.

3.1.3 Delayed actions

Delayed actions [Diegues and Romano, 2015], as the name suggests, delay the execution of certain actions

until the transaction commits, where they can be executed sequentially to avoid unnecessary aborts.

However, this can only be applied to operations whose output is not read in the transactions where they

are executed.

For example, a global counter that logs the number of executed transactions could benefit from such

optimisation. The increment of the counter would only happen after the commit of the transaction and this

would not change the semantics of the application, as each transaction that would increment the counter

would not use the value itself for anything.

3.2 Database splitting techniques

In general terms, value-splitting is the process of dividing a single value into multiple variables, so that

multiple processes/workers are able to work in parallel without creating contention or causing conflicts.

The two techniques we analyse achieve this in different ways, in regard to their storage/assignment of

chunks and their internal adjustment to varying workloads. None of these techniques weakens consistency,

as parallel operations are allowed only as long as they commute and read operations always return the
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total current value.

It should be noted that we only consider non-negative integer values as our splitting target in this work,

despite these techniques also being applicable to other data types.

3.2.1 Multi-Record Values

MRV [Faria and Pereira, 2023] is a novel technique that aims to mitigate the performance penalties and

conflicts that arise in hot spots in distributed database systems. MRV does this by splitting contended

values across multiple records and then using random numbers to pick the record which will be accessed,

ensuring that the updates are uniformly spread.

The number of records designated to hold the value is dynamically adjusted according to the workload.

Thus, it is possible for the MRV to never merge back into a single value if the contention on it is high

enough. This does not pose a consistency problem, as MRV operations can be performed independently

of the number of records. To read the real value of an MRV, the transaction performs a sum of all partial

amounts.

There are two main insights presented, regarding the assignment and management of the records:

• Clients are not statically assigned to records. Instead, a random number is generated each time

a client wants to access the MRV. This ensures an even spread of accesses and avoids explicit

coordination between clients.

• The number used for looking up a record is different from the number used as key of the record.

Instead, the records are stored in a ring-like structure and a constant N is selected as the upper

bound for the number of records that can exist. In order to perform a lookup, the algorithm gener-

ates a random number and chooses the closest record that follows it, looping back to the beginning

in case it does not find any. This reduces overhead, as the number of existing records does not

need to be stored nor counted.

The paper presents three different implementation strategies: at the application level, as a middleware,

and at the database engine level. This last one enables the usage of Data Definition Language (DDL)

statements by the application and makes the underlying MRV implementation transparent.

In the application and middleware approaches, the transformation of a column C from a table T into

MRV is as follows: first, the original table is renamed to T_orig; then, the values from C are extracted

to a T_C table, split across several records; finally, a view is created from the join between the T_orig

and T_C tables, named T , like the original table. A before and after is exemplified in Figure 3. The
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primary keys of each table are in bold, with PK being the primary key of the original T table and RK

the identifier of a specific record of the MRV.

T_orig

PK

(remaining columns)

T_C

PK

RK

C

T (view)

PK

C

(remaining columns)
T

PK

C

(remaining columns)

Figure 3: Transformation of a value into a MRV.

As an example, we will show how an addition is performed using theMRV structure shown in Figure 4.

First, we pick a random integer in the [0, N − 1] interval. Then, we look up the first position with an index

that is greater or equal to our random integer. Upon finding a record, we can perform the addition as

normal. For instance, txn1 found a record on the exact position that it had randomly picked (ri = i = 11),

while both txn2 (ri = 3) and txn3 (ri = 7) needed to traverse the ring to find i = 5 and i = 8,

respectively.

0

8

5

1

9

txn1

txn2

txn3

N = 12

i = 0
i = 11

ri = 3

ri = 7

i = 8

i = 5

ri = 11

Figure 4: Example of a MRV lookup.
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Subtractions start out similarly to additions. However, upon finding an initialised record, we compare

the stored value to the one we subtract before performing the operation. If it is greater than or equal,

we can perform the subtraction as usual. If it is not, we keep looking up other records until either the

aggregated value on our looked up records is enough, resulting in a successful operation, or we loop back

to our starting record, resulting in an unsuccessful operation.

3.2.2 Phase Reconciliation

Phase Reconciliation (PR) [Narula et al., 2014] is a concurrency control technique for in-memory trans-

actions, targeting workloads where small subsets of items are subject to numerous updates. In addition

to numeric values, PR is also designed to work on more complex data structures, such as ordered tuples

and top-K sets, which, as we stated, we do not consider in this work.

Doppel, the PR database introduced in the same paper, cycles through three distinct execution phases:

the joined phase, the split phase and the reconciliation phase. Phase cycles are specific to single data

items, i.e. one item can be in a joined phase while another distinct item is in a split phase.

The joined phase uses a typical OCC protocol and allows any kind of transaction to be executed.

Once data contention reaches a level of unnecessary serial execution, the system switches to the split

phase. Records marked as “split” are divided between cores and only a reserved type of operation—the

one where contention was detected—is allowed to execute on these partial values; other types of operations

block their respective transactions until the record returns to the joined phase. Finally, the reconciliation

phase merges the values from the cores back into the global store and the cycle restarts.

In order to maintain correctness during the split phase, only a small subset of operations is avail-

able. When reconciling values, these operations must have the same result as if they were executed in a

sequential order.

Core 1

R W R W

Value

Core 0

(a) Joined phase.

Core 1

R WPW

Value

PW

Core 0

R W

Slice Slice

(b) Split phase.

Figure 5: Example of a PR write.
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As an example, we will show how an addition is performed using the PR object in Figure 5, in both the

joined and split phases. In the joined phase (Figure 5a), concurrent transactions on different cores access

the same value in memory, and can conflict when performing an addition (overlapping write sets). If a high

enough level of contention is reached, the value switches to the split phase (Figure 5b). While in the split

state, different cores have their own slice of the value and can issue “private” writes without conflicting

(the write sets no longer overlap). When the value undergoes the reconciliation phase, all private slices

are added back together.

Subtractions work similarly, but with the possibility of failing if the slice/value (in the split and joined

phases, respectively) does not contain a sufficient amount to subtract. This is in contrast to the MRV

approach, where it does not fail if a given slice is not enough when the value as a whole is, since the

subtraction can be performed over multiple slices.

3.2.3 Considerations

The design of both techniques does not pose have any significant obstacle to an adaptation to TM, as

their transactional nature fits in with TM. Thus, we consider that it is worth evaluating their applicability

to TM.

3.3 Profiling

Software profiling consists on the measurement of various metrics during a program’s execution with the

purpose of finding the hot path and possible optimisation targets.

3.3.1 General-purpose

There are several profiling tools available and widely used, such as the perf tool included in the Linux

kernel [The Linux Foundation]. Some of its alternatives include oprofile [Levon] and gprof [Graham

et al., 1982]. perf, in particular, shows stack traces of a program execution with perf report on the

terminal, as shown on Figure 6.

Flame graphs

Flame graphs [Gregg, 2011] are a different way of visualising stack traces, showing a hierarchical view of

function calls. An example can be seen on Figure 7. The x axis is in alphabetical order and does not reflect

the order in which functions have been called. The width of each bar is related to how many samples were
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Figure 6: Example of a report from perf.

collected in the respective function; i.e. the time spent inside the function. The y axis shows the stack

depth, indicating from bottom to top which functions called which.

[libc.so.6]
[libc.so.6]

[grep]
__libc_start_main
[libc.so.6]
[grep]
__mbrtowc
[libc.so.6]
[libc.so.6]
[libc.so.6]
[libc.so.6]
[libc.so.6]
[libc.so.6]

__tsearch
[libc.so.6]

[ld-linux-x86-64.so.2]
[ld-linux-x86-64.so.2]
[ld-linux-x86-64.so.2]

[ld-linux-x8..
[ld-linux-x8..
_dl_catch_ex..
[ld-linux-x8..

grep
[unknown]
[libc.so.6]
[libc.so.6]

Figure 7: Example of a flame graph.

Causal profiling

Curtsinger and Berger [2015] argue that typical profilers have limited applicability and are not useful for

finding significant optimisation spots. This is due to their type of analysis, which usually consists on the

report of time spent inside a function. A speed-up on a function that runs for a long time can be useless

if it runs alongside another function that takes equally long. The authors exemplify this with a function
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that draws a loading animation during a download; a speed-up on the drawing will not make the program

faster, since it is still limited by the download time.

With this in mind, they propose a new type of profiling called causal profiling, which indicates precisely

the lines of code that should be targeted for optimisations and quantifies their impact on the overall

performance of the program. This is achieved by virtually speeding up code, where pauses are inserted in

concurrent code. The key insight is that the slowdown has the same relative effect as running a specific

line of code faster.

3.3.2 Specific for STM

Ansari et al. [2009] proposed one of the first profiling frameworks for STM, built on the DSTM2 [Herlihy

et al., 2006] implementation. Some of the more important collected metrics are as follows: speed-up (how

it scales with different counts of threads), in transactions (percentage of time spent executing transactions),

wasted work (percentage of time spent executing transactions that aborted) and aborts per commit. In

addition, the paper introduced two new TM metrics: transaction execution time histograms (spread of the

duration of committed transactions) and instantaneous commit rate (percentage of committed transactions

at a given moment).

Zyulkyarov et al. [2010] presented new profiling techniques for TM, these being focused on finding

performance problems on the application using TM and not on the TM implementation itself. One of

the techniques, called conflict point discovery, identifies the code statements that were involved in a given

conflict, along with the context needed to know where the transaction was called from and which of the

involved transactions committed/aborted. In addition, it reports on all conflicting data inside a transaction,

not only on the first line where the conflict occurred.

Gottschlich et al. [2012] presented TMProf, a profiler with graphical capabilities for visualising how

transactions interact with each other. It also supports playback of replays from program executions, for

analysis purposes, and comparisons side-by-side for these executions, to measure the impact of applying

a given optimisation.

3.3.3 Energy profiling

Energy efficiency has become an important consideration in recent times, largely due to climate change

concerns. Thus, it becomes essential to not only measure software in terms of performance (throughput,

latency, etc.), but also in terms of energy consumption.

To perform these measurements, we can usually resort to power meters. They are either external or
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internal, but, for our purposes, we are only considering internal ones. These are power meters built into the

hardware itself, like on the Central Processing Unit (CPU) or the Graphics Processing Unit (GPU).

Through software APIs, they can provide raw measurements for the consumption of the component at

any given point in time. We found that the best supported platforms were the ones built by Intel (Running

Average Power Limit (RAPL)) and NVIDIA (NVIDIA Management Library (NVML)), for CPUs and

GPUs respectively.

There are several applications that make use of these hardware counters to provide a human-readable

measurement of energy/power consumption, such as Intel Power Gadget [Intel], nvidia-smi [NVIDIA, 2012],

PowerAPI/SmartWatts [Fieni et al., 2020], Scaphandre [Hubblo, 2023], turbostat [Brown], and others.
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Chapter 4

Contribution

This chapter presents the development of our value-splitting techniques on TM. We begin by defining our

approach and the main obstacles we faced when starting out our work. Then, we present detailed descrip-

tions of our developed programs/libraries, for both benchmarks and the splitting techniques themselves.

For the benchmarks, we present overviews of the features and targeted workloads. For the techniques, we

present the built architecture and reasoning behind every major decision, backed by empirical data.

4.1 Approach

Broadly speaking, our contribution consists of two major components: the implementation of value-splitting

techniques in a TM system and the creation of benchmarks to evaluate said techniques.

Starting with the implementation of the techniques, we first need to address the main challenges

inherent to their adaptation, as databases differ significantly from TM systems:

• Portability: Structured Query Language (SQL) is a widespread and well-established inter-

face for interacting with database systems, regardless of how the system itself is implemented

underneath. In the case of the MRV’s application/middleware level implementations, it allows for

a portable design of the MRV, capable of running on multiple systems. TM, in contrast, still has

numerous differing programming interfaces and not one “tried-and-tested” approach. This means

that our optimisations will have to be focused on a single TM system and will not work out-of-the-box

on other systems.

• Data access/management: Data in a database server can be accessed andmodified bymultiple

processes at the same time through the exposed database API. TM, on the other hand, runs on

the application’s own address space, restricting any kind of outside access. This means that any

kind of splitting needs to occur inside the application process and be connected to the TM system
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in order to fetch runtime statistics, like the abort rate for each contended value.

As we require a target TM system to evaluate the feasibility of our implementation, we outlined some

requirements it needs to meet:

• Be disjoint-access parallel (on word-based systems): This is crucial, since each split of the

value must be accessed without interfering with each other; otherwise, our optimisations will be

rendered useless.

• Is readily available and fully-featured: Most of the systems described in §2 are proofs-of-

concept, with implementations that are not either publicly available or are lacking in features needed

for the value-splitting techniques. Our system of choice should ideally work out-of-the-box for our

purposes.

Settling on Wyatt-STM [Hall] as our target TM system, we have implemented our adaptations as a

C++ 20 library. We initially tested the TM technical specification for C++, but we found the existing

documentation to be sparse and some required features were not implemented, such as explicit transaction

cancellation.

The usage of a profiler would help in identifying the parts of the code where we should focus our opti-

misations. Unfortunately, from what we gathered in §3.3, profilers made for TM did not gain any adoption

and research on the topic has mostly been dormant since 2012. The causal profiler Coz [Curtsinger and

Berger, 2015] has also not received updates in a while, along with missing support for recent distributions

of Linux.

4.2 Benchmarks

4.2.1 Microbenchmark

Our microbenchmark models the stock of a single product, subject to several singular operations by mul-

tiple clients. It is mainly built to highlight contention issues on transactional values. There is a thread per

client, that runs on loop for a fixed amount of time. On each iteration, the client starts a new transac-

tion where it randomly selects which operation it will perform on the product: a read, an addition, or a

subtraction. Each operation’s chance is determined by startup parameters on the microbenchmark.

As transactional workloads do not usually perform just one operation, we have extended the duration

of each benchmark transaction with a loop of computational work, both before and after the operation on
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the target object. Our aim is to represent the time that would be spent processing other tasks, as it occurs

in real-world workloads. Without this, we would effectively be measuring the time wasted on the creation

of the transaction itself, and not the time spent on useful work.

The main parameters of the benchmark are as follows:

• Clients: The number of concurrent threads that will run transactions.

• Duration: The amount of time (in seconds) that the benchmark should run for.

• Read percentage: The percentage of transactions that read the product.

• Time padding: The amount of wasted cycles in a transaction to artificially induce longer running

transactions.

• Scale: The ratio of subtractions per one addition. For example, a scale of 1000 makes the mi-

crobenchmark do one 1000 unit addition to the product per 1000 one unit subtractions.

As output, we return three different types of metrics:

• Throughput: The amount of committed transactions per second. We present individual through-

put counters for reads and writes.

• Abort rate: The ratio of transactions that have aborted to the ones that have been executed

(aborted plus committed), between zero and one. Each retry counts as a distinct abort.

• Average worker processing time: The amount of time between each worker iteration (workers

are specific to MRV and PR; more details on §4.3.1). Essentially, how much time it takes for a

background worker to perform maintenance on all objects of a given value-splitting type.

Throughout this chapter, we rely on slight adaptations of this benchmark to decide on specific imple-

mentation parameters of our value-splitting techniques. When otherwise stated, we default to the usage of

eight threads, five runs of 60 s each, a warm-up of 5 s, and a padding of 100000; we found these values

to be optimal with the TM system in question (details in §5.2). We also default to the hardware/software

configuration presented on §5.1.
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4.2.2 STAMP Vacation

Stanford Transactional Applications forMulti-Processing (STAMP) [Minh et al., 2008] is a bench-

mark suite for the evaluation of TM systems. It is extensive, covering a wide range of domains and work-

loads with its eight included applications, and versatile, being compatible with numerous TM designs. For

our tests, we have focused our attention on the Vacation application.

Vacation models a travel reservation system, implemented as a set of trees. These track customers

and their respective reservations. As per the qualitative assessment made by the authors in the paper,

Vacation is a low/medium contention workload with medium read/write sets andmedium-size long-running

transactions. Considering this, and that we consider value-splitting techniques to be a great fit for online

sale systems, we opted to pick Vacation as our only application from STAMP, due to time constraints.

The main problem with using any of the STAMP applications with our TM system of choice is that

STAMP is designed with word-based systems in mind. Even though it is built to be portable (it uses

macros for transaction delimiting), it does not fit in with the object-based approach of Wyatt-STM. With that

in mind, we had to port Vacation to Wyatt-STM ourselves, meaning we had to make some adjustments as

detailed ahead.

It is important to note that we decided to base our work on the C++ STL port of Kilgore et al. [2015],

instead of the original code in C. As that port uses standard C++ structures, it has allowed us to more

quickly get started with a working version of Vacation on Wyatt-STM.

Data model

The final schema, with our adaptations, is displayed on Figure 8. At the top, there is a manager struc-

ture (manager_t) that is responsible for storing all the system’s data, with each table implemented as a

map. Customers (customer_t) perform reservations on the three provided resources: cars, rooms, and

flights. The information about each reservation of a customer is stored in a set inside the customer itself

(reservation_info_t), which shares its id with reservation_t. This structure stores data related

with how many resources are available to be reserved and the current price for each one of them.

We have highlighted in blue the variables that have been turned into transactional objects, as is the

case for the manager maps (or “tables”, as they are called in Vacation) and the reservation_t counters.

The maps themselves use a coarse-grained approach, as the whole map is protected by Wyatt-STM; we do

not use transactional variables per element. We consider this to be the main limitation of our adaptation

and, with purpose-built Wyatt-STM transactional maps, this bottleneck could be avoided. However, such

data structures were out of the scope of this work.
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customer_t

+ id: long

reservation_info_t

+ id: long

+ price: long

+ reservationInfoList

*

<<enumeration>>
reservation_type_t

RESERVATION_CAR

RESERVATION_FLIGHT

RESERVATION_ROOM

NUM_RESERVATION_TYPE

+ type

1

reservation_t

+ id: long

+ numUsed: long

+ numTotal: long

+ price: long

<<abstract>>
splittable

+ numFree

1

+ flightTable

*

+ customerTable
*

+ carTable

*

+ roomTable

*

manager_t

id: long id: long id: long id: long

Figure 8: Vacation schema.

Our splitting target is the numFree variable of the reservation_t struct, as it was determined in the

MRV paper to be the most common cause of abort. Other variables were not considered due to the large

amount of numFree variables that exist in the benchmark; as we will detail ahead, our system ended up

overwhelmed even with the default amount of numFree variables that exist.

Parameters

Vacation allows for runs with the following custom parameters:

• -n: Number of queries per task.

• -q: Percentage of relations queried.

• -r: Number of possible relations.

• -u: Percentage of user tasks.

• -T: Number of total tasks.

• -t: Number of clients (threads).

There are two suggested configurations: low contention (-n2 -q90 -u98 -r1048576 -T4194304)

and high contention (-n4 -q60 -u90 -r1048576 -T4194304). We found the default relation count to be

much larger than our system could handle; we made the decision to reduce the count to one-thousandth

of the default (1048). This still presented issues in the value-splitting worker timing, as it is presented in

later sections of this chapter, but we considered that an even lower amount would deviate too much from

the original benchmark.
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Transactions

Clients in Vacation run one of the following tasks at any given time:

• Make a reservation: The client checks the price of -n items and reserves some of them.

• Delete a customer: The client computes the total cost of a customer’s reservations and then

removes it from the system.

• Add to the item tables: The client adds -n new items for reservation, where an item has a

unique ID number and can either be a car, a flight, or a room.

• Remove from the item tables: The client removes -n new items, where an item has a unique

ID number and can either be a car, a flight, or a room.

The tasks are picked based on the frequencies displayed in Table 1. The -u parameter defines the

percentage of transactions that do not operate on the tables themselves, just make a reservation.

Table 1: Frequency of Vacation transactions.

Transaction Frequency

Make a reservation U %

Delete a customer (100− U)/2 %

Add item to the item tables (100− U)/4 %

Remove item from the item table (100− U)/4 %

Implementation challenges

We faced several challenges in the adaptation of Vacation to Wyatt-STM, and, as such, some adjustments

were necessary.

One of the main differences lies on the data structures used to store all the travel system’s data. The

original C version used custom-built trees, which were replaced with std::map on the C++ port. There was

no functional loss there, as std::map uses a red-black tree underneath. However, our implementation

uses immer::map, which is instead an unordered mapping of values, since immer does not provide any

type of ordered maps. We analysed the code and determined that this does not pose a problem, as the

order of the values is not relevant to the overall operation of the travel system.
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The STL port uses a TM system based on the original GNU (not to be confused with the C++ TM

draft proposal, which was later also implemented by GCC). Listing 4.1 presents the conversion of the

customer deletion transaction, to highlight some differences between the original system and Wyatt-STM.

Listing 4.1: Conversion of a Vacation transaction to Wyatt-STM.

1 bool done = true;

2 while (1) {

3 __transaction_atomic {

4 long bill =

managerPtr->queryCustomerBill(customerId);↪→

5 if (bill >= 0) done = done &&

managerPtr->deleteCustomer(customerId);↪→

6 if (done) break;

7 else {

8 assert(0);

9 __transaction_cancel;

10 }

11 }

12 }

1 WSTM::Atomically([&](WSTM::WAtomic& at) {

2 bool done = true;

3 long bill =

managerPtr->queryCustomerBill(at,

customerId);

↪→

↪→

4 if (bill >= 0) done = done &&

managerPtr->deleteCustomer(at,

customerId);

↪→

↪→

5 if (!done) WSTM::Retry(at);

6 });

The first major change is reflected on transactional accesses. Wyatt-STM requires the usage of the

WAtomic object (created by the transaction) to access and modify transactional variables; it is not possible

to read or write to a transactional value outside of a transaction. On the other hand, the STL port does

not provide any annotation mechanism to indicate that some variables should only to be used inside of

transactions. Like with locks, care must be taken to avoid data races on these objects.

The other major change is in terms of control flow. Wyatt-STM’s transactions are enclosed in function

objects, which makes the break on line six of the original implementation useless. By using the Retry()

method of Wyatt-STM, we can directly force a transaction to restart whenever it is unable to complete,

without needing an explicit loop.

4.3 Implementation

4.3.1 Common implementation details

Both MRV and PR share key characteristics, as they are both value-splitting techniques. Therefore, in

our implementation, we have opted to build a shared core between the two. Our value-splitting interface

specifies the following operations, with the respective code in Listing 4.2:

• read: Fetches the entire value.

• add: Takes a value and adds it.
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• sub: Takes a value and tries to subtract it. It can fail if the stored value (minuend) is smaller than

the taken one (subtrahend).

Listing 4.2: Interface for value-splitting objects.

1 class splittable {

2 public:

3 auto virtual read(WSTM::WAtomic& at) -> uint = 0;

4 auto virtual add(WSTM::WAtomic& at, uint value) -> void = 0;

5 auto virtual sub(WSTM::WAtomic& at, uint value) -> void = 0;

6 };

All operations take an WAtomic object by reference, which enables the use of the value-splitting objects

on Wyatt-STM transactions and promotes composability. Initially, we planned on having the sub operation

return a boolean value, to indicate whether the subtraction was successful or not. However, Wyatt-STM

uses exceptions for control flow, namely for transaction cancellation. As such, if the subtraction fails, it

will throw an exception.

We use various functional immutable data structures from the immer library [Puente, 2017]. Updates

can be done efficiently and safely by creating a new instance that shares the physical representation of

previous content. Therefore, they lend themselves quite well to concurrent scenarios and, in the particular

case of transactional memory, to rolling back transactions on complex data structures.

Since our main goal is to study the feasibility of value-splitting techniques in TM systems, we have

not evaluated every implementation strategy presented in the MRV and PR papers. Instead, we chose

“good enough” defaults, and, where applicable, it will be stated in this dissertation what those defaults

are, along with the explicit deviations that were made from the original research.

It should be noted that our implementations do not account for overflows. That is, in C++, unsigned

integer arithmetic has a defined behaviour of wrapping around, e.g. adding one to the maximum value

(UINT_MAX) results in zero. Our library does not check for situations where this might occur, which means

that a value split into multiple chunks can silently wrap around when chunks are merged together.

Chunk alignment

CPUsmake use of their integrated cache to minimise latency in memory accesses. When the CPU needs

to fetch something from memory, it first checks if it is already in cache. If it is not, it fetches an entire cache

line worth of contiguous data—usually 64 bytes—containing the data that was requested by the program

(and more). In multithreaded code, when a thread writes to any position on the cache line, it invalidates
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the whole cache line for the other threads on different cores. Thus, two threads can modify two distinct

elements on the line and end up forcing cache updates to maintain cache coherency, hindering overall

performance. This issue is known as false sharing.

A common solution for false sharing involves the usage of an explicit memory alignment, such as forc-

ing one shared object per cache line. C++ offers std::hardware_destructive_interference_size

since C++ 17, a built-in constant that specifies the cache line size in bytes. Combined with the alignas

specifier, the alignment of an object can be determined at compile-time, based on the hardware being

used to compile the code. Listing 4.3 demonstrates how two contiguous atomic variables in a struct avoid

false sharing with the usage of the aforementioned technique.

Listing 4.3: Specifying an explicit alignment for variables in C++.

1 struct counters_t {

2 alignas(std::hardware_destructive_interference_size) std::atomic<unsigned int> first;

3 alignas(std::hardware_destructive_interference_size) std::atomic<unsigned int> second;

4 };

Our implementations use vectors to store the chunks of value-splitting objects, each chunk being

represented by a transactional variable. This could lead one to think that we are susceptible to false

sharing. However, the Wyatt-STM’s underlying implementation of transactional variables uses shared

pointers, which makes it impossible to make any assumption about how the values—that the pointers

point to—are organised on the heap, if they are contiguous or not. Therefore, we most likely do not need

to account for the possibility of false sharing in our implementations.

To confirm our hypothesis, we ran some tests to measure the impact of explicit alignment on transac-

tional throughput. The first results (Table 2) use std::hardware_destructive_interference_size

as the alignment value. We also present results with a hard-coded alignment of 64 bytes (Table 3), since

C++ erroneously assumed a size of 256 on our testing machine. We verified on the Operating System

(OS) that the cache line size was, in fact, 64 bytes, using the “getconf LEVEL1_DCACHE_LINESIZE”

command.

The tables indicate a throughput measurement in writes per second, with an additional column indi-

cating the difference in performance obtained from using explicit alignment.

The test consists in the successive increment of transactional variables, stored contiguously in a vector.

Each thread acts exclusively on a variable assigned to it, as we aim to simulate a false sharing scenario.

We measure performance using two distinct vector implementations: flex_vector, from the immer
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Table 2: Transactional throughput (writes/s) with and without explicit alignment, for 256 bytes.

immer::flex_vector std::vector

Threads Non-aligned Aligned ∆% Non-aligned Aligned ∆%

1 12 796.0 12 796.4 0.00 12 796.0 12 797.0 0.01

2 25 447.4 25 467.4 0.08 25 461.2 25 473.0 0.05

4 50 688.2 50 815.0 0.25 50 804.0 50 845.0 0.08

8 86 221.6 90 493.8 4.95 88 372.8 84 064.2 −4.88

16 42 129.4 41 703.6 −1.01 40 971.4 37 935.2 −7.41

32 25 341.2 25 301.6 −0.16 25 520.8 24 534.6 −3.86

64 9679.4 10 329.4 6.72 9785.8 9068.4 −7.33

128 5438.8 3919.8 −27.93 4291.6 6010.8 40.06

Table 3: Transactional throughput (writes/s) with and without explicit alignment, for 64 bytes.

immer::flex_vector std::vector

Threads Non-aligned Aligned ∆% Non-aligned Aligned ∆%

1 12 796.0 12 795.6 0.00 12 796.0 12 794.6 −0.01

2 25 447.4 25 476.2 0.11 25 461.2 25 471.4 0.04

4 50 688.2 50 493.4 −0.38 50 804.0 50 753.8 −0.10

8 86 221.6 89 556.2 3.87 88 372.8 88 122.6 −0.28

16 42 129.4 44 465.0 5.54 40 971.4 44 822.4 9.40

32 25 341.2 25 792.8 1.78 25 520.8 24 598.8 −3.61

64 9679.4 10 292.0 6.33 9785.8 10 240.4 4.65

128 5438.8 5232.4 −3.79 4291.6 4688.0 9.24
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library, and vector, from the C++ STL. These were picked due to their usage on our value-splitting

implementations (MRV and PR, respectively).

Since flex_vector is an immutable data structure, we were not able to store the transactional

variables directly in it, as we would not be able to modify them. Instead, we stored them inside shared

pointers, which could be then stored inside the vector as they would not change, only the values that they

point to. std::vector has no such limitations and, therefore, we did not use pointers in it, allowing us

to avoid the additional level of indirection.

Both tables let us conclude that there is not a substantial (positive) difference between using and

not using cache line alignment, indicating the absence of false sharing for both vectors. In the lower

thread counts (up to four), the difference is under 1%, which we could consider inside the margin of error.

Above that, and notably in the higher thread counts, we verify a larger discrepancy in throughput, both

positive and negative, but nonetheless not results we can expect from solving a false sharing situation.

False sharing would become noticeable even with only two threads. Thus, we have opted not to specify a

custom alignment for our transactional variables.

Managers

Our MRV and PR implementations are independent of each other, but both follow a similar architecture

(Figure 9). At the top level, there is an object manager, which is a singleton that stores pointers to all the

active objects of its respective type. These are used by the manager’s workers, the ones responsible for

periodically adjusting the values to the running workload. The pointers are all contained in an immutable

immer map, so that worker threads are able to traverse through all the objects without causing conflicts

with the concurrent additions/removals that result in a new instance.

Objects

Manager

Workers

make periodic
maintenance

Transactions

execute
operations

log transaction
statuses

Figure 9: Generic architecture for both techniques.

Our workers run in loop from the moment they are instantiated: they sleep for a fixed amount of time,

iterate through all the registered objects, perform their maintenance on them, and start again. Despite

being single-threaded, they make use of task distribution across multiple threads. The std::for_each

function, built into the C++ STL, lets developers specify the execution policy of the loop (e.g. sequential or
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parallel). For our purposes, and since our loop iterations are independent (each iteration does not depend

on the results from previous iterations), we have picked std::execution::par_unseq as our execution

policy. This way, we do not need to worry about creating the right amount of threads for the amount of

objects we have to manage, as the function automatically distributes the workload in a balanced manner.

Moreover, the implicit barrier on the loop guarantees us that no two threads are able to perform the same

type of maintenance on a given object at the same time, as the worker only exits the loop body when all

the threads are finished. Concurrency control is achieved with transactions on each maintenance task,

which are started whenever the need to modify a transactional variable arises.

Abort/commit counters

To track contention on our objects, each operation logs its status upon abort or commit. For our purposes,

an abort is registered whenever a transaction fails to commit, e.g. due to read/write conflicts on the

same MRV partition or running out of stock on a PR partition. This includes retries, which would make a

transaction that retried N times before committing count as N aborts.

The aborts/commits are stored as a single 32-bit atomic unsigned integer, as shown in Figure 10,

where its 16 most significant bits are designated for the aborts and the 16 least significant bits for the

commits.

#aborts #commits

01531

Figure 10: Atomic counter for transactional statuses on a MRV object.

For PR, since there is the need for additional data, we use a 64-bit atomic variable instead. As shown

in Figure 11, there are two new counters: aborts for no stock, which tracks how many of the aborts

have been caused by no stock, and waiting, which tracks how many transactions are waiting for a phase

transition (e.g. trying to read the value while in a split phase).

#aborts #aborts_for_no_stock

01531

#commits #waiting

4763

Figure 11: Atomic counter for transactional statuses on a PR object.

This approach allows us to reset both counters atomically, without the need for additional synchro-

nisation mechanisms like locking or TM, which would incur unnecessary overhead. We guarantee that

the manager’s workers always read consistent values, e.g. it is impossible for the PR worker to observe
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non-zero aborts for no stock while also reading zero aborts. These counters are updated with the code

shown on Listing 4.4.

Listing 4.4: Updating the transaction status counters.

1 at.OnFail([this]() { this->add_aborts(1u); });

2 at.After([this]() { this->add_commits(1u); });

Both OnFail() and After() methods are provided by the WAtomic object of Wyatt-STM. They allow

for the registration of a function to be executed upon commit failure or success, respectively.

4.3.2 Multi-Record Values

The underlying data structure of our MRV implementation is an immutable immer vector of transactional

integers—the splits. Making the vector itself immutable is the key to letting it be shared between threads.

Since our transactions can, at times, traverse the entire vector (in read operations, for example), we

needed a way to let a thread be able to iterate through all the splits while another thread added/removed

some to/from the vector. The transactional integers escape this immutability, since they are not reas-

signed, instead they are only internally mutated. To add/remove splits, an updated copy of the vector is

made, with the new changes applied. The immer library allows for the use of this functional approach

without taking a substantial performance hit.

The second key insight of MRVs, which was to decouple the lookup numbers from the record keys,

was not considered in our implementation. Due to the internal structure of our adaptation, the total

number of splits is known—the vector needs it—and can be accessed at no extra performance cost. Every

element of the vector is also filled with an available transactional variable, making each lookup exact and

not approximate like the original implementation.

MRVs require two background workers, named adjust and balance. The adjust worker manages the

dynamic growth and shrinkage of the MRV, which means that, depending on the workload, elements

are either added or removed. Care is taken to perform updates on elements being removed, in order to

force conflicts with concurrent application threads. The balance worker evens the values stored in the

splits in order to reduce contention, namely, to avoid subtract operations from acting on the same splits.

Balancing naturally causes conflicts with concurrent threads accessing the same elements, thus ensuring

consistency. Our workers follow the same periods as the original adjust and balance workers, which are

1000ms and 100ms, respectively.
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The original paper evaluated the impact of different window sizes, that is, the interval of time that

workers considered for measuring contention (e.g. a window size of 1 s would make the workers take in

consideration only the aborts/commits that occurred in the last second). We opted to discard this concept

of windows and instead consider all the information that followed the last fetch. That is, we have simple

counters for the total number of aborts and commits, and they are reset every time the workers fetch the

data. In our case, only the adjust worker needs this data, so it is reset every 1000ms.

Random number generation

MRVs rely on random numbers to decide which of the splits is going to be picked for a value. Thus, it is

important that the used Random Number Generator (RNG) adheres to the following properties:

• Follow a uniform distribution: All values in the specified range of theMRVmust have an equal

(or near equal) chance of being picked, in order to avoid contention on specific splits.

• Be thread independent: Since random number generation is a common operation, the RNG

must be fast and should not rely on thread synchronisation mechanisms. Our target with theMRVs

is to promote independent work among threads as much as possible.

• Use different seeds per thread: In case of a deterministic RNG, the initial seeds that are

picked on each thread must be different. Otherwise, all threads will generate the same sequence

of numbers and end up competing for the same splits.

It should be noted that, for our purposes, achieving true randomness is not necessary. The opti-

mal RNG is one where threads collide as little as possible, while not leaving any of the splits unused.

Each one of the three presented points can be achieved with the built-in C++ library: uniform distribu-

tion is available through std::uniform_int_distribution; thread independence is obtained by using

a RNG per thread, with the thread_local keyword; different seeds per thread can be acquired with

std::random_device.

Listing 4.5 shows the implementation of our random index after applying the aforementioned in-

sights. For the moment, let us assume the usage of a templated RNG. The generator is stored in a

static thread-local variable, so that it is only initialised once and each thread has its own. We chose

std::random_device as our seed, despite having an implementation-defined determinism. Preliminary

tests proved this to be effective on our machine of choice, so it remained as our pick. Finally, we feed the

generator to a uniform distribution, resulting in a random integer.
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Listing 4.5: Implementation of the RNG.

1 template <typename T>

2 auto random_index(size_t min, size_t max) -> size_t {

3 static thread_local T generator(std::random_device{}());

4 std::uniform_int_distribution<size_t> distribution(min, max);

5 return distribution(generator);

6 }

The missing piece, then, is the RNG itself. The C++ STL provides three different engines: linear

congruential (minstd), Mersenne Twister (MT), and subtract with carry (RANLUX). In addition, we also

consider in this work the Xoroshiro/Xoshiro [Blackman and Vigna, 2021] family of engines, due to their

popularity. Of all these engines, we want to aim for the highest throughput one.

To measure this, we adapted our microbenchmark to repeatedly invoke the random_index() function

on multiple threads at the same time, with no padding whatsoever. The results are as follows in Figure 12.

As we can observe, all engines scale quite well up to 32 threads, with Xoshiro getting a small but noticeable

lead. On the highest thread counts (64 and 128), the results become more inconsistent, but Xoshiro gets

the overall best performance. Thus, it will be used for all remaining tests.
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Figure 12: Throughput comparison of different RNG engines.

Besides throughput, quality is another important aspect in the decision of a RNG engine. However,

since it is a complex topic and out of the scope of this work, we will be setting it aside. We analysed the

output of all the engines using density plots and deemed them uniform enough for our purposes.

Internal chunk storage

As we have mentioned, our implementation of MRV uses the flex_vector structure from the immer

library to store the chunks of a value. Since this vector incurs additional costs to enforce efficient im-

mutability, we decided to test its lookup performance and observe how it compares to the C++ built-in
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vector. Our results are presented in Figure 13.
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Figure 13: Write throughput on different vectors.

The test consists in the successive increment of transactional variables, stored contiguously in a vector.

Each thread acts exclusively on a variable assigned to it, in order to avoid transactional conflicts. We

performed tests for three distinct cases:

• immer::flex_vector: What we use on our implementation, due to its immutability. Its elements

need to be copyable and can only be accessed through constmethods, therefore forcing us to add

a level of indirection (with shared pointers) to maintain mutability within the transactional variable

itself.

• std::vector: The baseline case, a standard vector from the C++ STL.

• std::vector (w/ pointers): The same as std::vector, but with the additional level of indirection

applied to immer::flex_vector; works as an intermediate case between the two.

We can observe that performance is identical in all cases. From this, we conclude that flex_vector

itself is not a bottleneck, not at least in terms of lookup operations. We could also perform comparisons

with vector insertions and deletions, but std::vector cannot be used in the Wyatt-STM’s transactions as

it is. Transactions can sometimes restart and, with that, repeat operations several times. Non-idempotent

methods, as is the case of pushing to a vector, would yield incorrect results. We could use the built-in

vectors as immutable vectors, but that would severely hinder performance due to all the required copies

on every vector update, something that immer is able to avoid.

Adjust worker

The number of records a given MRV object should have is determined by the abort rate of its operations.

Like in the original work, the adjust worker is guided by a minimum and goal abort rates. Our target
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is to keep the abort rate in the interval of the two. To achieve that, we add records when the rate is

above the goal and remove when it is below the minimum. Too few records and we would have unneeded

contention; too many records and we would have an unnecessarily large memory footprint, along with

balancing issues.

To determine how many nodes we need to add, we use the following formula, based on the original

implementation:

min(round(1 + size× abort_rate),max_nodes− size)

The left-hand side of themin allows for a quick/slow growth of the number of records, depending on

the observed abort rate, while the right-hand side lets us limit the maximum number of records on every

object, to avoid infinite growth. The removal of nodes is done one at a time, to minimise the impact on

other running transactions.

We have mentioned the usage of immer due to the thread-safety guarantees it offers. However, we

have glossed over the only non-thread-safe operation it exposes: variable assignment. Assignment is how

we are able to update the splits’ vector and store it in the same original variable, allowing the propagation

of changes to other threads. It is clear that we need to protect access to the vector to let the worker perform

the adjustments correctly, but we also must take care to not disrupt other running transactions.

The logical first step is to employ the transactional system we are already using. However, placing the

vector inside a transactional variable would severely impact performance, as it would conflict with every

single running transaction. This is particularly undesirable for record additions, as they do not logically

interfere with any existing record. Record removals interact with (at most) two existing records: the one to

be removed (the last on the vector, as it is the easiest to remove) and a random one from the remaining,

to absorb the contents of the removed one (in case it contains a non-zero value).

As a consequence, in order to achieve high levels of performance, we have disregarded the usage of

transactions and resorted, instead, to atomic variables. By using a std::atomic<std::shared_ptr>,

we enable other running transactions to progress while vector adjustments are being performed. When an

operation starts on a MRV, it fetches the current version of the vector. Since we have the guarantee that

the vector is immutable, we do not need to worry about concurrent modifications causing errors during

the program execution.

With atomics, we are able to add new records to the vector without any kind of transaction. Our worker

design, as detailed previously, guarantees us that, at any given time for a given object, only one thread is

performing an adjustment task. Therefore, and also considering that the adjustment is the only operation

that mutates the vector itself, we can (i) safely load the vector, (ii) add however many records we deem
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necessary, and (iii) store it again in the atomic pointer. No other thread has modified the vector in this

interval, and therefore we are able to avoid the usage of mutual exclusion for this whole section. Once the

atomic pointer is synchronised throughout all the threads, other transactions will be able to use the new

records.

On the other hand, the removal of a record requires a more intrusive approach. When removing a

non-zero record, we need to transfer its value to another record. As we need to operate on transactional

variables to perform the transfer—and force conflicts on transactions that are operating on our removal

target—we have no other option but to start a transaction. We can load the vector and create the new

updated version before the transaction starts, ensuring that, even if the transaction restarts, we do not

repeat the removal from the vector. One benefit of loading the pointer to the split a priori, if the transaction

restarts after storing the atomic pointer to the vector and other transactions read from the vector, is that they

will not be able to fetch the split that we removed. A simplified version of the final function is demonstrated

in Listing 4.6.

Listing 4.6: Simplified function for a MRV record removal.

1 auto mrv_flex_vector::remove_node() -> void {

2 auto splits = *std::atomic_load(&this->splits).get();

3 auto size = splits.size();

4

5 // Fetching these values here saves time on the transaction (and avoids consistency issues).

6 auto last_split = splits[size - 1];

7 auto absorber = splits[utils::random_index(0, size - 2)];

8 auto new_splits = std::make_shared<splits_t>(splits.take(size - 1));

9

10 WSTM::Atomically([&](WSTM::WAtomic& at) {

11 auto last_split_value = last_split->Get(at);

12

13 // This ensures that other threads reading/writing to the last split will conflict.

14 last_split->Set(0, at);

15

16 // Perform a transfer to the absorber, if the last split contains a positive value.

17 if (last_split_value > 0) absorber->Set(absorber->Get(at) + last_split_value, at);

18

19 // It does not matter if this store is repeated, in case the transaction restarts.

20 // In effect, it is idempotent, as the `new_splits` variable was created outside

21 // of the transaction.

22 std::atomic_store(&this->splits, new_splits);

23 });

24 }

The original work uses a minimum abort rate of 0.01 and a goal of 0.05. Our preliminary tests

showed this to be too restrictive, as it led to the creation of unnecessarily large amounts of records and,
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consequently, lower overall throughput. As an alternative, we relaxed the ideal abort rate interval to 10

times the original, with the minimum and goal now being 0.1 and 0.5, respectively. Results for the mi-

crobenchmark and Vacation are displayed in Figures 14 and 15, respectively. The balance worker was

disabled for these tests to isolate the adjust performance.
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Figure 14: Microbenchmark results for different abort rate targets.

The microbenchmark results demonstrate the stark difference between the two abort rate settings. At

the expense of an (expected) overall higher abort rate, the relaxed settings provide much higher through-

puts, both in reads and writes. The adjust time graph confirms our initial findings, that there were too

many records being created. With the relaxed settings, the adjust worker takes less time performing ad-

justments as it does not need to perform as many. In any case, since this test only contains one MRV

object, the adjust time is well below the defined interval time, which is denoted by the dashed red line.

Results from the Vacation benchmark, using the high contention configuration, do not exhibit such

distinct behaviour. There is, nonetheless, a clear advantage in terms of adjustment time. The original

abort rate parameters make the worker exceed the adjust time interval at 32 clients, while the relaxed

settings only make it trespass at 128 clients. Surpassing the time interval means that the worker will work

non-stop, as the next batch of adjustments will already be queued by the time the worker finishes a round

of adjustments.

Considering the results obtained from both benchmarks, we concluded that the best approach for the
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Figure 15: Vacation (high contention) results for different abort rate targets.

adjust worker was to apply the relaxed settings. Thus, moving forward, we assume this strategy for all

MRV tests.

Balance worker

Due to the random nature of MRV writes, splits can become unbalanced over time—that is, some splits

can end up holding a majority of the total value, while others have near-zero counts. The process of

balancing consists of (i) picking a certain amount of splits, (ii) combining their values, and (iii) dividing the

sum equally among them.

The original paper proposes four different strategies to balance records:

• None: The worker does not do anything; no records are affected. This will serve as our baseline.

• Random: The worker picks two random records from the entire set to balance.

• Min-max: The worker picks the largest and smallest values of the set to balance the two of them.

• All: The worker balances all values of the set.

Like in the original implementation, we have applied a small optimisation to random and min-max: if

the values of the two chosen records are close enough (up to a difference of five units), we do not perform

the balance and no changes are applied. This way, we avoid making unnecessary balances that would

hinder overall performance.

To determine the optimal balance strategy, we used both our microbenchmark and STAMP Vacation.

These present two significantly different workloads: the microbenchmark only contains a single value

where all threads act upon, creating a substantial level of contention, and Vacation has a large set ofMRV
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objects where client threads are dispersed throughout, creating contention at the worker level since it has

to manage a considerable amount of values.

We decided to disable the adjust worker for these experiments and test with fixed amounts of records

perMRV, to isolate balance performance for differentMRV sizes. The results are presented in Figures 16,

17 and 18.

In regard to the microbenchmark, Figure 16 displays results for a write-only workload (0 % reads), while

Figure 17 presents a mixed workload (50 % reads).
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Figure 16: Microbenchmark (0% reads) results for different balance strategies.

Overall, we were surprised with the outcome. Both microbenchmark scenarios demonstrate that our

balancing algorithms do not help in terms of performance when compared to not performing balances,

even causing a negative impact in some cases. Min-max and all prove to be too expensive to perform, with

balancing times nearing or surpassing the expected balance interval for higher record counts (Figures 16c

and Figure 17d). Considering that the microbenchmark only has one single value, the processing times

are clearly not suited for more realistic scenarios, with multiple MRV objects in memory; this is the kind

of scenario Vacation tests. This balancing delay is reflected on the write throughput (Figures 16a), where

we see a significant drop at 32 records on the write-only workload. Random, being the only algorithm that

does not scan the entire MRV, is able to sustain a very low balance time and performance on par with

using no balancing. It is worth noting that the balance time for higher record counts in Figure 16c maxes

out at 60 s since the test only runs for 60 s.

In regard to the Vacation benchmark, Figure 18 presents results for the high contention parameters.

As with the microbenchmark results, we again observe that no balancing algorithm has better performance

than performing no balancing. Figure 18c shows the balance worker lagging behind the expected balance

time interval, due to the higher number of objects it has to manage. No balancing algorithm is able to stay
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Figure 17: Microbenchmark (50% reads) results for different balance strategies.

in the specified balance interval at any record count. Except for all, which takes a longer time to finish the

benchmark, all balance strategies perform identically.

Considering the results obtained from both benchmarks, we concluded that the best approach for the

balance worker was not to use it. Thus, moving forward, we assume no balancing for all MRV tests.

4.3.3 Phase Reconciliation

PR, due to its phase shifting nature, has a different internal structure depending on the phase. When the

object is in the joined phase, it consists of a single transactional integer. When it is in the split phase, it

consists of a vector of transactional integers, each exclusive to its assigned thread. We use a transactional

boolean to indicate the object state, if it is in a split or joined phase. Since all transactions that operate on

the object need to fetch this boolean, a phase change will conflict with all running transactions and force

a restart.

PR has only one background worker, responsible for triggering phase transitions on the objects. Every

20ms, as in the original paper, the worker fetches the current metadata and decides whether to transition

or not.

One downside of PR is the static thread allocation. In particular, in our implementation, threads must
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Figure 18: Vacation results for different balance strategies.

register themselves with the PR system before any operation is executed and cannot be later unregistered.

By comparison, MRVs are not bound to the number of threads that are interacting with them, allowing

for more flexible workloads.

Phase worker

Phase transitions occur as detailed in §3.2.2. Note that the reconciliation phase is not treated as an

explicit state in our implementation, since the split phase transitions directly into the joined phase within a

single transaction, avoiding consistency issues. Reconciliation is triggered similarly to the adaptation used

in theMRV paper [Faria and Pereira, 2023]: it can happen if there is any client waiting (e.g. a client tried

to perform a read and is now blocked until the joined phase) or if there was any abort due to no stock

(zeroed counter).

The short transition interval (20ms), combined with the aforementioned reconciliation triggers, means

that our worker must be responsive and able to transition objects that have a pending phase switch. This

is a crucial factor for PR, even more so than with MRVs, since client threads can be blocked on certain

operations while the phase is not switched. No MRV operations require real-time worker intervention,

which enables client threads to progress despite slow workers and not ideal MRV parameters.

We have applied our benchmarks to determine how the phase worker performs, with results demon-

strated in Figure 19. The red dashed line represents the phase worker interval (20ms); the worker should

not surpass it in order to keep a responsive operation.

On the microbenchmark (Figure 19a), regardless of the read percentage, the worker is able to keep up

with the phase transitions in time. Considering the benchmark only acts on a single value, it is essential

that the obtained time is well below the limit, to enable high object counts.
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Figure 19: Phase transition intervals.

On the Vacation benchmark (Figure 19b), we present results for both high and low configurations. In

both workloads, it is clear that the phase worker lags behind the target. In practice, this means that client

threads waiting on a phase transition (e.g. the object is in split phase and a client want to read the value)

will freeze for longer, while the worker processes other objects. The low contention configuration has a

higher phase transition time due to its necessity of having more transitions; the higher contention workload

can make the objects function for longer on the split phase.

There is no clear solution for this phase transition delay. The worker must check for phase switches

at a regular interval, as it is the core of how PR works. The conflict-inducing nature is also inherent to PR,

as a phase transition requires the modification of the value as a whole.
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Chapter 5

Evaluation

This chapter presents an evaluation of the value-splitting techniques with the developed benchmarks. First,

we detail the test environment used for this evaluation, along with a study conducted to determine the ideal

test parameters. Then, we present the main performance evaluation, using our benchmarks. We evaluate

both throughput and abort rate, to determine the viability of using value-splitting in TM systems. Finally,

we also present an energy consumption analysis of several selected benchmark scenarios.

5.1 Test environments

We defined two distinct test environments for our evaluation, each one with a different purpose. The

performance tests were all executed on the following ARM machine, due to its high core count:

• CPU: 2x HiSilicon Kunpeng 920 (ARM)

• RAM: 8x 32 GB DDR4 2666MT/s

• OS: Rocky Linux 8.7

• Kernel: Linux 4.18.0

• Compiler: gcc 12.2.1, with flags -O3 and -march=native

Each one of our Kunpeng CPUs houses two Non-Uniform Memory Access (NUMA) nodes of 32

cores each, with no Simultaneous Multithreading (SMT) capabilities. Therefore, in total, the system

contains 128 logical processors. As such, we limited the maximum thread count for our tests to 128.

Ideally, the energy consumption tests would also be performed on this machine. However, as the

profiling tools we have researched do not target ARM processors, we were forced to employ different

hardware. Thus, we used a laptop with the following configuration:
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• CPU: Intel Core i5-5300U

• RAM: 8 GB DDR3 1600MT/s

• OS: Arch Linux (rolling release), last updated on 14/08/2023

• Kernel: Linux 6.4.8

• Compiler: gcc 13.2.1, with flags -O3 and -march=native

This CPU contains only four logical processors, a significantly inferior count when compared to the

other test environment. Despite this, we still considered worthwhile the analysis of the obtained results.

5.2 Optimal parameters

We created our first experiment with the goal of determining the optimal number of clients (threads that

run transactions) for our tests, using our microbenchmark. The results are presented in Figures 20 and

21, for write-only and mixed workloads, respectively.
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Figure 20: Pure write workload with variable number of clients.

In a pure write scenario (Figure 20), PR has the best overall performance of the three, due to static

thread assignment. Since the test only performs additions and no reads, the object can stay in the split

phase, and each client can effectively work independently of the others. Overall, MRVs do not fall too

far behind—save for the four and eight client tests—while also delivering better performance compared to

the baseline case. The single-value approach does not scale as transactions are not able to concurrently

update the object, as otherwise we would have data inconsistencies due to read/write conflicts. This is

made clear in Figure 20b, where the single abort rate increases as the number of clients increases. Both
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value-splitting techniques significantly reduce the abort rate, with PR nearing a 0 % rate due to its split

phase. It should be noted that for two clients, we observe a similar behaviour between single and PR,

since the PR object stays in the joined phase.
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Figure 21: Mixed (50 %) workload with variable number of clients.

The mixed workload1 in Figure 21 shows the inherent limitations of PR. Since half of all transactions

perform a read on the value, the system must be on the joined phase to be able to execute them. Taking in

consideration that any phase transition conflicts with every single running transaction, it becomes clear that

the constant switching between phases proves detrimental to overall system performance. Comparatively,

MRVs are able to maintain a small but substantial lead, both in throughput and abort rate.

In summary, the most interesting (and overall best) results are obtained with only eight clients. There-

fore, this will be our target for the remaining tests.

The padding we mentioned before is a simple loop of successive additions to a local variable not used

elsewhere. We have used a value of 100k iterations on the previous test, which we found to be a large

enough amount without too big of an impact in performance, as shown in Figures 22 and 23.

Value-splitting is useful independently of the transaction length, but evenmore so on long-running ones.

Beyond the 100k mark, the TM system shows its limitations and the throughput of all the implementations

drops significantly.

1 Despite being a mixed workload, we have opted to show only the write graph, since the read one is identical.
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Figure 22: Pure write workload for eight clients with a variable amount of padding.
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Figure 23: Mixed (50 %) workload for eight clients with a variable amount of padding.
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5.3 Performance evaluation

5.3.1 Microbenchmark

We will start by analysing the microbenchmark results, using a variable read percentage to understand

how the different value-splitting techniques adapt to different workloads. As stated in §4.2.1, we ran the

test with eight threads, five runs of 60 s each, a warm-up period of 5 s, and a padding of 100k. Results

are presented on Figure 24.
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Figure 24: Microbenchmark results.

As expected from the previous section, in pure write workloads, both value-splitting techniques have

a major performance improvement over the baseline code in terms of throughput (Figure 24a). However,

as reads are introduced into the workload, the PR write performance drops by a significant amount, even

falling below the baseline, as frequently switches back and forth between joined and split phases. With a

share of at least60 % read operations, it stays in the joined phase and effectively defaults to a single value.

MRV, on the other hand, is able to keep well above Single performance up until the 80 % mark, when it

also effectively defaults to being a single value.

In terms of read throughput (Figure 24b), we can observe a similar behaviour as for write throughput.

MRVs perform slightly better than Single while PR stays below; both end up following the Single curve on

the same points of Figure 24a. It is interesting seeing MRV surpassing Single on reads; the significantly

higher write performance mitigates the penalty created by having multiple chunks to read. PR suffers,

again, from a performance penalty in low read workloads, due to the need to wait for the joined phase to

proceed with the read.

Looking at the abort rate line plot (Fig. 24c), the advantage that PR had on our previous write-exclusive

scenarios has disappeared. It is able to achieve a close-to-zero abort rate with a 0 % read percentage, as
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expected, but it quickly ends up following the abort rate curve for the Single value on percentages higher

than 10 %. MRV is able to keep a lower abort rate in write-dominated scenarios, eventually following the

other two implementations in high read workloads, as they all default to a single value.

In the end, MRVs are the all-round better option of the three implementations we presented, notably

on write-dominated scenarios, which were our initial evaluation target. On these workloads, MRVs offer

the best performance by a noticeable margin, while also offering performance identical to Single on read-

heavy workloads, which is already ideal.

5.3.2 STAMP Vacation

We will start our Vacation analysis with the low contention workload (Figure 25), with varying numbers of

clients.
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Figure 25: Vacation (low contention) results.

Considering the execution time results on Figure 26a, Single provides the best overall performance by

a slight margin. Since we are dealing with a low contention workload, it is normal for the value-splitting

techniques to not offer an improvement when compared to a plain value. However, we can observe the

higher inherent contention of having 128 clients having an effect on the results, where Single has a near-

double increase in execution time andMRV is able to take the lead. PR stays behind for all client counts,

even if only so slightly.

Regarding the abort rates (Figure 26b), they are, in general, quite low. PR and Single have a slight

increase starting at 16 clients, while MRV is constantly near zero throughout all tests.

For the high contention workload (Figure 26), we can see a similar behaviour as of the last test, only

with the contention being noticeable starting at lower client counts.

If on the previous test Single only fell back (performance wise) with 128 clients, this time that happens
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Figure 26: Vacation (high contention) results.

starting at 32 clients. MRV is able to maintain notably better performance on these higher client counts.

The abort rate graph (Figure 26b) provides part of the explanation as to why. We can observe that MRVs

keep a quite low near-constant rate, while the other two techniques rise starting at eight clients.

In sum, while theMRV performance benefit is not as clear as on the microbenchmark, there is still a

clear advantage in using it on higher contention scenarios. PR, largely due to its sluggish phase worker,

is not able to keep up with the phase transitions in time and offer any kind of performance improvement

over the single value, in this particular benchmark.

5.4 Energy consumption

We measure efficiency with the following formula:

efficiency = operations/energy

In this context, operations is the count of successfully committed transactions and energy is a mea-

surement in joule of the total energy consumption.

The energy consumption statistics were collected using turbostat, a Linux utility for checking processor

statistics. Turbostat measures the energy consumption for the whole program, thus it also includes the

energy wasted on benchmark setup and teardown. Since all the tests perform this work and we verified

that they do not take a significant amount of time to perform it, we consider it as a constant and it does

not affect the overall results.

We considered four specific scenarios, using the same parameters as the previous tests. For the

microbenchmark, we tested with a write-only workload (Write) and a 50 % read scenario (Mixed). For the

Vacation benchmark, we tested with the two default configurations (High and Low). Results are presented
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on Figures 27, 28 and 29, for energy consumption, performance and efficiency, respectively. Performance

results are again included here for reference purposes, as we are using different hardware.

Up until now, every Vacation test presented elapsed time as the main performance metric, as it is how

the benchmark was originally designed. However, to make it in line with the microbenchmark results, we

have opted to show throughput instead (Figure 28b).
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Figure 27: Energy consumption results.
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Figure 28: Performance results.

In the microbenchmark (Figure 29a), PR offers the best efficiency in the write-exclusive scenario. De-

spite this, and as we have noted in the previous section, PR’s performance drops as reads are introduced,

which is reflected in its mixed workload efficiency. On the other hand, MRVs maintain a consistent level

of efficiency in the two scenarios, surpassing the single value in both. As we can observe from Figure 27a,

all implementations consume a similar amount of energy.

In Vacation (Figure 29b), we can observe similar behaviour on the two configurations. The single value

offers the best efficiency, with MRVs and PR taking the 2nd and 3rd places, respectively. In terms of
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Figure 29: Energy efficiency results.

energy (Figure 27b), PR is the implementation with the highest level of consumption, with MRV offering

a similar amount of spent energy to the single value. It is clear, for any of the implementations, that the

higher contention setting leads to a higher amount of energy consumption.

Overall, we can conclude that PR is the worst implementation in terms of energy efficiency. MRV is

able to perform better than the single value in both microbenchmark runs, only falling behind on Vacation.
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Chapter 6

Conclusions and Future Work

In this work, we presented the implementation of two value-splitting techniques in TM, based on previous

research for database systems. The final result is a C++ library integrated in the Wyatt-STM system, with

fully-working value-splitting objects and optimised background workers. We tested several approaches to

implementation in TM and determined which strategies were feasible and which were not, as the original

targets for value-splitting worked in a fundamentally different manner. Moreover, we built two different

benchmarks to evaluate our system: a microbenchmark, purposefully made to highlight the problem our

optimisation aims to solve, and an adapted Vacation, based on the original reference application from the

STAMP benchmark suite.

6.1 Conclusions

Experimental results show that PR is hindered in most contexts due to static thread allocation and high

maintenance requirements. The former prohibits any kind of dynamic workload, where the number of

threads is either unknown at the startup of the application or it changes during the execution. The latter

deters the usage of large amounts of value-splitting objects, since the delay on phase transitions harms

normal operation. While we presented cases where the results weighted heavily in favour of PR, such

as the write-exclusive scenarios of the microbenchmark, we also consider them as not truly indicative of

real-world workloads, rendering their applicability limited.

MRVs, on the other hand, show that their biggest strength lies in their adaptability, with great per-

formance on write-dominated workloads. Despite suffering similar setbacks in regard to worker timings,

they are to a lesser degree and they do not have such a significant impact on performance, since MRV

operations are able to advance no matter the state of the MRV. This is in contrast with PR, where the

phase an object is in can limit the operations that are performed on it.

In regard to energy consumption, it is not so clear that value-splitting is as beneficial for efficiency as
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it is for performance. Despite the performance improvements in high contention scenarios, as shown in

the presented results, the usage of value-splitting techniques incurs in additional processing costs, due to

the need for background workers.

Overall, our results show that value-splitting is worth exploring in the context of TM systems. The

analysis of these types of write-heavy workloads is of relevance, since they can be easily found in the

online sale of highly contended items, e.g., limited-edition releases or concert ticket sales for popular

artists.

6.2 Prospect for future work

In future work, we believe that further adjustment of the value-splitting parameters and the usage of

different underlying structures could have a significant impact on the performance achieved. We used

immer in this work as its immutability aspect streamlined the overall implementation, but we believe that

data structures made with TM in mind could be beneficial. Workloads with dynamic amounts of contention

over time could also prove useful in emphasising the strengths of MRVs over PR.

In this work, we have only focused on simple integer values for our splitting techniques, but we could

also apply some of our insights to more complex data structures. The original PR proposal is already

applicable to ordered tuples and top-K sets, which could be an interesting addition to value-splitting in

TM.

Besides Wyatt-STM, value-splitting techniques could be applied to other TM systems, specifically ones

with different implementation types. Word-based systems could have great performance benefits, due to

their inherent fine-grained method of operation.

The rise of Persistent Memory (PM) devices sparked up new interest on TM, with the develop-

ment of Persistent TransactionalMemory (PTM) (also known asDurable TransactionalMemory

(DTM)) systems. While PTM takes in consideration many of the ideas behind TM, the durability aspect

of PM creates other factors of concern, making the usage of standard TM implementations unfeasible.

Despite this, we do not think that there are any major issues with the value-splitting techniques that could

cause problems if implemented on PTM systems; testing their viability on PM could be an interesting

endeavour for future research.
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