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Resumo

Um sistema inteligente de apoio à decisão para aparafusamen-
tos industriais

No contexto da Industry 4.0 (I4.0), o aumento exponencial de dados coletados pelas indústrias po-

tencia a utilização de técnicas baseadas em dados para inspeção de qualidade dos seus processos pro-

dutivos. Este estudo foca-se na deteção de processos de aparafusamento anómalos, uma tarefa crucial

neste contexto. Devido ao alto custo de etiquetagem manual destes dados, exploramos unicamente abor-

dagens não supervisionadas. O objetivo principal deste trabalho é o desenvolvimento de um Intelligent

Decision Support System (IDSS) baseado em técnicas de Machine Learning (ML) capazes de prever o

sucesso de um processo de aparafusamento, aproveitando dados extraídos de um Big Data Warehouse

(BDW), alimentado por máquinas de assemblagem presentes no chão de fábrica de uma renomeada

fábrica de peças automotivas. Realizou-se um estudo exploratório para extrair características distintas do

conjunto de dados inicial e avaliou-se a sua aplicabilidade em vários modelos de Machine Learning (ML),

tipicamente utilizados para deteção de anomalias. Devido à natureza tipicamente desbalanceada dos da-

dos, esta investigação foca-se em métodos não supervisionados de One-Class Classification (OCC). Para

validar o desempenho dos modelos inicialmente obtidos, alargou-se a avaliação a um conjunto de dados

mais extenso e diversificado. Os resultados conseguidos foram altamente convincentes e demonstram

um desempenho competitivo quando comparados com abordagens tradicionais, tais como catálogos de

defeitos. De modo a providenciar Explainable Artificial Intelligence (XAI) nestes processos, desenvolveu-se

uma ferramenta de visualização que possibilita aos operadores observar regiões anómalas com maior

detalhe e estabelecer limites de deteção para estas anomalias. Os melhores modelos foram integrados

num ambiente que conecta processos de ML e o Big Data Warehouse (BDW) da fábrica. Esta integração

facilita o armazenamento de previsões dos modelos de ML, sendo ainda possível avaliar a sua evolução

em tempo real.

Palavras-chave: Anomaly Detection, Big Data (BD), Industry 4.0 (I4.0), Intelligent Decision Support

System (IDSS), One-Class Classification (OCC), Unsupervised Learning, Explainable Artificial Intelligence
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Abstract

An Intelligent Decision Support System for Industrial ScrewTight-
ening

Within the context of Industry 4.0 (I4.0), the demand for quality assessment procedures utilizing data-

driven techniques has intensified due to the exponential growth in production data. This study focuses

on addressing the detection of abnormal screw tightening processes, a crucial task within the industrial

domain. Given the high cost associated with manual labeling efforts, the study concentrates on unsuper-

vised approaches. The main objective of this study is the development of a Machine Learning (ML)-based

Intelligent Decision Support System (IDSS), capable of predicting the success or failure of an assembly

process. This work revolves around constructing an Intelligent Decision Support System (IDSS) by lever-

aging the Big Data (BD) extracted from the Big Data Warehouse (BDW). This valuable data originates from

the assembly machines located on the ground floor of a renowned automotive parts factory plant. Initially,

an exploratory study was undertaken to evaluate the possible features that could be extracted from the

extensive dataset being collected. The objective was to examine their correlation with various types of

ML models, with the aim of addressing the anomaly detection problem. Given the specific type of data

available, which exhibits an unbalanced nature, the exploration involved several unsupervised One-Class

Classification (OCC) methods. To validate the performance of the best-performing models, we then con-

ducted an evaluation using a larger and more diverse dataset. The results obtained were competitive with

traditional approaches, including defect catalogs. In order to provide Explainable Artificial Intelligence

(XAI) screw tightening knowledge, we developed, we developed a visualization tool. This tool empowers

operators to visualize anomalous regions more effectively and establish distinct thresholds for anomaly

detection. Furthermore, the best-performing models were seamlessly integrated into a unified environ-

ment that bridges ML processes and the BDW. This integration facilitates data storage and enables the

real-time monitoring of ML models within an industrial context.

Keywords: Anomaly Detection, Big Data (BD), Industry 4.0 (I4.0), Intelligent Decision Support System

(IDSS), One-Class Classification (OCC), Unsupervised Learning, Explainable Artificial Intelligence (XAI)
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1 Introduction

1.1 Motivation

The forth industrial revolution, has been forcing companies into modernizing their productive pro-

cesses (e.g., increasing efficiency and reducing costs) to gain competitive advantages over their competi-

tors. While in some areas fully autonomous robots can perform most repetitive tasks, in others, human

intervention is still required. The reduction of assembly errors during the production of goods is an area of

major focus for companies looking to optimize their processes. One of these processes is the assembly of

individual parts which compose the final product. By handheld screwdrivers with torque and angle sens-

ing capabilities, detecting anomalous processes can be accomplished faster and more accurately. During

the screw tightening process, data is collected in real-time, generating several instances with multiple

features, including angle-torque pairs. In effect, developments in Information Technology (IT) have led to

improved approaches and tools to store and process sensory data (e.g., Big Data (BD), Machine Learning

(ML)), which can potentially provide gains in the field of anomaly detection in an industrial environment.

In this domain, defects are infrequent. However, each time a new failure mode is identified by domain

experts, it must be characterized and added to a defect catalog. This expert system-based approach is

relatively static and requires manual effort for catalog maintenance, making it unsuitable for the high

volumes of screwing operations in an industrial setting. Often, defects are identified late in the production

chain, resulting in additional production time and costs. Furthermore, the limited research available in this

area, underscores the significance to enhance and automate the inspection task by adopting a data-driven

approach based on ML algorithms. Such an approach can lead to substantial improvements by leveraging

the power of automated analysis and prediction.

In this context, there are two primary prediction objectives that are commonly represented as binary

classification tasks:

1



CHAPTER 1. INTRODUCTION

• Good or Fail (GoF) - ascertain the success or failure of an assembly process.

• Anomaly Region Detection (ARD) - provide the user with the specific region(s) in the tightening curve

where the anomaly has been detected.

1.2 Research Objectives

The primary objective of this thesis is to present, devise, execute, and confirm a methodology for

accurately categorizing an industrial fastening process as GoF, without relying on an explicit defect cat-

alog for comparing tightening curves and identifying potential failure modes. The key aim is to develop

ML-driven techniques that can seamlessly integrate into Bosch’s AE/P shop floor machinery, effectively

reducing the misclassification of units as ”good” that should have been identified as faulty and preventing

them from progressing to the next assembly stage. To fulfill the required objectives associated with this

goal, the following research objectives Research Objectives (RO) were formulated:

• RO1 - Develop, implement, and validate a ML-based framework capable of predicting the success

or failure of an assembly process.

• RO2 - Design, develop, and validate a tool capable of visualizing the anomalous zones within a

faulty assembly process. This tool should enable the identification and display of areas where

abnormalities or errors occur during the assembly process. The visualization capability is intended

to enhance the analysis and understanding of faulty assembly processes, facilitating the prompt

identification and resolution of problematic areas.

• RO3 - Integrate the developed system into shop floor machinery with limited computational power

while ensuring its efficiency, lightweight nature, and effectiveness. This integration aims to maintain

the system’s efficiency and effectiveness, enabling it to function smoothly within the constraints of

the shop floor environment.

1.3 Contributions

The primary achievements and contributions of this doctoral dissertation include:

• A comprehensive study was conducted in order to investigate and compare various ML approaches

for anomaly detection in industrial fastening processes (Ribeiro, Matos, Cortez, et al., 2021).We

began by exploring the most significant data categories extracted from Bosch AE/P internal data

collection systems. This selection was based on previous studies conducted by field experts at the

plant and supported by relevant literature, which identified angle-torque pairs as potential indicators

for anomaly detection in assembly processes. Given the nature and diversity of the provided data,
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multiple OCC algorithms were explored and evaluated. This initial exploratory study yielded valu-

able insights into the performance of various ML methods when applied to the analyzed anomaly

detection cases. The best performing models identified were then subjected to rigorous testing on

a larger and more diverse dataset (Ribeiro, Matos, Moreira, et al., 2022). This extended testing

phase aimed to evaluate the generalizability and robustness of the models beyond the initial study

dataset.

• An ML-based IDSS capable of predicting the success or failure of an assembly process has been

developed, implemented, and validated. This artefact encompasses advanced ML algorithms and

techniques, ensuring accurate and reliable predictions. Through rigorous testing and validation,

the framework has demonstrated its effectiveness in proactive decision-making within assembly

processes. By leveraging this artefact, manufacturing industries can optimize efficiency, reduce

errors, and enhance overall productivity.

• An interactive visualization tool that has revolutionized the identification and display of areas af-

fected by abnormalities or errors during the assembly process. This tool empowers operators to

swiftly recognize and address problematic areas, leading to more efficient operations. It also offers

human operators a valuable capability to set the final threshold and facilitates the explainability and

interpretability of ML anomaly detection decisions. As a result, this contribution significantly im-

proves the overall performance and comprehension of anomaly detection systems in screw cases,

thereby paving the way for promising opportunities in further research and practical applications.

• An integration test study of scientific and technological contributions from both Big Data Analytics

(BDA) and ML fields, enhancing a BDW within an advanced data analytics environment (Galvão et

al., 2022). The proposed architecture establishes a unified environment betweenML processes and

the BDW, enabling data storage and monitoring of ML models and the BDW itself. This integration

expands the analytical scope beyond business-level decision-making, allowing the establishment of

performance metrics and continuous monitoring over time. Ultimately, this integration enhances

decision-making and the overall effectiveness of the data analytics environment.

This PhD resulted in the publication of three scientific papers, one of which received the prestigious

Best Paper Award:

1. Title: A Comparison of Anomaly Detection Methods for Industrial Screw Tightening.

Authors: Diogo Ribeiro, Luís Miguel Matos, Paulo Cortez, Guilherme Moreira, André Luiz Pilastri

Conference (Best Paper Award): International Conferences on Computational Science and

Its Applications (ICCSA)

DOI: https://doi.org/10.1007/978-3-030-86960-1_34

RO: RO1
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2. Title: Isolation Forests and Deep Autoencoders for Industrial Screw Tightening Anomaly Detection.

Authors: Diogo Ribeiro, Luís Miguel Matos, Guilherme Moreira, André Luiz Pilastri, Paulo Cortez

Journal: Computers

DOI: https://doi.org/10.3390/computers11040054

RO: RO2

3. Title: Bosch’s Industry 4.0 Advanced Data Analytics: Historical and Predictive Data Integration

for Decision Support

Authors: João Galvão, Diogo Ribeiro, Inês Araújo Machado, Filipa Ferreira, Júlio Gonçalves, Rui

Faria, Guilherme Moreira, Carlos Costa, Paulo Cortez, Maribel Yasmina Santos

Conference: Research Challenges in Information Science (RCIS)

DOI: https://doi.org/10.1007/978-3-031-05760-1_34

RO: RO3

1.4 Thesis Organization

This thesis is divided into four main chapters, structured as follows:

• Chapter 1 - Introduction

This introductory chapter describes the main motivations behind this work, the formulated research

objectives identified from the research opportunities, the research methodology adopted and the

structure of this document.

• Chapter 2 - Background

In Chapter 2, fundamental concepts essential to this thesis are introduced, including Industry 4.0

(I4.0), BD, IDSS and Industrial Fastening Processes. The chapter also encompasses a compre-

hensive range of core concepts related to ML, including selected algorithms, metrics, and relevant

research in this particular field of study.

• Chapter 3 - Methods, Experiments and Results

Chapter 3 presents a comprehensive overview of the assembly industrial sector in the era of the

I4.0 revolution. It examines the challenges and opportunities associated with this revolution and

explores the utilization of smart sensors and semi-autonomous robots to assist human operators in

production tasks that are not easily automated. The chapter emphasizes the potential of employing

Machine Learning (ML) algorithms to develop an automated screw tightening inspection system,

focusing on scalability and continuous model updating. Furthermore, this chapter investigates a

novel approach for anomaly detection using low-dimensional input, specifically angle-torque pairs.

The exploration involves the application of unsupervised ML algorithms such as Isolation Forest

(IF) and deep dense Autoencoder (AE), which are discussed in detail in 1. Encouraging results
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are achieved, indicating the effectiveness of these methods. The subsequent introduction of 2

extends the evaluation of the proposed anomaly detection techniques for screw tightening. This

evaluation encompasses a broader range of assembled products and a larger dataset collected over

an extended time period. To assess the performance and computational effort of the IF and AE

models, various computational experiments are conducted. These experiments serve to measure

their efficiency and effectiveness.

• Chapter 4 - Conclusions

The last chapter of the document (Chapter 4) summarizes all scientific contributions of this work,

uncovers its limitations and suggests possible future improvements to address such pitfalls.
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2 Background

2.1 Bibliographic Search Strategy

2.1.1 Search Strategy

In the research search strategy process for the topic under investigation, relevant keywords and com-

binations such as ”anomaly detection”, ”screw tightening”, ”deep learning”, ”ML”, ”neural networks”,

”artificial intelligence”, ”manufacturing processes”, and ”quality control” were identified. The search

was conducted in multiple databases including Google Scholar, Scopus, and Science Direct using these

keywords. The search was refined by limiting the publication date to within the past 10 years and only

including reputable sources such as peer-reviewed journals and conference proceedings.

An initial filtering stage of the search process involved sweeping through the titles and abstracts of

the search results to ensure that they met the inclusion criteria and were relevant for the investigation.

This resulted in a few potentially relevant articles from Scopus and Science Direct. It was found that

despite a comprehensive search across all databases, there was very little literature investigating the

topic, underscoring the need for future research in this area.

Google Scholar provided a large number of results, but many of them were either not relevant or did

not meet the inclusion criteria, and a number of duplicates were also identified in the search results.

On the other hand, Scopus provided a more comprehensive collection of literature, including articles,

conference proceedings, and books. Advanced search options, such as boolean operators, were used to

combine search terms and limit the search to specific fields.

Science Direct was another valuable source of information for this topic as it included a large collection

of peer-reviewed articles and conference proceedings related to engineering, computer science, and other

related fields.
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After analyzing the obtained bibliography references, using all mentioned databases, a final manual

inspection was conducted to select the relevant related works. In total, this resulted in 18 papers that

were cited in this work, with some recurring authors.

2.1.2 Design Science Research Methodology for Information Systems

(DSRM-IS)

Research in Information Systems (IS) can be conducted by adopting multiple paradigms, but the most

frequent ones are design science and behavioral science. The behavioral science paradigm focuses on

developing and verifying theories that explain or predict human or organizational behavior. In contrast,

the design science paradigm aims to create and evaluate Information Technology (IT) artifacts intended to

solve identified organizational problems. This paradigm is characterized by the building and application

of IT artifacts to achieve knowledge and understanding of the problem and its solutions.

According to Hevner et al. (2004), the Design Science Research Methodology for Information Systems

(DSRM-IS) produces two design processes and four types of artifacts: constructs, models, methods, and

instantiations. The two design processes are the build and evaluate processes. In the build design

process, artifacts are developed to address a real-world problem. In the evaluate design process, artifacts

are assessed for their usefulness in solving the problem. These artifacts serve as tangible outcomes of the

research process and contribute to advancing knowledge and practice in the field of information systems.

• Constructs: Abstract concepts or components of a problem domain that can be used to develop

models or methods. Constructs are typically defined through a literature review or through the

identification of key concepts within the problem domain.

• Models: Representations of constructs or systems that can be used to test hypotheses or theories,

or to develop new methods. Models can take various forms, such as mathematical or conceptual

models, and can be used to simulate or visualize a problem domain.

• Methods: Prescriptions for solving problems or achieving objectives within a problem domain.

Methods can be developed through the use of constructs and models and can take the form of

algorithms, guidelines, or procedures.

• Instantiations: Physical artifacts or systems that are created to solve a specific problem within

a problem domain. Instantiations can be prototypes or final products that are evaluated in the

context of the problem domain.

This methodology aims to be consistent with prior literature and provides a nominal process model

for conducting design science research in IS, as well as a mental model for presenting and evaluating

such research (Peffers et al., 2008). The DSRM-IS process model consists of six steps or activities:
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1. Problem identification and motivation: The first step involves defining the specific research

problem and explaining the significance of finding a solution (Peffers et al., 2008). In order to

develop an effective solution, it may be helpful to break down the problem conceptually to better

capture its complexity. Additionally, justifying the value of a solution serves two purposes: it inspires

both the researcher and the audience to pursue the solution and accept the results, and it helps

to explain the reasoning behind the researcher’s understanding of the problem. To successfully

complete this activity, one must have a thorough understanding of the problem and the importance

of finding a solution. An extensive literature review work was conducted to identify anomaly detection

methods for improving tightening processes. The review revealed a significant research opportunity

in this area, as only a limited number of studies have been conducted.

2. Objectives of the solution: By analyzing the problem definition and considering what is possible

and feasible, one can deduce the objectives of a solution. These objectives can take a quantitative

form, such as setting specific targets for improvement over current solutions, or a qualitative form,

such as predicting how a new artifact will facilitate solving previously unaddressed problems. The

objectives must be derived logically from the problem specification. To achieve this, one must have

an understanding of the current state of the problems and solutions, including their effectiveness.

This requires access to relevant resources and knowledge. As previously introduced, the objectives

of this doctoral thesis are driven by an organizational need. Furthermore, the thesis is a part of an

innovation project that demands a strong alignment between the business objectives and scientific

goals. The specific objectives are outlined in Section 1.2.

3. Design and development: The next step is designing and developing the artifact. This artifact

can take the form of a model, method, instantiation, or construct, or it can embody new properties

of technical, social, and/or informational resources. Broadly defined, a design research artifact

is any object that incorporates a research contribution within its design. This process involves

identifying the desired functionality and architecture of the artifact, and then creating the physical

artifact itself. To successfully move from the objectives to the design and development phase, it

is important to have a good understanding of relevant theories that can be utilized to develop an

effective solution. During this stage, several Machine Learning (ML) models were developed as

artifacts, which were subjected to rigorous testing. The best-performing models were selected for

production, following a comprehensive evaluation process.

4. Demonstration: In order to validate the effectiveness of the artifact, it is crucial to demonstrate its

successful use in solving one or more instances of the problem. This can involve various activities

such as experimentation, simulation, case study, or proof. To effectively carry out the demonstra-

tion, it is essential to possess thorough knowledge on how to utilize the artifact in solving the prob-

lem. To assess the usefulness of the model in detecting anomalies in screw tightening processes

for multiple products, various product families were utilized as case studies. This was necessary
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due to the nature of the problem at hand. The results of these case studies are elaborated in

Section 3.6.

5. Evaluation: The evaluation of the artifact’s effectiveness in solving the problem is a critical step

in the research process. This requires the observation and measurement of the artifact’s perfor-

mance, which involves comparing the objectives of the solution with the actual results obtained

during the demonstration phase. It is essential to have knowledge of relevant metrics and analy-

sis techniques to conduct a comprehensive evaluation. The evaluation process can take several

forms depending on the nature of the problem venue and the artifact used. For instance, it can

include a comparison of the artifact’s functionality with the objectives defined in activity 2, ob-

jective quantitative measures such as budgets or items produced, client feedback or satisfaction

surveys, simulations, or quantifiable measures of system performance such as response time or

availability. The evaluation can also incorporate any relevant empirical evidence or logical proof.

After completing this activity, researchers can decide whether to improve the artifact’s effectiveness

by iterating back to activity 3, or continue with communication and leave further enhancement to

future projects. Nonetheless, the feasibility of this iteration may vary depending on the research

venue. The purpose of evaluating the demonstration cases is to assess the effectiveness of the

proposed ML-based approaches in addressing the problem in hand. Apart from the comparison of

the proposed artifacts with the solution objectives, Section 3.5 describes the application of diverse

evaluation metrics and techniques to evaluate the overall predictive performance of the ML models.

6. Communication: When appropriate, researchers should communicate the problem and its sig-

nificance, the artifact’s utility and novelty, the rigor of its design, and its effectiveness to relevant

audiences such as practicing professionals. It is essential to have knowledge of the disciplinary cul-

ture to effectively convey the information. In scholarly research publications, researchers can use

the structure of the design process to structure the paper. The nominal structure of an empirical re-

search process, which includes problem definition, literature review, hypothesis development, data

collection, analysis, results, discussion, and conclusion, is commonly used for empirical research

papers. Therefore, the same approach can be taken when communicating the design process. The

final activity involves disseminating the research findings through various channels, including the

writing and publication of the doctoral thesis as well as scientific publications in relevant journals

(as described in Section 1.3). Additionally, the progress and status of the research were regularly

presented to the management (direction board) of Bosch AE/P through annual presentations.

Additionally, there are four different research entry points (see Fig. 1): problem-centered initiation,

objective-centered solution, design and development-centered initiation, and client/context-initiated re-

search (Peffers et al., 2008). While the process is structured sequentially, it is not mandatory to follow the

steps in a sequential way, and it can start at any step. For example, problem-centered initiation research

starts with step 1 because the idea for research resulted from problem observation or future research
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suggested in a paper from a prior project. The objective-centered solution research starts with step 2, and

the research is triggered in the industry due to the problem they face or is oriented for artifact develop-

ment. The design and development-centered initiation start with step 3, and the research results from the

existence of an artifact that was developed to solve other problems to identify functionalities and perfor-

mance requirements for a new artifact. Lastly, client/context-initiated research starts with step 4 and is

based on practical observation of the final solution, identifying the impact of the solution. In this work, the

research entry point is considered to be problem-centered. This doctoral thesis was conducted at Bosch

AE/P to address a real-world problem faced by the organization. As such, the objectives were already

pre-defined and aligned with the needs of the organization. However, prior literature was reviewed to align

with existing gaps in the literature and research opportunities, which falls under the problem identification

and motivation step of the DSRM process (Hevner et al., 2004).
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Figure 1: DSRM Process Model, adapted from Peffers et al. (2008).

2.2 Industry 4.0

Industry 4.0 (I4.0), also known as the Fourth Industrial Revolution, is a term that was first coined at

the industrial Hannover Fair in 2011 (Lasi et al., 2014; Liao et al., 2017; Boyes et al., 2018; Dalenogare

et al., 2018). It refers to the application of generic concepts of Cyber-Physical Systems (CPS) to industrial

production systems (Lasi et al., 2014; Dalenogare et al., 2018), and represents the introduction of infor-

mation technologies into the industry to achieve a higher level of operational efficiency, productivity, and

automatization (Lu, 2017; Dalenogare et al., 2018; Xu et al., 2018). I4.0 brings a set of disruptive tech-

nologies that are transforming industrial production, business models, and business processes, such as

autonomous robots, simulation, cybersecurity, cloud computing, augmented reality, Artificial Inteligence

(AI), BD and analytics, and other technologies.

The design principles of I4.0 are interoperability, virtualization, decentralization, real-time capability,

service orientation, and modularity (Lu, 2017). Two key concepts emerged with I4.0: Industrial Internet of
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Things (I-IoT) and Industrial Cyber-Physical Systems (I-CPS). I-IoT and Industrial Cyber-Physical Systems

(I-CPS) are extensions of the traditional Internet of Things (IoT) and CPS, respectively. I-IoT consists of the

interconnection of intelligent industrial devices to improve the operational efficiency and productivity of

the industrial system, while I-CPS supports manufacturing and industrial production applications Xu et al.

(2018).

The result of I4.0 is a smart, connected, and highly automated manufacturing environment that has

the potential to revolutionize the way products are manufactured, managed, and delivered (Lasi et al.,

2014; Liao et al., 2017; Boyes et al., 2018; Dalenogare et al., 2018). It is characterized by the integration

of physical and digital technologies, such as IoT, AI, and CPS (Lasi et al., 2014; Liao et al., 2017; Boyes

et al., 2018; Dalenogare et al., 2018).

2.2.1 Internet of Things

There are numerous definitions for the IoT in the literature, with three of the most relevant definitions

being detailed by Boyes et al. (2018):

1. “A definition for the IoT would be a group of infrastructures, interconnecting connected objects and

allowing their management, data mining and the access to data they generate where connected

are sensor(s) and/or actuator(s) carrying out a specific function that is able to communicate with

other equipment”;

2. “The terms Internet of Things and IoT refer broadly to the extension of network connectivity and

computing capability to objects, devices, sensors, and items not ordinarily considered to be com-

puters. These smart objects require minimal human intervention to generate, exchange, and con-

sume data; they often feature connectivity to remote data collection, analysis, and management

capabilities”;

3. “The IoT represents a scenario in which every object or thing is embedded with a sensor and is

capable of automatically communicating its state with other objects and automated systems within

the environment. Each object represents a node in a virtual network, continuously transmitting a

large volume of data about itself and its surroundings...”;

Based on these definitions of IoT, the I-IoT can be defined as a global network infrastructure that allows

interconnection of industrial devices and equipment’s through sensory, communication, networking, and

information processing technologies, so that they can share information between them and coordinate

decisions (Al-Fuqaha et al., 2015; Boyes et al., 2018; Xu et al., 2018). This means that I-IoT involves using

IoT technologies in industrial environments to interconnect industrial assets, such as smart objects and

cyber-physical assets (Boyes et al., 2018; Xu et al., 2018). This network infrastructure can be used to

monitor and control physical objects in CPS (Xu et al., 2018).

11



CHAPTER 2. BACKGROUND

The generic I-IoT architecture consists of three layers, as depicted in Fig. 2. These three layers are: the

application layer, communication/network layer, and physical layer (Al-Fuqaha et al., 2015; Xu et al., 2018).

The application layer refers to different industrial applications, such as smart factories, smart plants, smart

supply chains, and other applications. The main responsibility of this layer is to bridge the gap between the

user and applications by providing timely monitoring, accurate control, and efficient management through

numerous sensors and actuators in those smart industrial applications (Al-Fuqaha et al., 2015; Xu et

al., 2018). The communication/network layer connects all “things” through numerous communication

networks and technologies, such as Wireless Sensor and Actuator Network (WSAN), 5G, Wireless Personal

Area Networks (WPAN), Machine-to-Machine (M2M), and Software-Defined Networking (SDN), to share

information between them. This layer provides networking support and data transfer for communication

between “things” (Xu et al., 2018). Finally, the physical layer is composed of smart objects and cyber-

physical assets, such as sensors, actuators, Radio Frequency-based Identification (RFID), manufacturing

equipment’s, and other industrial objects (Al-Fuqaha et al., 2015; Xu et al., 2018). These smart objects and

cyber-physical assets are responsible for acquiring and processing information (Al-Fuqaha et al., 2015).
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Actuators

Manufacturing
Facilities

User Mobile /
PDA

Computing /
Data Center

Smart
Terminals

Communication
Layer

WSN WSAN 5G M2M WBAN TSN

Application
Layer

Smart
Factory Smart Plant Smart Supply

Chain

Robot Assembly Line Gas Plant Power Plant Supply Chain

Figure 2: I-IoT architecture, adapted from Xu et al. (2018).

2.2.2 (Industrial) Cyber-Physical Systems

Helen Gill proposed the term Cyber-Physical Systems (CPS) during the National Science Foundation

(NSF) CPS workshop in 2006. Since then, numerous definitions of CPS have been proposed in the

literature (Alguliyev, Imamverdiyev, and Sukhostat, 2018). Some examples of these definitions are:

1. “CPS is a system that can effectively integrate cyber and physical components using modern sen-

sor, computing, and network technologies” - Alguliyev, Imamverdiyev, and Sukhostat (2018).
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2. “CPS is the integration of computing and physical processes. They include embedded computers,

network monitors, and controllers, usually with feedback, where physical processes affect com-

putations and vice versa” - Colombo et al. (2017) and Alguliyev, Imamverdiyev, and Sukhostat

(2018).

3. “A system comprising a set of interacting physical and digital components, which may be central-

ized or distributed, that provides a combination of sensing, control, computation, and networking

functions, to influence outcomes in the real world through physical processes” - Boyes et al. (2018).

I-CPS is defined as a vertical industrial system based on cyber and physical systems (Xu et al., 2018).

Every real physical object has at least one cyber representation, and each cyber system can be associated

with a physical representation (Colombo et al., 2017). I-CPS provides productive and efficient manufac-

turing and automation, and enables the monitoring and control of industrial physical processes (Colombo

et al., 2017; Xu et al., 2018). The I-IoT represents the integration of communication/network layer of the

I-CPS Xu et al. (2018). According to Xu et al. (2018), the I-IoT corresponds to the communication/network

layer integration of the I-CPS.

This leads to the creation of a manufacturing environment that is highly automated, connected, and in-

telligent. Real-time monitoring and control of the production process are made possible by I-CPS, enabling

early detection of failures in assembly processes and preventing their propagation down the manufacturing

chain.

2.3 (Intelligent) Decision Support Systems

According to Arnott and Pervan (2014), Decision Support System (DSS) is a field within the IS discipline

that aims to assist and enhance decision-making processes. The concept of DSS was initially introduced by

Gorry and Morton (1971) in the early 1970s. They defined DSS as: ”interactive computer-based systems,

which help decision makers utilize data and models to solve unstructured problems”. Later on, in the

same decade, Keen and Morton (1978) refined the definition of DSS by describing them as : ”Decision

support systems couple the intellectual resources of individuals with the capabilities of the computer to

improve the quality of decisions. It is a computer-based support system for management decision-makers

who deal with semi-structured problems”.

In the early 1980s, the concept of Intelligent Decision Support System (IDSS) emerged with the in-

tention of integrating artificial intelligence and expert system tools into DSS (Arnott and Pervan, 2014;

Kaklauskas, 2015). IDSS is an interactive tool that assists with decision-making in well-structured deci-

sion and planning scenarios. It employs expert system techniques and specialized decision models to

support the decision-making process (Arnott and Pervan, 2014).

Arnott and Pervan (2014) reported that research in DSS accounts for approximately 10% of the overall

IS field. In recent years, this research has predominantly focused on data-driven approaches, particularly
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Business Intelligence (BI). The authors also highlighted the evolution of DSS where the latest trend in DSS

is the adoption of Business Analytics (BA), which encompasses BI, Predictive Analytics, and Optimization

techniques.

Howard Dresner first proposed the term Business Intelligence (BI) in 1989, which gained widespread

attention by the early 2000s (Turban, Sharda, and Delen, 2011; H. Chen, Chiang, and Storey, 2012;

Arnott and Pervan, 2014). The shift from Executive Information Systems (EIS) to BI was driven by the

introduction of dimensional modeling and data warehousing concepts (Turban, Sharda, and Delen, 2011;

Arnott and Pervan, 2014). BI combines architectures, tools, databases, analytical tools, applications, and

methodologies to enable effective decision-making (Turban, Sharda, and Delen, 2011).

The concept of Business Analytics (BA) emerged from the fusion of BI with new capabilities such as

optimization, forecasting, predictive modeling, and statistical analysis. Thomas H. Davenport popularized

the term BA in his article for the Harvard Business Review in 2006, defining it as ”the extensive use of

data, statistical and quantitative analysis, exploratory and predictive models, and fact-based management

to drive decisions and actions” (Arnott and Pervan, 2014). While there is some overlap between the

definitions of BI and BA, the latter is primarily seen as the key analytical component within BI (H. Chen,

Chiang, and Storey, 2012). As a result, the unified concept of Business Intelligence and Analytics (BI-A)

has been proposed (H. Chen, Chiang, and Storey, 2012). All of these terms - IDSS, BI, BA - have emerged

from the evolution of DSS and are illustrated in Fig. 3.

Analytics can be classified into four distinct levels: Descriptive, Diagnostic, Predictive, and Pre-

scriptive analytics. They can be described as followed:

• Descriptive analytics - is used to answer the question ”What happened?” and involves under-

standing what is currently happening within an organization (Delen and Demirkan, 2013; Sharda

et al., 2015).

• Diagnostic analytics - addresses the question ”Why did it happen?” and seeks to identify the

root cause of a problem (Sharda et al., 2015).

• Predictive analytics - attempts to answer the question ”What will happen?” and utilizes mathe-

matical algorithms and programming to find patterns within data that can be used to make predic-

tions about the future (Delen and Demirkan, 2013; Sharda et al., 2015).

• Prescriptive analytics - aims to answer the question ”How can we make it happen?” and fo-

cuses on decision-making to achieve the best possible performance (Delen and Demirkan, 2013;

Sharda et al., 2015). It includes techniques such as multi-criteria decision-making, optimization,

and simulation.

Analytics of all kinds can offer significant benefits to organizations seeking to gain a better understand-

ing of their operations. Nonetheless, both diagnostic and predictive analytics are crucial in facilitating

comprehension of the root causes of a specific failure and forecasting the result of a particular fastening
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process. In effect, in this PhD work we assume the development of IDSS that makes usage of modern AI

techniques, namely ML algorithms, to generate data-driven models that allow to perform descriptive and

predictive analytics related with the screw tightening task.
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Figure 3: Genealogy of DSS, adapted from Arnott and Pervan (2014).

2.4 Industrial Fastening Processes

Fasteners are taken into consideration to fulfill diverse purposes in applications, encompassing strength,

appearance, and reusability. Reusability holds particular significance as disassembly is often required for

maintenance, service, or repair of many assemblies (J. Speck, 2018). Even in moderate-volume assem-

blies, the desire to disassemble can arise from either a portion of the target market or the product man-

ufacturer, if not both. Consequently, the reusability of fasteners becomes a crucial design requirement,

even for products with a remote possibility of requiring disassembly. Since it is impossible to predict which

products will necessitate disassembly, the requirement for reusability extends to all assemblies produced

during the production run.
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The role of fastener appearance is vital in the market acceptance of products. Despite purchasers

often claiming that economic or technical features are their primary decision factors, the undeniable in-

fluence of style and appearance on our purchasing choices cannot be overlooked. Fastener appearance

can symbolize robustness, exemplified by exposed, high-strength fasteners in industrial machinery, instill-

ing visual assurance of product strength, durability, and value in customers and prospects. Conversely,

fasteners can be discreetly designed, reflecting the prevailing trend in consumer durable goods such as

automobiles and appliances. This sleek and well-tailored appearance communicates thoughtful design,

seamless assembly, and a modern, up-to-date aesthetic. The popularity of these diverse fastener ”looks”

fluctuates, and neglecting their significance poses a risk for assembly designers and manufacturers.

At their most fundamental level, fasteners are utilized for their strength, particularly their holding

strength in assemblies. Fasteners, directly ”out of the box,” offer potential holding power, making holding

ability the key element of their overall strength. Alongside appearance and reusability, holding power

constitutes the mechanical foundation of all fasteners.

2.4.1 Fastener Types and Selection

Within the realm of fastener selection, an overwhelming array of designs exists within the industrial

fastener market. If one is entrusted with the responsibility of choosing appropriate fasteners for products

and assemblies, they encounter a complex landscape. Similarly, when tasked with developing joining

techniques and procedures, the effectiveness of their work can profoundly impact the market success

of their company’s products in comparison to competitors, while also carrying legal ramifications (Park

and Okudan Kremer, 2015). Furthermore, when undertaking the layout of an assembly process, whether

involving the design of a new assembly or the modification of an existing one, the decisions made can have

enduring implications for the growth or decline of the process. The efficiency of the assembly process

and the quality of the fastening hardware are pivotal factors that determine the outcome.

To simplify these decision-making processes, it is beneficial to categorize them as hardware and soft-

ware components. The software encompasses the overall assembly and joining engineering approach,

including assembly drawings, procedures, instructions, as well as inspection and testing documentation.

On the other hand, the hardware comprises the actual fasteners, installation tooling, and all the neces-

sary equipment at the assembly site. By differentiating between the hardware and software aspects of

assembly layout, one can approach hardware selection based on the predetermined approach outlined

by the software. Expanding on this analogy, possessing a comprehensive understanding of the available

hardware in the fastener industry empowers one to make more informed decisions concerning the optimal

assembly approach for their assemblies.

The categorization of commonly used fasteners can be outlined as follows, based on their type

(Amancio-Filho and J. d. Santos, 2009; J. Speck, 2018):
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• Tension: In the industrial world, tension fasteners emerge as the most frequently employed fas-

tening design (Amancio-Filho and J. d. Santos, 2009; J. Speck, 2018). As a design strategy, the

optimization of assembly solutions can often be achieved by directing service loads concentrically

towards a rigid, minimum member joint and clamping it with a well-preloaded tension fastener.

Within the automotive industry, various types of tension fasteners are commonly employed. These

include:

1. Pan Head: Is a commonly used tension fastener with a wide range of drive types, suitable

for high-speed production. Its design minimizes the risk of head failure by ensuring failure

occurs in the threaded area, making it a desirable choice for tension applications.

2. Hex Head: Hex head screws and bolts are popular choices in industrial applications, offering

advantages such as widespread availability, compatibility with standard tightening tools, and

strong load-carrying capabilities. Additionally, hex head cap screws are produced with varying

strength levels, tailored through specific manufacturing and heat-treating processes.

3. Socket Screws: Are compact yet robust tension fasteners with an internal wrenching tight-

ening drive. They meet rigorous industrial standards, exhibiting superior tolerances and

control. While initially designed for tool and die work, their high strength and compact size

have made them versatile components across diverse applications.

4. Blind Rivets: Serve as tension fasteners, suited for lower magnitude loads in comparison to

socket products. Their key benefit lies in swift installation, devoid of threading and torquing

requirements. Consisting of a rivet body and inner mandrel, blind rivets can be efficiently

tightened using manual or power actuated riveting tools. During installation, the mandrel

separates and breaks off as intended. Material options for blind rivets encompass steel and

aluminum, with diverse combinations available.

5. Weld Studs: Are fasteners that are affixed to metal sheets through fusion welding using

welding current. This welding technique ensures a sturdy mounting point for subassem-

blies and components. Generally, weld studs are manufactured using cold heading and roll

threading methods

6. Self-Threading Screws: Self-threading fasteners offer cost-saving advantages in appli-

cations where the reusability of threaded fasteners is needed without the requirement for

separately generated internal threads. However, their implementation should be planned

meticulously to ensure optimal fastener performance and minimize assembly challenges.

These fasteners can be categorized as thread cutting, thread forming, or thread rolling.

• Compression: Compression fasteners are a category of fasteners designed to apply and distribute

clamping forces to securely join components or assemblies. They work by generating compressive

forces that hold the parts together, ensuring stability and preventing relative movement (Amancio-

Filho and J. d. Santos, 2009; J. Speck, 2018). Some examples of compression fasteners include:
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1. Set Screws: Headless threaded fasteners that undergo shortening under preload, serving

as torque-transmitting elements. American National Standards Institute (ANSI) standard hex

socket screws, commonly made from alloy steel or 300 series stainless steel, are frequently

used. Internal hex set screws, known as ”safety” set screws, are advantageous due to their

reduced risk of catching loose objects in rotating machinery. These screws feature formed or

machined points, with ANSI standards encompassing variations like external cone points, half

and full dog points, flat points, and oval points, each offering unique application advantages.

2. Washers: Washers function as compression fasteners, distributing clamp load and reducing

bearing stresses by acting in a ”snowshoe” manner. Using well-made washers can prevent

indention and increase clamp load by reducing underhead friction. Washers also extend

the clamped grip length, offering performance advantages. However, they can lead to is-

sues such as increased parts count and joint faces, potentially causing vibrational loosening.

Locking washers, like split lock washers, help prevent loosening, albeit with a limited clamp

load increase. Belleville washers offer higher efficiency. The Clamp-Affected Zone (CAZ)

represents the volume of material where the fastener’s clamping load is applied, shaped by

factors such as assembly member ductility, clamping load magnitude, and washer area.

• Shear: Are specifically designed to bear loads perpendicular to their axis. Dowel pins and roll pins

are excellent examples of shear fasteners. Dowel pins, an early form of fasteners for carrying shear

loads, continue to be highly efficient in assembly methods (J. Speck, 2018). Dowel pins exhibit a

wide range of variations, from simple low-carbon wire cutoffs to alloy steel and hardened, ground

tool-and-die quality dowels featuring end chamfers and radii. In contrast, roll pins are made from

coiled strip steel, offering spring-like characteristics upon cutting into pin shapes. While dowel

pins provide superior shear strength, roll pins offer installation economies in assemblies. It is

worth noting that dowel pins should be pressed into the assembly rather than hammered, as is

occasionally done.

• Adhesives: Adhesives for fasteners encompass a diverse array of types, providing versatility in

their applications (Amancio-Filho and J. d. Santos, 2009; J. Speck, 2018). These adhesives can

serve as independent fastening systems or complement mechanical fasteners. When used as

supplementary elements, adhesives can be selected based on desired strength and permanence.

Preapplied adhesives or those applied on-site can be specified accordingly. In both cases, the

absence of air during installation is crucial to allow the adhesives to cure.

2.4.2 Joining Mechanics

The engineering mechanics associated with fastening and joining exhibit similarities throughout vari-

ous assembly work conducted on a daily basis. Fasteners or fastening systems apply forces that, when
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executed correctly, contain the service loads within the fastening design and installation. The range of as-

sembly component materials, the number of joint interfaces, and the intended service conditions highlight

the diverse mechanics involved in assembly work and performance. To comprehensively explore the field

of fastener mechanics, it is beneficial to categorize procedures based on the materials of the assembly

components being joined. A logical approach involves distinguishing between metallic and nonmetal-

lic assemblies, despite acknowledging that many all-metal assemblies possess qualities of springiness

and plasticity, while numerous engineered thermoplastic products exhibit high rigidity and compressive

strength. Furthermore, hybrid assemblies composed of both metal and plastic components exhibit prop-

erties of both materials. Therefore, making mechanical distinctions between joint materials facilitates the

understanding and application of mechanical techniques and models, enabling students and observers

of assembly engineering to enhance their comprehension and optimize assembly performance.

2.4.2.1 Rigid Metal Joints

Rigid metal joints are a type of connection between metallic components that offer high levels of

stiffness and immobility. These joints are designed to minimize or eliminate any relative movement be-

tween the connected parts, ensuring a rigid and stable structure. Common examples of rigid metal joints

include welded connections, bolted connections with high clamping forces, and adhesive bonding with

high-strength adhesives. Rigid metal joints are often employed in applications where maintaining precise

alignment, resisting deformation, and minimizing vibrations are crucial. These joints provide excellent

load transfer capabilities, distribute forces evenly, and enhance the overall strength and stability of the

assembled structure.

2.4.2.2 Nonmetal Joints

In the realm of nonmetal assembly components, there exists a certain degree of flexibility that differs

from metal joints. However, the specifications for nonmetallic fasteners lack well-established and proven

rules to guide their selection. Nonetheless, a considerable base of suppliers caters to the demand for

fasteners in nonmetallic component applications. To elucidate the mechanics involved, it is helpful to

examine the example of a hypothetical product consisting of a contoured structural member made of

composite material. The objective is to fasten multiple injection-molded plastic brackets onto the panel.

Examples of these types of nonmetal joints include (J. Speck, 2018):

• Snap Fit Assembly: In this joining technique, snap fit assembly is employed. Factors to consider

include the geometry, tolerances, and the retention of fastening load. A rectangular snap with a

barbed end and a rectangular receiver in the panel is designed, with considerations given to the

shape and angle of entry of the snap fit ramps and the force required for snapping. Removal re-

quirements may involve modifying the snap, ensuring that only one barb is engaged with clearance
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in the opposite barb zone for release. The tolerance of molded snap geometries impacts fasten-

ing load retention, and environmental conditions such as temperature and ultraviolet radiation can

affect the strength of the snap fastening.

• Adhesive Assembly: The adhesive fastening approach necessitates considering surface area,

surface preparation, adhesive thickness and condition, and compatibility with the intended service.

The strength of the cured joint can be tested by applying forces perpendicular and parallel to

the adhesive-held surfaces. Evaluating the joint’s strength under different time and temperature

conditions further allows for assessing its performance.

• Blind Rivet Assembly: Mechanical considerations for blind rivet assembly encompass the com-

pressive strengths of the bracket and panel material, as well as the force required for cinching the

joint and breaking off the mandrel. If the forces exceed the compressive strength, the mandrel may

pull through the rivet body, leading to an incomplete rivet installation. Retention of rivet clamp load

is another important factor, and comprehensive testing under various conditions aids in addressing

these concerns.

• Self-Threading Screw Assembly: The self-tapping screw installation entails considerations of

the strip-to-drive ratio and the compatibility of screw thread dimensions with the hole site in both

the bracket and panel. The thread-forming threads capture the panel material between the major

and root diameters, exerting a relatively perpendicular load. In plastic materials, thread angles

narrower than those of machine screws are often beneficial.

2.4.3 Automated Assembly Machinery

To integrate automated assembly processes effectively and accommodate the rapid escalation of

assembly build quantities resulting from commercial success and increasing demand, the implementation

of an automatic assembly machine becomes a logical and crucial step. The success and satisfaction of

achieving timely ramp-up in assembly production hinges upon meticulous planning, decision-making,

and execution of the automatic assembly machine. Inadequate decision-making in this regard renders

subsequent assembly operations incapable of fully restoring the potential gains in assembly efficiency.

Conversely, when planned and executed with precision, an automatic assembly machine or machines

represent a rational and profitable approach to assembly management, allowing for successful response

to increased assembly demands.

Presently, a multitude of suppliers offer automated threaded fastening systems encompassing robots,

fastening tools, and various accessories such as feeders (refer to Fig. 4a), pickup devices (see Fig. 4b),

and machine vision modules. Different types of robots are available, including gantry-type and Cartesian

robots known for their high positioning accuracy and larger footprint. Selective Compliance Assembly

Robot Arm (SCARA) robots are commonly utilized in electronics assembly, while 6-Degrees Of Freedom

(DOF) articulated arms (Lara, Althoefer, and L. Seneviratne, 1998; Matsuno, Huang, and Fukuda, 2013)
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are capable of driving screws from various angles to handle complex part geometries. Parallel Delta

robots facilitate rapid pick-and-place movements. Passive compliance units, such as springs (Hwang et

al., 2012), are frequently employed to connect these robots with fastening tools, enabling easier initial

thread mating while maintaining the appropriate insertion force.

Figure 4: Vibratory bowl feeder (a) and Pickup device (b), similar to the ones under study, from AGI Corp.

The selection and sizing of robots are influenced by factors such as assembly speed, positioning

accuracy, insertion axis, reaction moments generated by the fastening tool, part geometries, system

integration complexities, and other application-specific considerations. Typically, small and lightweight

robots are suitable for small screws, Cartesian and SCARA systems are suitable for midsize fasteners,

while larger multiaxis robots are utilized for midsize and larger fastener sizes. Among these options, 6-

DOF articulated robots offer agility, extended reach, adaptability for future use, and the ability to handle

complex part geometries that may require multiple screw insertion orientations.

2.4.4 The Assembly Process

At Bosch AE/P, threaded fasteners serve as the primary method for joining mechanical assemblies.

Among external tension-type threaded fasteners, screws and bolts are the two main types utilized. Bolts
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are specifically designed to be paired with nuts or threaded holes to achieve a robust clamping force.

Conversely, screws are primarily intended for use with preformed internal threads, commonly known as

machine screws, although they can also create their own threads, as observed in self-tapping screws. It

is worth noting that despite their technical distinctions, the terms bolts and screws are frequently used

interchangeably. In the context of fastening, a thread refers to a helical ridge with a uniform cross-sectional

shape present on the inner or outer surface of a cylinder. External threads are featured on bolts, studs,

or screws, while internal threads are found on nuts and tapped holes.

Automated screw fastening encompasses several sequential stages of operation, typically involving

feeding, alignment, screwdriving, and post-fastening processes (Järvenpää, Lanz, and Tuokko, 2013),

Fig. 5).

Feeding

  Examples: blow-feeder,
vibratory bowl

Blow Feeding ?

Locate the screw
Move above the screw

N

Pick up the screw

  Examples: magnetic bits,
vacuum adapter

Alignment

Part-and-part
alignment (position)
Part-and-screw
alignment (position &
orientation)
Transport the screw
above the hole
Work-holding

Examples: passive or active
compliance (poka-yoke
devices), work-holding

gripper

Y

Screwdriving

Approaching the hole
Initial thread mating
(first engagement)
Run-down (fast
speed)
Snug (alignment)
Tightening (achieve
desired clamping
force)

Control strategies: torque,
current, torque + angle, etc.

Fault detection: teach
method, defect catalog, ANN
(based on the torque-angle
signature curve)

Post-fastening

Store all results
Move the sire-driver
above the hole or to
the feeder to get a
new fastener

Repeat the above process if
necessary

Transport the product to the working area (e.g., fixture)

Transport the product to the next station for further processing

Figure 5: Typical screw fastening procedure in an automatic assembly line, adapted from Jia et al. (2019).

Feeding refers to the organization and orientation of threaded fasteners before they are used with

screwdrivers. To achieve this, screw feeders are commonly employed. Various feeding mechanisms such

as vibratory feeders, flex feeders, tape feeders, shaker trays, and blow feeders are utilized for this purpose.

The choice of feeder type depends on factors like the type of screws, their materials and sizes, system

cost, and speed requirements.

Prior to initiating the screwdriving process, it is essential for the machine to possess the capability

of picking up the designated screw to be used. There are several methods available for picking up the

fastener to be used. These include blow feeding, where screws are oriented using a bowl feeder and then

blown through a tube to reach the screwdriver tip; magnetic attraction, where the driver bit is magnetized

to attract the screws; and vacuum grippers, which offer precise orientation control and are commonly

preferred for automated screwdriving due to their versatility across different materials. Once the screw
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and driver bit are paired together, the alignment process can be initiated. After successfully picking up

and aligning the screw, the screwdriving process can commence. Ensuring proper alignment is vital for

successful screwdriving, which involves aligning the fixtured part with the assembled part (known as part-

part alignment) and aligning the fixtured part with the screw itself (part-screw alignment) to prevent any

potential failures. Typically, a fixture or a compliance device is employed to restrict the user’s range of

motion and aid in achieving the necessary alignment.

Once the screw is picked up and aligned, the screwdriving process can begin. The process can be

divided into several stages, which can be visualized through a torque-angle curve (Jia et al., 2019). Each

of these stages can be roughly associated with the steps described in Fig. 10 and Table 1, where certain

failures may occur:

• Starting the thread or finding the thread (0): entails mating the bolt thread with the nut

thread. referred to as starting the thread or finding the thread depending on whether a self-tapping

screw is utilized or not. Examples of failures in this stage include cross-threading in which the first

(full) external thread crosses the internal thread in such a way that the thread engaged on one

side of the internal thread is not on the same revolution as the thread engaged in the opposite

side”(Nicolson and Fearing, 1993); and jamming.

• Prevailing torque zone (or rundown zone) (1): stage where the screw steadily drives through

the hole until the screw head contacts the work surface. Mis-starts (J. A. Speck, 2015) frequently

occur as a common failure mode within this fastening zone. These mis-starts refer to instances

where the initial alignment or engagement of screws or bolts with their respective threads or holes

is improperly executed. Stripped Threads are also very common and occur when excessive force

or incorrect alignment during the rundown can strip the threads of the fastener or the mating

component, causing a weakened or ineffective connection.

• Snug zone (or alignment zone) (2): zone where the fastener and joint mating surfaces align.

The snug zone is a complex combination of macroeffects and microeffects due to surface/thread

deformations. Insufficient Thread Engagement is a prevalent occurrence in this context, charac-

terized by the fastener not fully engaging with the threads in the mating component during the

snug phase. This failure leads to diminished clamping force and a weakened joint. Another issue

stemming from these similar characteristics is the floating screw, where the screw fails to fully seat

within the work surface.

• Elastic clamping zone (3): where the torque-angle curve has a constant slope. In some safety-

critical applications, the screw may need to be tightened beyond the elastic clamping zone to the

postyield zone, where plastic deformation occurs. Understanding the mechanics and failure modes

of this process is crucial for ensuring successful screwdriving. Potential failures within the elastic

clamping zone can arise due to over-tightening, where excessive torque surpasses the elastic limit of

the fastener or connected components, resulting in deformation, cracks, or even fractures, leading
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to structural failures. Additionally, fatigue failure may occur as a consequence of repeated cycles

of over-tightening and relaxation in this zone, leading to the development of cracks, fractures, or a

gradual loss of clamping force over time.

The purpose of both RO1 and RO2 in the present study is to detect potential failures throughout

all stages of the fastening process, regardless of having comprehensive knowledge about the specific

underlying processes that encompass these common failure modes. In conjunction with the fastening

process itself, the quality assessment stage takes place to determine the success or failure of the fastening.

2.4.5 Monitoring the quality and detecting faults

In modern automated assembly machines, the incorporation of microprocessors enables the analysis

of torque on the transducer and the degrees of rotation of each connecting screw during installation. This

analytical capability allows for mathematical comparison with the torque-rotation function or signature of

a properly preloaded connecting joint (Peterson, Niznik, and Chan, 1988; Nieoczym and Longwic, 2016).

Consequently, the smart assembly system can effectively differentiate between normal process variation

and exceptional causes such as bolts with insufficient yield strength or instances of cross threading during

initial stages. By engaging in this analysis of assembly operating conditions, the assembly machine

assumes the role of a cognitive, decision-making unit, capable of identifying assembled units that fall

outside the preload specification and require rework or repair. One notable advantage of such a system is

the ability to store data pertaining to each assembly for future reference. By utilizing correctly programmed

assembly machines, the performance of the fasteners supplied by connecting screw manufacturers can

be evaluated using data obtained directly from the assembly process. Assemblies that do not meet

engineering specifications can be retrospectively reviewed, allowing for effective control over the factors

contributing to noncompliance. Numerous algorithms and monitoring strategies have been developed for

detecting faults in the screw insertion process. One commonly utilized approach is the teach method

(Smith, 1980), often incorporating limit checking. This method operates under the assumption that each

screw insertion process exhibits a distinctive torque-angle fastening signature curve, with faults typically

manifesting as significant deviations from normal signals (refer to Fig. 10). Consequently, as a preliminary

setup step before assembly, the signature signal corresponding to the specific screwdriving operation is

taught and recorded, utilizing the average of accurate insertion examples (Althoefer, Lara, Zweiri, et al.,

2008). This is further explored in Section 2.8. During assembly, this method compares the real-time

insertion signals with the stored correct signature signals. In the context of this PhD thesis, Bosch’s

quality assessment process adheres precisely to this procedure, which also includes further detailing of

failure modes by comparing the results against a defect catalog, as outlined in Section 3.1.
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2.5 Data Mining and Machine Learning

2.5.1 Cross-Industry Standard Process for Data Mining

Cross-Industry Standard Process for Data Mining (CRISP-DM) is a well-established methodology used

in the field of data mining and analysis. It provides a structured framework for designing and executing

projects, ensuring that they are approached in a systematic and organized manner, making it a popular

choice for organizations looking to better understand their data. It was first developed in the 1990s by a

group of experts in the field of data mining. Coming from well established companies like Daimler Chrysler,

SPSS and NCR Corporation they recognized the need for a standardized approach to data mining projects

and worked together to create a methodology that could be used across industries. This resulted in the

development of the CRISP-DM first published by Chapman et al. (2000).

The CRISP-DM methodology consists of six main stages (Fig. 6), each of which is designed to build on

the previous stage and move the project towards a successful outcome. The six stages of CRISP-DM are:

Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment.

Business
Understanding

Data
Understanding

Data
Preparation

ModellingEvaluation

Deployment
Data

Figure 6: The CRISP-DM methodology, adapted from Chapman et al. (2000).

1. Business Understanding: is the starting point for any data mining project and involves defining

the objectives and goals of the project from a business perspective. It is initiated by the gathering of

background information about the current business situation, followed by a documentation stage

where the specific business objectives are decided upon by key decision makers. It must also

include a clear definition of the success criteria which will later be used to assess on the quality of

the final solution. The main output of this work is typically a project plan / roadmap which answers
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all business questions asked thus far and both the business and data mining goals for the project.

This stage closely relates to the first and second steps of the DSRM-IS (see Section 2.1.2).

2. Data Understanding: involves taking a closer look at the data available for mining. It includes

activities such as data cleaning and transformation, data visualization, and identification of relation-

ships and patterns in the data. The objective of this stage is to gain a comprehensive understanding

of the data and its quality (which can be assessed from a multitude of vectors like missing data,

data errors, etc). This understanding is critical for making informed decisions about which data to

include in the project and how to prepare it ahead of modeling. To acquire such comprehensive

knowledge of the data at hand two reports are usually produced : a data quality report and a data

exploration report. While the prior focus on aspects such as data cardinally, correlation between

variables and overall data quality, the latter is closely related to a more traditional Exploratory Data

Analysis (EDA). This step is critical in avoiding unexpected problems during the next phase - data

preparation - which is typically the longest part of a project.

3. Data Preparation: it is one of the most important and often time-consuming aspects of any data

mining project. Whilst the overhead of such task be minimized by devoting adequate energy to

the previously introduced phases, preparing and packaging data is a complex task. As a process

it involves a plethora of data preparation tasks such as the merging of data sets, aggregation of

records, selection of subsets of data, data cleansing and guarantying adequate distribution of data

across the training and test data sets. This stage is critical as the quality of the data will greatly

impact the accuracy of the models created (Stojanovic et al., 2016). This stage proved particularly

important for this project. The inclusion and contribution of the domain experts in the feature

selection process (the process of reducing the number of input variables from the initial set) of

this project greatly decreased the number of variables at hand. From the initial forty-four variables

collated from multiple systems present in the factory, only two proved to be relevant to the problem

we were addressing. This de-compounding effect helped ease the computing resources required

to process such vast quantities of data like the ones we have to handle on this project.

4. Modeling: is the stage were the results begin to shed some light on the business problem posed

during the business understanding phase. Modelling is commonly conducted in multiple iterations

and involves a refinement process where models are initially trained using their default param-

eters and then fine-tuned in order to obtain more robust variations of themselves. If after this

refinement the results are still not satisfactory one can revert back to the data preparation phase

where manipulations to the data can be made to accommodate the particularities required by the

preferred model. The essence of a model transcends the mere implementation of an algorithm

on a given dataset; it encompasses a collection of statistical measures and discernible patterns

that can be utilized to generate predictions and derive meaningful insights regarding interdepen-

dencies when applied to novel data. During the development phase of this thesis work, several
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ML algorithms were used to predict both the anomalous processes and regions of anomaly on a

fastening process. Given the nature of the problem at hand, three unsupervised and one-class

learning algorithms were selected for empirical comparison: Local Outlier Factor (LOF), IF and AE.

For bench-marking purposes they were compared against the popular Random Forest (RF). Unlike

the the tree core models, the RF was trained on both normal and abnormal records given its super-

vised learning characteristic. From the initial set of explored models, the One-class Support Vector

Machine (OC-SVM) was excluded due to its inability to accommodate large volumes of data.

5. Evaluation: From the modeling phase, we determined that the models built are technically correct

and effective according to the data mining success criteria defined earlier. However, its results must

be compared against the business success criteria established at the beginning of the project. This

stage usually comprises the selection of the final model and putting together conclusions drawn

from the models themselves. The latter are also known as findings. During the development of this

work two main metrics were adopted for the evaluation stage: Receiver Operating Characteristic

(ROC) (assessed from an Area Under the ROC Curve (AUC) perspective) and Equal Error Rate (EER)

were selected for RO1 and the Mean Absolute Error (MAE) describes the reconstruction error for

RO2. Given that each record fed to the model receives a GoF classification, predictions are aggre-

gated per tightening cycle before any evaluation is performed. Additionally a realistic rolling window

strategy was employed which proved to be a robust method for simulating an anomaly detection

process through time. As this method produces multiple AUC values per iteration, results are ac-

cumulated by computing their median values and their paired median differences are statistically

compared using the Wilcoxon non parametric test (Hollander, Wolfe, and Chicken, 2013).

6. Deployment: involves putting the chosen models into production and making them available to

interested parties. This stage may also involve training stakeholders on how to use the models and

providing ongoing support and maintenance. The deployment stage is critical for ensuring that

the models are effectively used to deliver business value. Besides these activities, the deployment

stage typically includes the generation of a report, devising a monitoring and maintenance plan

and a review of the project as per described by Chapman et al. (2000). The RO3 of this work

encompasses the initial steps towards the deployment of the solution under an IDSS umbrella.

Given the difference in pace between industry and research it was not possible to fully assess the

quality of the final solution in a extended environment. However, the preliminary results suggest

that the strategic decisions made throughout the development cycle and the produced artifact

efficiently address the problematic being studied.

The CRISP-DM methodology has become the de facto standard for data mining projects and is used by

organizations around the world. Fig. 7 summarizes all CRISP-DM stages and the generic tasks and outputs

for each phase.
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Figure 7: Overview of the CRISP-DM phases, generic tasks (bold) and outputs, adapted from Chapman
et al. (2000).

2.5.2 Machine Learning Algorithms

ML encompasses a diverse range of types, such as supervised, unsupervised, semi-supervised, and

reinforcement learning. Supervised learning relies on labeled datasets, where inputs are mapped to

corresponding outputs. Algorithms are trained using this labeled data to make accurate predictions or

classifications. It is commonly used in problems where the output variable is categorical (classification)

or continuous (regression). Popular supervised learning algorithms include Random Forest (RF), Decision

Tree (DT), Logistic Regression (LR), and Support Vector Machine (SVM). Unsupervised learning operates on

unlabeled datasets, without specific output labels. The goal is to discover patterns, similarities, and differ-

ences within the data. Clustering and association are two categories of unsupervised learning. Clustering

algorithms group data points based on their similarities, while association algorithms identify relationships

and dependencies among variables. In this work, we particularly address OCC tasks, which can be as-

sumed as an unsupervised form of learning, since the data-driven models are trained only with normal (the

most common) instances, thus the labeled attribute is not used to generate the ML models. The adopted

OCC ML algorithms are described in the next subsection. Depending on the availability and nature of the

training data, it is essential to select the appropriate ML technique. As detailed in Chapter 3, this PhD

work exclusively focused on the development and implementation of unsupervised learning models. This

decision was driven by two key factors. Firstly, quality labeled data is often costly, requiring a manual

inspection that is prohibitive when handling big data. Secondly, within the screw tightening domain, the

learning examples are highly unbalanced, with most cases being related with normal assembly conditions.

To establish a benchmark for performance comparison, a RF model was trained and used as a baseline

for evaluating the models developed in this work. Further details on the methodology and experimental
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results can be found in Chapter 3. Furthermore, as illustrated by RO2, the primary objective of applying

ML to the problem at hand is to classify fastening processes as either good or bad. Therefore, the se-

lection of models needs to be narrowed down to those capable of performing such tasks. Typically , ML

encompasses two distinct approaches: classical ML algorithms and deep learning algorithms.

Given the importance of OCC tasks, there are several ML algorithms that can produce data-driven

models using only normal training examples. This section lists the OCC non deep learning methods that

were explored in this work and the already mentioned RF baseline:

• IF: The IF algorithm (F. T. Liu, Ting, and Z. Zhou, 2008; Ding and Fei, 2013) is an unsupervised

anomaly detection method that separates anomalous data points from normal ones. It achieves

this by creating a collection of smaller decision trees, known as Isolation Tree (iTree)s, which isolate

anomalous instances by splitting the data using random parameters. Anomalies, being few and

different from normal data, are more easily separated and positioned closer to the root of the

tree. The algorithm forms an ensemble of these iTrees, called an IF, to collectively identify and

discriminate between good and bad data. By evaluating the average path lengths within the forest,

anomalies are identified as data points with shorter path lengths, while normal data points have

longer path lengths. Data falling in between these extremes are considered potential anomalies.

• LOF: Introduced by Breunig et al. (2000) and widely used for unsupervised anomaly detection

(i.e. Cheng, Zou, and Dong (2019) and Alghushairy et al. (2021) ), operates by calculating the

local density deviation of a specific data point in relation to its neighboring points. LOF identifies

outliers as samples that exhibit significantly lower density compared to their neighbors. If a point is

deemed an outlier based on its local neighborhood, it is considered a local outlier. This approach

leverages the density of the surrounding data to identify anomalies effectively. LOF is particularly

advantageous in scenarios where the data density varies across the dataset. Consequently, LOF

assigns an outlier factor to each point, quantifying its deviation from the dataset. To ensure a fair

comparison, in this study, the LOF model is trained solely on normal examples, employing the

outlier factor score directly as the anomaly decision score. While the IF algorithm is renowned

for its proficiency in identifying global outliers, it may not perform as effectively in detecting local

outliers. In contrast, the LOF algorithm excels in local outlier detection, successfully capturing

anomalies characterized by low density compared to their neighboring data points. However, it

should be noted that LOF is associated with high time complexity due to its intricate calculations

and neighborhood-based approach (Cheng, Zou, and Dong, 2019).

• OC-SVM: SVM have proven to be highly successful in ML, originating from the work of Vapnik

(1963). SVMs use linear models to achieve nonlinear boundaries by transforming input data into

higher dimensional spaces. This allows them to represent complex boundaries in the original

space. For classification, SVMs find the hyperplane that maximally separates the dataset, aiming

to minimize generalization error (Witten, Frank, and Hall, 2011). In anomaly detection, the OC-SVM
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offers a semi-supervised approach suggested by Schölkopf et al. (2001). By adapting SVMs to the

one-class classification problem, the OC-SVM treats the origin as the sole representative of the

second class. Using relaxation parameters, the OC-SVM separates the one class from the origin

and applies standard OC-SVM techniques. This method requires only normal data for training,

enabling the detection of anomalies without prior knowledge. However, the OC-SVM is sensitive

to outliers and may pose computational challenges when applied to large datasets, limiting its

suitability for certain scenarios (Schölkopf et al., 2001).

• RF: First introduced by Breiman (2001) and extensively studied by, Genuer, Poggi, and Tuleau-Malot

(2010) and Biau and Scornet (2015). Is a highly popular and efficient algorithm for classification

and regression tasks. It leverages the aggregation of a large number of de-correlated decision

trees, combining bootstrap aggregation (random sampling with replacement) and random feature

selection. These techniquesmitigate variance, reduce the risk of overfitting, and enhance prediction

performance (Witten, Frank, and Hall, 2011). Each tree in the RFmodel is constructed using several

bootstrap samples randomly selected from the original dataset, employing the Classification and

Regression Tree (CART) method and the Decrease Gini Impurity (DGI) as the splitting criterion.

During the tree building process, splits are made to maximize the CART criterion, considering a

specific number of randomly selected candidate features (often referred to asmtry) (Genuer, Poggi,

and Tuleau-Malot, 2010; Biau and Scornet, 2015). The combination of these techniques in the RF

algorithm enhances its robustness and prediction capabilities.

2.5.3 Deep Learning

Deep learning algorithms, particularly deep neural networks, have gained immense popularity in re-

cent years for their ability to learn hierarchical representations of data through interconnected layers of

neurons (Bengio, 2009). This breakthrough approach eliminates the need for manual feature engineering,

as deep learning models extracts relevant features from raw data. This flexibility allows them to effectively

capture complex patterns and dependencies in various domains, including image and speech recognition,

natural language processing, and reinforcement learning. While deep learning has revolutionized ML, it

does come with certain requirements and limitations. Deep learning algorithms typically demand large

amounts of labeled data and significant computational resources for effective training. Additionally, the

high complexity and black-box nature of deep neural networks can make them less interpretable com-

pared to classical ML models. However, despite these challenges, deep learning continues to push the

boundaries of the field, particularly in domains where raw, high-dimensional data is abundant, and auto-

matic learning of intricate patterns is crucial. In the realm of deep learning, researchers have identified

two common phases in model development. The first phase involves initializing the model with unsuper-

vised methods, allowing it to learn the underlying data distribution (Srivastava et al., 2014). The second

phase focuses on enhancing the model’s performance through supervised learning algorithms, such as

back-propagation (Vaswani et al., 2017).
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Various deep learning structures find applications in anomaly detection, image recognition, and voice

recognition, among others. These structures pave the way for further advancements in deep learning,

enabling the development of more powerful and versatile models. One of the most popular deep learning

algorithms in the context of anomaly detection classification is the AE. Deep AEs have emerged as powerful

tools for modeling high-dimensional data in unsupervised settings. They consist of an encoder and a

decoder (Bengio et al., 2006; Kingma and Welling, 2014). The encoder compresses the input data

into a latent encoding, while the decoder reconstructs the data from the encoding. By minimizing the

reconstruction error on normal data, AEs are trained for anomaly detection (Zhao et al., 2017; Zong et al.,

2018). However, it is not always the case that anomalies result in higher reconstruction errors, as observed

in previous studies (Zong et al., 2018). Anomalies may be well-reconstructed if they share compositional

patterns with normal training data or if the decoder is highly effective in decoding abnormal encodings. AEs

are therefore neural networks trained through unsupervised learning to minimize the discrepancy between

the original input and its reconstruction (Vincent et al., 2010). Comprising an encoder and a decoder, AEs

map the input to a hidden representation and back to the original input space. Deep AEs can be created

by stacking multiple AEs, enabling the modeling of complex data representations (Vincent et al., 2010).

AE-based anomaly detection is a deviation-based approach that employs unsupervised learning (C. Zhou

and Paffenroth, 2017; Z. Chen et al., 2018; Gong et al., 2019). By using the reconstruction error as an

anomaly score, AEs identify data points with high reconstruction errors as anomalies. These AEs are

trained only on normal instances, making them proficient at reconstructing normal data while struggling

with unseen anomaly data.

2.5.4 Machine Learning Evaluation Metrics

When developing ML models, it is crucial to evaluate and assess their performance using a range of

metrics. These metrics provide valuable insights into how effectively the model performs tasks such as

classification, time-series prediction, and regression. By utilizing specific metrics, informed decisions can

be made, enabling the selection of preferred models. Evaluating the model’s performance is an essential

aspect of quantifying its effectiveness (Witten, Frank, and Hall, 2011; Galar et al., 2012). In the case

of classification models, their overall performance is often measured using the AUC obtained from ROC

analysis. AUC-ROC, or simply AUC, serves as an indicator of how well the model distinguishes between

different scenarios. In ROC analysis, the model’s predictions are treated as probabilities (p) for a binary

class. A decision threshold (D) is set, and if 𝑝 > 𝐷 , the class is considered true. By using a fixed threshold

(see Section 3.6 for details on a proposed alternative method), the predicted class labels can be used

to compute the well-known confusion matrix. Fig. 8 provides an example of such a matrix, which aligns

predicted outcomes with actual values and presents four main statistics for binary classification tasks,

where:

1. True Positives (TP) : number of outcomes where the model correctly predicts the positive class;
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2. True Negatives (TN) : number of outcomes where the model correctly predicts the negative

class;

3. False Positives (FP) : number of outcomes where the model incorrectly predicts the positive

class;

4. False Negatives (FN) : number of outcomes where the model incorrectly predicts the negative

class;

TPP

P

FP

N

FNN TN

Prediction
class

True class

P - Positive; N - Negative

Figure 8: Confusion matrix for a binary classification task.

The confusion matrix provides valuable statistics and insights that can be derived to evaluate model

performance. Metrics like True Positive Rate (TPR), True Negative Rate (TNR), Positive Predictive Value

(PPV), F1 score, and accuracy are defined using the following formulas (II, 2005; Sun, Wong, and Kamel,

2009):

• 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝑇𝑁 , also known as recall or sensitivity;

• 𝑇𝑁𝑅 = 𝑇𝑁
𝑇𝑁+𝐹𝑃 , also known as specificity;

• 𝑃𝑃𝑉 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 , also known as precision;

• 𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁 ;

• 𝐴𝐶𝐶 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 ;

• 𝐹1 = 2 ∗ 𝑃𝑃𝑉 ∗𝑇𝑃𝑅
𝑃𝑃𝑉+𝑇𝑃𝑅 .

The ROC curve is a graphical representation technique used to visualize, organize, and select classi-

fiers based on their performance (Sun, Wong, and Kamel, 2009; Fawcett, 2006b). It presents a curve that

summarizes the trade-off between TPR (y-axis) and False Positive Rate (FPR) (x-axis) at threshold points

D ranging from 0.0 to 1.0. The AUC-ROC measures the quality of the probabilistic classifier and can be
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calculated using Equation (2.1). An AUC-ROC value of 0.5 corresponds to a random classifier, while a

value of 1 represents a perfect classifier.

𝐴𝑈𝐶 − 𝑅𝑂𝐶 =
∫ 1

0

𝑇𝑃

𝑇𝑃 + 𝐹𝑁 𝑑
𝐹𝑃

𝐹𝑃 +𝑇𝑁 𝑑 =
∫ 1

0

𝑇𝑃

𝑃
𝑑

(
𝐹𝑃

𝑁

)
(2.1)

These metrics allow us to gain a comprehensive understanding of the model’s performance and effec-

tiveness in various classification tasks. Considering the circumstances in which this study was conducted,

the objective was to optimize two aspects: the maximization of the AUC and the minimization of FN. Re-

ducing the number of FN is crucial because it ensures that the model doesn’t mistakenly classify a faulty

screwing process as good. Such misclassifications would result in defective parts progressing along the

assembly line, which is undesirable and most importantly, expensive.

2.6 Big Data

In recent years, the volume of data being generated has grown exponentially, and this trend is expected

to continue in the future. This surge in data has led to the emergence of Big Data (BD), which refers to the

large and complex data sets that are difficult to process and analyze using traditional data management

and analysis tools (Lee, Kao, and Yang, 2014). With the advancement of technology, organizations now

have access to a wide range of tools and technologies that enable them to manage, process, and analyze

massive amounts of data.

BD is frequently characterized by its dimensions, known as its ”Vs.” Previous explanations of BD

(Narasimhan and Bhuvaneshwari, 2014) emphasized three Vs (volume, velocity, and variety), but a more

widely acknowledged definition currently incorporates the following four Vs (volume, velocity, variety, and

veracity). It should be emphasized that additional Vs can also be identified in existing literature (W. Fan

and Bifet, 2012; Demchenko et al., 2013). For instance, value is frequently included as a fifth V. However,

value is defined as the intended result of BD analysis rather than an inherent attribute of BD (Khan, Uddin,

and Gupta, 2014). Due to this rationale, the present thesis exclusively focuses on the four dimensions

that define BD (Kune et al., 2016).

In this context, the emergence of the ”4Vs of BD” framework offers valuable insights into compre-

hending the fundamental attributes of large-scale data. The 4Vs encompass:

• Volume: The amount of data generated and collected by organizations is vast and ranges from ter-

abytes to exabytes. This data is sourced from various channels, such as social media, e-commerce,

and IoT devices (Beyer and Laney, 2012; Parker, 2012).

• Velocity: Real-time or near real-time processing of data is a crucial aspect of BD. The high speed

at which data is generated and updated can make it challenging for organizations to keep up with

(Beyer and Laney, 2012).
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• Variety: The concept of variety refers to the wide range of data types and formats that exist,

including structured, semi-structured, and unstructured data. While structured data is relatively

easy to manage and analyze, semi-structured data requires more sophisticated analysis methods.

Unstructured data, such as text, images, and videos, is the most challenging to manage and ana-

lyze, and often requires advanced ML and artificial intelligence techniques (Beyer and Laney, 2012;

Jagadish et al., 2014).

• Veracity: Pertains to the dependability and credibility of data, which may vary depending on

the source and quality. The abundance of data in BD entails a risk of generating inaccurate or

unreliable data, which may result in incorrect insights and suboptimal decision making (Beyer and

Laney, 2012; Grolinger et al., 2014; L’Heureux et al., 2017).

• Value: Analyzing and utilizing BD can provide significant business value to organizations. Effective

management and analysis of BD can provide valuable insights into operations and customers,

leading to better decision making and improved competitiveness (Jagadish et al., 2014; Khan,

Uddin, and Gupta, 2014).

2.7 Challenges of Machine Learning in the Context of Big

Data

In general, BD brings forth a range of difficulties and prospects for organizations. Its significance

is expected to keep expanding in the future as the generation of data proceeds at an accelerated pace.

Nevertheless, employing ML in BD situations also comes with its own set of challenges.

It is a prevailing assumption within the field of ML that an increase in data volume should inherently

lead to improved learning capabilities for algorithms, and in turn, produce more accurate results (Grolinger

et al., 2014; L’Heureux et al., 2017). However, the advent of BD has precipitated a variety of challenges.

More traditional algorithms, by their design, were not intended to accommodate such immense volumes

of data. Many ML algorithms were developed under the assumption that datasets would be of manageable

size, allowing for the entirety of the data to be accommodated within memory. Further, it was assumed

that all data would be readily available at the time of training. These assumptions are fundamentally

challenged by BD, resulting in traditional algorithms becoming either non-functional or suffering significant

performance deficits. Fig. 9 depicts the facets of BD and their corresponding relation to ML.

The subsequent summary provides a succinct outline of the challenges associated with implementing

ML in the realm of BD, organized according to the V dimensions of BD:

1. Volume: As data size increases, computations are increasingly costly and potentially infeasible.

The curse of modularity (Parker, 2012) affects algorithms that assume data can fit entirely in

memory or a single file. Class imbalance (Japkowicz and Stephen, 2002; Ghanavati et al., 2014;
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Figure 9: BD characteristics with associated ML challenges, adapted from L’Heureux et al. (2017).

Krawczyk, 2016), the curse of dimensionality (P. M. Domingos, 2012), feature engineering (J. Fan,

Han, and H. Liu, 2014; Najafabadi et al., 2015), non-linearity (Kiang, 2003; Lipovetsky, 2022),

Bonferonni’s principle (Leskovec, Rajaraman, and Ullman, 2014; Calude and Longo, 2017), and

variance and bias (P. Domingos, 2000) are additional challenges associated with data volume.

2. Variety: Arise when large datasets are distributed across multiple files and locations (Parker,

2012; Leskovec, Rajaraman, and Ullman, 2014). Data heterogeneity poses difficulties in integrating

diverse data from various sources (Zheng, 2015). Dirty and noisy data, which may contain errors

and inconsistencies, are also challenges in dealing with variety (Swan, 2013; J. Fan, Han, and H.

Liu, 2014).

3. Velocity: Challenges in data availability arise when data arrive continuously or at non-real-time

intervals (Geng and Smith-Miles, 2009). Real-time processing refers to the need for processing

fast-arriving data in real-time or near-real-time (Gandomi and Haider, 2015). Concept drift occurs

as new data continuously arrive, leading to changes in the distribution of the target output (Dongre

and Malik, 2014). The assumption of independent and identically distributed random variables

may be broken with BD, posing challenges in ML (Parker, 2012).

4. Veracity: Involve tracing and recording the origin and movement of data, which becomes complex

and computationally costly with BD (Wang et al., 2015). Data uncertainty arises due to imprecise
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data sources and methods of data collection (Jagadish et al., 2014). Dirty and noisy data, which

contain inaccuracies and inconsistencies, also affect the veracity of BD (Lovelace et al., 2016).

Addressing these challenges requires innovative approaches and methodologies tailored to BD. Strate-

gies such as parallel computing, distributed processing frameworks, incremental learning, real-time pro-

cessing systems, concept drift detection, and advanced techniques for handling noisy and uncertain data

are crucial in overcoming these challenges and ensuring the reliability and quality of data for ML.

Distributed computing refers to a computing system in which software components are shared among

multiple computers or processors, enabling them to work together as a unified system (Coulouris, Dol-

limore, and Kindberg, 2002). This approach can improve the efficiency and performance of the software

by utilizing the resources of multiple computers simultaneously, even when they are geographically dis-

tributed (Coulouris, Dollimore, and Kindberg, 2002; Steen and Tanenbaum, 2016). While distributed

computing can be challenging to implement, it offers many benefits over centralized systems, including

scalability and redundancy. A distributed system can consist of many possible configurations, such as

mainframes, personal computers, workstations, and even minicomputers.

Distributed computing plays a crucial role in ML, enabling the training of large-scale models with vast

amounts of data. ML models require significant computational resources, and distributed computing al-

lows for parallel processing of data across multiple machines. This approach significantly reduces training

time and improves model accuracy. In the context of handling BD, distributed computing strategies can

be employed. These strategies include:

1. Vertical Scaling: Enhancing the resources of a single node, such as multi-core Central Pro-

cessing Unit (CPU)s, supercomputers, Graphics Processing Unit (GPU)s, and Field Programmable

Gate Arrays (FPGA)s. Vertical scaling has limitations, including memory constraints and limited

applicability (Nvidia, 2016).

2. Horizontal Scaling: Distributing processing across networked nodes. Horizontal scaling can be

further divided into two categories:

a) Batch-Oriented Systems: Prioritizing throughput over latency, batch-oriented systems in-

clude solutions such as Apache Hadoop and NIMBLE (Ghoting et al., 2011). They address

issues such as the curse of modularity and data locality but only partially resolve the curse

of dimensionality. In the context of the current work, this was the selected approach due to

the constraints associated with performing this PhD thesis at Bosch AE/P.

b) Stream-Oriented Systems: Operating on real-time or near real-time data, stream-oriented

systems include examples like Apache Storm and Spark Streaming. They mitigate processing

performance and real-time processing issues but are suitable only for simple ML tasks.
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Frameworks like Apache Spark and TensorFlow are widely used in the industry for distributed ML. As

data scales, the underlying data storage and transfer architectures become increasingly critical for algo-

rithm performance. The emergence of Resilient Distributed Dataset (RDD)s has revolutionized in-memory

computations on large clusters (Zaharia, Chowdhury, Das, et al., 2012). RDDs have been successfully

implemented within the Spark cluster computing framework (Zaharia, Chowdhury, Franklin, et al., 2010;

Zaharia, Chowdhury, Das, et al., 2012). One popular tool for distributed computing in ML is PySpark, a

Python-based open-source framework. PySpark provides a comprehensive set of Application Programming

Interface (API)s for complex data processing tasks, including data ingestion, transformation, analysis, and

ML algorithms for classification, regression, clustering, and more. PySpark is particularly advantageous

for BD applications as it efficiently scales to handle large datasets. It seamlessly integrates with other data

processing and ML tools such as Apache Hadoop, Apache Hive, and Apache Mahout.

The significance of distributed computing in ML is evidenced by various applications. Farber (2011)

detailed how to program and perform distributed GPU computations that exceeded the capabilities of a

single-node GPU. Sterling, Anderson, and Brodowicz (2018) implemented the widely known MapReduce

(Dean and Ghemawat, 2008) framework using distributed computing techniques.

In conclusion, distributed computing is essential for ML, enabling the training of large-scale models

with extensive datasets. Strategies such as vertical and horizontal scaling offer ways to distribute the

workload across multiple nodes. Frameworks like Apache Spark and PySpark provide powerful tools for

implementing distributed computing in ML applications. The advancements in distributed computing have

opened up new possibilities for handling and analyzing large-scale data in various domains, including ML.

2.8 Related Work

Screwdriving is among the common assembly methods used in industry that have been particularly

difficult to fully automate despite several continual efforts (Chandola, Banerjee, and Kumar, 2009). A

simpler characterization of the screwing curve using the angle-torque pairs was early proposed by Bickford

(1998) and in our previous work (Ribeiro, Matos, Cortez, et al., 2021). Moreover, the angle-torque curve

was also adopted by the ISO rotary tool evaluation standards ISO 5393:2017 Rotary tools for threaded

fasteners — Performance test method (2017). With the lower availability of anomalous data, anomaly

detection is often regarded as a one-class problem, which is a form of unsupervised learning where fault

detection systems are trained only on normal data. Classic algorithms such as the LOF, OC-SVM and

the more recent tree ensemble IF method seem to perform relatively well on many of the uses cases, as

reported by Breunig et al. (2000) and Alla and Adari (2019). The main drawbacks of these algorithms

is that they tend to require more computational effort, also offering no online update capability, thus

being less recommended to handle bigger volumes of data. Deep learning AEs are less affected by such

computational limitations. For instance, a linear increase in the training set size typically results in an

exponential computational cost growth in terms of the OC-SVM training, while for the AE model the cost
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increase is also linear. Moreover, the training of AEs can be speedup by adopting GPUs. Thus, AEs are

being increasingly adopted for anomaly detection tasks (C. Zhou and Paffenroth, 2017). To the best of

our knowledge, only a small portion of research studies have employed AEs in this domain.

Considering the industrial screw tightening domain, the work of Ferhat et al. (2021) demonstrated

the use of Bayesian rules and distance rejection heuristics to incrementally discover new manufactur-

ing defects, which were then clustered for interpretation purposes by a manufacturing expert. Using a

similar clustering principle, Diez-Olivan et al. (2017) proposed a kernel density-based pattern architecture

that can successfully identify patterns in data and correctly categorize them as good or bad. However,

the proposed kernel density-based architecture is too computationally expensive when handling larger

datasets, which occurs in our analyzed screw tightening industrial domain. Two supervised learning meth-

ods, namely a linear SVM classifier and an Artificial Neural Network (ANN), were compared on Matsuno,

Huang, and Fukuda (2013) on their capability to discriminate between four task states: ”Successful”,

”Empty”, ”Failed” and ”Jammed”. Although their discrimination abilities was roughly the same, the lin-

ear SVM was slightly faster. While interesting results were achieved, this work diverts from our approach

under two important aspects. Firstly, it assumes a supervised learning approach, which requires labeled

data that is often costly to collect (e.g., requiring human effort and time). Secondly, the work of Mat-

suno, Huang, and Fukuda (2013) is more focused on root-cause analysis rather than providing a feasible

solution to the problem. Another SVM experiment was conducted by Ponpitakchai (2016), which tried

different kernel functions (e.g., linear and polynomial) to monitor screwdriving processes on the cover of

hard disks. Unlike our use case, this experiment relies on the driver motor data instead of the data being

produced by the handheld machine. Yet, the proposed SVM approach is infeasible for our domain due

to the required high computational cost. For instance, when adopting a similar SVM algorithm using a

preliminary (and smaller) screw tightening dataset, the learning process halted after 40 hours of execu-

tion time. More recently, Cao et al. (2019) designed a supervised learning experiment using pairwise

data (angle-torque) and a Long Short-Term Memory (LSTM) deep learning architecture for the purpose

of discriminating whether a fastening process is successful or not. While good results were obtained,

and similarly to Matsuno, Huang, and Fukuda (2013), the experiments relied on labeled data (with both

normal and abnormal cases) that can be particularly difficult to be obtained (e.g., requiring a manual data

curation effort).

The capability of a Radial Basis Function (RBF) ANN to differentiate between successful and unsuc-

cessful insertions, including different failure types, is explored in the studies of Klingajay and Giannoccaro

(2004), Althoefer, Lara, and L. Seneviratne (2005), and Althoefer, Lara, Zweiri, et al. (2008). This work

builds upon their previous research presented on Lara, Althoefer, and L. D. Seneviratne (1999). The

authors conduct a comprehensive investigation employing model-based simulations and experimental

studies to monitor self-tapping screw insertions. The optimization of network architecture through com-

puter simulations reveals that normalizing the insertion signature signals prior to training yields optimal

results. Furthermore, the network demonstrates its ability to classify real signals obtained from screw

insertions into plastic plates using an electric screwdriver equipped with a torque sensor and an optical
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encoder. The chosen network structure and training procedure, based on the computer study, effectively

classify all signals, even those unseen during training. Notably, after few hundred training cycles, the

activation of output nodes distinctly differentiates between successful insertions and failure types, with

modest training requirements. Nonetheless, it is important to note that this study relies on the torque

signature of a tightening cycle, which may not always be accessible in the machines under investigation.

The existing literature exhibits a scarcity of articles that specifically address the same problem being

investigated in this PhD document, highlighting the significant gap in research regarding this particular

issue. This underscores the importance of the current study, as it aims to contribute novel insights and

fill this notable void in the academic discourse, thereby advancing knowledge and understanding in the

field.

2.9 Summary

This chapter serves as an introduction to the fundamental knowledge supporting the development

of this PhD. It begins by discussing the paradigms of research in IS, namely the behavioral science and

design science paradigms. The chapter then introduces the DSRM-IS methodology, which outlines the

investigative process designed to address research gaps and meet the research objectives outlined in the

previous section. This method aligns with existing literature, providing a process model for conducting

design science research in IS and a framework for presenting and evaluating such research. The context

in which the investigation takes place is then detailed, focusing on the I4.0 Revolution. This revolution in-

volves applying CPS concepts to industrial production systems, aiming to enhance operational efficiency,

productivity, and automation. The integration of information technologies into traditional industries be-

comes crucial, as it paves the way for automating various processes on the shop floor. The introduction of

IDSS is emphasized, highlighting their potential to revolutionize traditional industry processes by utilizing

vast amounts of existing industry data. Given that the core of this PhD thesis revolves around accurately

and automatically detecting anomalies in fastening processes, this chapter also delves into the intricacies

of these processes. Fasteners serve multiple purposes in applications, including strength, appearance,

and reusability. The market acceptance of products heavily relies on the appearance of fasteners. The

different types of fasteners and their selection process are explained, considering factors such as avail-

ability, end goal, material type, and jointing method. Automation of assembly processes in industries is

also explored.

Furthermore, the chapter addresses the implementation of machine learning as a means to overcome

challenges faced by traditional assessment approaches. It identifies the main types of machine learning

algorithms and pre-selects suitable algorithms based on the available data types and the ability to process

large volumes of data. Finally, the related work section highlights the previous contributions made in this

particular field of study. It emphasizes the significance of the current work by demonstrating how it builds

upon and expands the limited existing research in the area.
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Overall, this chapter sets the stage for the subsequent development of the PhD by providing essential

background information, outlining the research method, discussing the context of the I4.0, explaining

fastening processes, introducing machine learning, and establishing the significance of the current work

in relation to previous research.
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3.1 Introduction

The I4.0 revolution forced most companies to adapt to a more fierce and competitive market where

having optimized productive processes can dictate whether a company is successful or not. Within this

context and in particular for the assembly industrial sector, there is a pressure to reduce of costs whilst

increasing efficiency. Indeed, with the introduction of smart sensors and actuators, several modern facto-

ries use autonomous or semi-autonomous robots capable of assisting human operators during production

processes. This occurs because some assembly tasks are hard to fully automate and thus it is important

to have a human-in-the-loop. An example of such task is the bonding process between plastic parts or

between plastic parts and electronic components. These are usually achieved via welding, riveting, glue,

or by simply screwing parts together (which is the focus of this paper).

Mechanically combining parts using screws is usually achieved with the help of human-operated hand-

held screwdrivers. Over time, these machines collect thousands of real-time data points which are later

used for quality assessment. Although the collected data might vary from factory to factory, or from

handheld screwdriver manufacturers, most assume the minimum collection of angle-torque pairs. On

process completion, these pairs are used to plot a tightening curve, which is presented to the operator on

a monitor above the station. The operator is then prompted to infer on the process correctness using the

available data and a quality estimation produced by the handheld screwdriver machine software. Despite

defects being rare in this domain, some units require a more thorough inspection to prevent faulty units

frommoving to the next assembly stations. Examples of faulty processes are crossed or damaged threads,

cracked or split parts and others. To better understand the main reasons why a screwing cycle is deemed

faulty, factories make use of the collected data to build a defect catalog.

Due to the dynamic nature of the screw tightening process, which includes the introduction of different

models to be assembled over time, there is a constant need to update defect catalogs. Although defect

catalogs are empirically proven to work, they use a rather static and meticulous data curation process

that involves manual labor and screwdriver software updates. Such rigid defect catalogs are unsuitable

for industries that produce millions of fastening movements each day. Thus, there is an opportunity

to develop a highly automated screw tightening inspection system by adopting ML algorithms. While

there is vast body of knowledge covering anomaly detection in several domains, the advancements in the

application of ML to fastening processes is rather scarce. To the best of our knowledge, there are only a

few studies which can relate to our approach (as shown in Section 2.8).

In this work, we assume an anomaly detection task that consists in the automatic detection of screw

tightening process failures by employing unsupervised ML algorithms. The goal is to feed these algorithms

with only normal examples, creating data-driven models that tend to trigger high anomaly scores when

faced with “abnormal” data (i.e, outside the learned normal input space). This task is non trivial due to

several reasons. Firstly, as already mentioned, the screw tightening process is dynamic (e.g., assembly

of new products), thus the ML models need to be continuously updated. Secondly, the data is highly
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imbalanced, where only a tiny fraction of the examples correspond to failures (e.g., 0.2%). Thirdly, data is

generated with a high velocity, thus resulting in BD that requires a high computational effort by some ML

algorithms.

In our previous work (Ribeiro, Matos, Cortez, et al., 2021), we performed an initial exploration of

a low-dimensional input approach (angle-torque pairs) for anomaly detection for a small subset of the

available industrial data (corresponding to two days of production). Promising results were obtained by two

unsupervised learning ML algorithms: IF and deep denseAE. In this, we further evaluate the robustness

of the proposed screw tightening anomaly detection methods by considering a wider range of assembled

products (three distinct products) and a larger number of industrial records, collected during a longer time

period (two months). By exploring more recent data, new and different fastening curves were introduced

in our system. Using these more richer screw tightening datasets, we conduct several computational

experiments, measuring the anomaly detection performance and the required computational effort of the

proposed IF and AE models. Moreover, we adopt a realistic and robust rolling window, with several training

and testing updates that are simulated over time. We also present a novel dynamic anomaly detection

threshold visualization tool that provides XAI knowledge the human operators, supporting the identification

of specific angle-torque regions related with faulty screw processes.

Finally, the integration with the shop floor of the factory is effectively demonstrated, underscoring

the robust capabilities of the machine learning model in accurately evaluating the quality of the input

screw tightening processes. Additionally, the development of a comprehensive, feature-rich dashboard

has significantly facilitated ongoing system monitoring for domain experts. This achievement represents a

significant contribution and highlights the successful implementation of advanced technologies in indus-

trial settings.

3.2 Industrial Data

This study was conducted within a large electronics manufacturer that supplies assembled compo-

nents (mainly automotive instrument clusters) to some of the most recognized brands in the automobile

industry. The assembly of a cluster is an extensive process with multiple assembly stages. In this work,

we focus on one of the final phases in the process, where the plastic housing is combined with either

the Printed Circuit Board (PCB)s or other plastic parts. Bonding plastics or electronics to plastics can be

achieved via a multitude of techniques that involve glue, welding or the use of screw fasteners. For the

remainder of the article we optimize the validation process of screw tightening processes, which makes

use of threaded fasteners as the bonding mechanism for the units.

Validating a fastening procedure can be challenging, since it involves several real-time variables. The

manufacturing experts take their knowledge into account and leverage the information provided by the

handheld driver manufacturers to overcome most of the problems inherent to the usage of this bonding

technique. Despite the efforts to mitigate most failure modes with approaches such as sequence based
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fastening, some deviations still occur on the shop floor and the control mechanisms must be able to signal

them fast and accurately.

The plant standardizes most production lines to follow the most efficient layout in terms of assembled

clusters throughput per hour. Individually, each assembly station follows a strict set of rules that check

for violations in the correctness of the fastening sequence. The assembly process starts with the operator

inserting the raw plastic housing in a assembly jig. This jig is designed with the “poka yoke” principle

(Shimbun, 1989), which prevents wrong or misaligned parts from being loaded into the assembly jig. A

scanner installed in a favorable position reads the imprinted identification code and verifies if the product

successfully passed the previous checkpoints and if the station is capable of executing this assembly stage.

The correct screw tightening program is then loaded onto the handheld tool. This stage is fundamental

because different variants of the same part can be produced on the same machine where the threaded

holes can be of different dimensions or be located in different places. The settings specified in this program

are also used as a baseline to compare against the real values produced by the machine. The operator

then guides the handheld driver to a feeder which is always on and not controlled by the program. Once

a screw is loaded on the screwdriver bit, the operator is instructed to follow a predefined sequence with

the aid of instructions carefully illustrated on a monitor located above the assembly station. Each inserted

screw results in a GoF status message, presented on the screen which indicates whether the fastening

succeeded or not. Simultaneously, the produced data is stored locally on a .csv file. Depending on the

result, two different courses of action can be performed: on failure – the operator is instructed to stop

the procedure; on success – the data is uploaded to a remote server where it will be thoroughly analyzed

by an expert tool that compares the produced data against a defect catalog. If no defect is detected, the

operator is instructed to proceed to the next unit. This new control flow differs from the one presented

in our past work (Ribeiro, Matos, Cortez, et al., 2021), as the manufacturing experts deemed it more

important to detect false negatives (assembly cycles considered good but are not) than further analysis of

faulty units that would have to restart the assembly process.

Regardless of the outcome, new files are made available on a remote data-server (separate from the

one running the expert tool) and are then subjected to Extract, Transform and Load (ETL) processes to

make data easier to be worked on. Up until this stage, we have no control over the generated data stream.

We are currently reading this pre-processed data using .parquet files partitioned by date but this process

is undergoing some structural changes which will fundamentally change the way we access new data,

making it available through Solace, an event broker tool (Solace, 2021).

Table 1 outlines some of the variables collected for each assembly process. The granularity of the

data collated depends on a diverse factors, such as the type of the machine in use or the type of product

being produced. Some machines do not even support the computation of the variables collected once

per fastening (e.g., DTM based attributes). Nevertheless, all machines support the collection of angle and

torque values. For each 𝑖 process, there is a real-time generation of several 𝑘 ∈ {1, 2, 3, ..., 𝐾𝑖} values,
where 𝐾𝑖 denotes the total number of observations where each part number can produce a different 𝐾𝑖
value. For each unique combination of 𝑖 and 𝑘 values, the machine collects hundreds of angle (𝛼𝑖,𝑘 )
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and torque (𝜏𝑖,𝑘 ) measurements. It should be highlighted that while there is no direct temporal variable

in the collected attributes, the angle (𝛼𝑖,𝑘 ) attribute can be used as a sequential temporal measure of

the fastening cycle. In effect, the angle represents the rotation made by the screw during the fastening

process. Thus, as the angle value increases, the closer is the screwing cycle to reach its end, which

is often marked by an abrupt increase/decrease of the torque value (e.g., screw head fastened to the

surface).

A typical screwdriving cycle is characterized by four stages as per described in Table 2. Should a

process be successful (Fig. 10), the unit needs to undergo all steps and meet the transition conditions

of each sequentially. During the initial stage (step 0), the screwdriving machine rotates counterclockwise

in an attempt to latch to the screw head. Although this step is already part of the assembly process it

is not relevant for the current analysis and some machines do not even report it. The remaining three

steps represent mechanical milestones for the correct fixation of a screw to a plastic housing. There

are some specific situations where a successful procedure skips or adds an additional step. The main

reason for this behavior is related to the mechanical properties of the bonding units and the capabilities

of each assembly station. For example, the DTM attribute is not calculated if the handheld driver does

not support such a feature. For all others, the tool estimates the clamping angle and torque for the

fastening and then compares them to the actual values (represented by screw_dtm_clamp_angle and

screw_dtm_clamp_torque). These are some of the computations the assembly machine executes to

assess whether a process was finalized successfully or not, returning a GoF label (attribute screw_gof).
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Figure 10: Example of normal (“Good”) screw tightening cycles for three different products.

Despite using one-class algorithms and selecting the angle-torque pairs as our input features, the

screw_gof variable, denoted as 𝑦𝑖 for the 𝑖 -th screw tightening process, is required during the data prepa-

ration step. Not only is it used to separate good from bad fastening cycles, it also serves as our target

variable during the model evaluation stage. These labels are provided by the screwdriver and are com-

puted by comparing the curve signature against a predefined set of static rules. Although these rules

are created and tested by manufacturing experts, some cycles end up being misclassified. These rare

occurrences are usually reported and handled as fast as possible. However, and considering the nature

of this BD problem, it is not time and computationally feasible to verify all assembly cycles that are part
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Table 1: Description of the screw industrial data variables.

Variable Description
Hundreds of values per screw fastening ():

profile_angle (𝛼𝑖,𝑘 ) Value for the angle (e.g., -208.1 degrees)
profile_torque (𝜏𝑖,𝑘 ) Value for the torque (e.g., 35.6 Ncm)
profile_gradient Torque gradient for two consecutive angle values (e.g., 20)

Four values per fastening (one for each step):

profile_stepnr Screwing step number (∈{1,2,3,4})
screw_total_angle Total step angle (e.g., 990 degrees)
screw_total_torque Total step torque (e.g., 39.3)

One value per fastening (𝑘):

screw_dtm_clamp_angle Value for actual DTM Clamp angle(e.g., 79.1)
screw_dtm_clamp_torque Value for actual DTM Clamp torque (e.g., 30.2)
screw_timestamp Timestamp (e.g., “2020-10-08 06:30:51”)
part_number Product family identifier (e.g., “2222111”)
serial_number Product serial number (e.g., “11111”)
screw_number Screw number (∈{1,2,...,8})
screw_energy Total energy required (e.g., 19959)
screw_total_angle Total angle (e.g., 2993 degrees)
screw_total_torque Total torque (e.g., 30000 Ncm)
screw_gof (𝑦𝑖 ) Screwing process “Good” (1) or “Fail” (0)

Table 2: Fastening Process Steps.

Step Description Transition condition
Simple Torque
Step (1)

Serves as a transition to the next step
when the thread starts to be formed

Achieve either the transition torque or
angle within the parameterized time
range.

Angle Step (2) Fixed number of turns conducted Min Angle < Angle Target<Max Angle
within stipulated time.

Torque Step (3) Apply a fixed torque value Min Torque < Torque Target < Max
Torque within stipulated time.

Seating Con-
trol Step (4)

Apply a torque value from the screw
seating value to the part

Clamping Torque < Max Seating
Torque; Min Total Angle < Total Angle
< Max Total Angle; Min Total Torque
< Total Torque < Max Total Torque.
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Table 3: Statistics of the most recently collected datasets.

Unique Part
Numbers

Unique Serial
Numbers

Num. Good
Screws

Num. Bad
Screws Ratio

Product A 52 6,189 8,512 19 0.002
Product B 5 13,160 45,662 99 0.002
Product C 3 4,441 13,163 102 0.008
Total 60 23,790 67,337 220

of our dataset. Instead, we assume that these occurrences are very rare and thus that they do not impact

on our anomaly detection training and evaluation procedures.

A product family is composed of multiple part_numbers and is comprised of multiple fastening cycles

that share similar characteristics (e.g., angle-torque signature). As such, we grouped our datasets by

(part_number), serial number (serial_number) and screw number (screw_number, maximum of 8 screws

per individual unit). This grouping allows a fast identification of all𝑘 values related with a tightening process

(𝑖), which is useful for anomaly detection evaluation purposes.

An initial dataset of around two days worth of screw tightening processes, collected in November of

2020, was first made available. It includes a total of 2,853,967 entries related with 𝑁 =6,162 fastening

cycles. On average, there is around 𝐾𝑖 =463 records (angle-torque pairs) per cycle.This dataset is highly

unbalanced. In effect, there are 74 defects that correspond to only 2% of the screw tightening cycles.

Table 3 describes the more recent and larger dataset that is explored in this paper. In the table, the

product names were anonymized for confidentiality reasons (termed here as A, B and C). These were

selected based on their availability and in an attempt to cover a diversity within the universe of products

fabricated by the analyzed manufacturer. For each individual family, we collected two months worth of data

(from February to March 2021), which result in a total of 23,790 unique serial numbers and roughly 26.9

million individual observations (67,337 fastening cycles times 400 data points per screw). As the research

literature suggests, and like the initial data, datasets in this domain are usually highly unbalanced. In this

case, there is only a tiny percentage of faulty processes (e.g., 0.2% for Product A). Moreover, on average,

there are around 𝐾𝑖 =400 records (angle-torque pairs) per cycle.

3.3 Anomaly Detection Angle-Torque Approach

Given the important of the screw tightening anomaly detection task, several experiments were pre-

viously conducted by the manufacturing experts. A large range of experiments were held, including the

application of batch process monitoring procedures (MacGregor and Nomikos, 1996). However, this in-

dustrial anomaly detection task is non trivial. Unlike other types of processes (e.g., chemical reactions),
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there can be “normal” abrupt changes in the torque values, as shown in Fig. 10 in terms of the final angle-

torque curve for Product A. In effect, inefficient results were achieved when adopting the batch process

monitoring attempts. Nevertheless, in one of their attempts, the experts conducted a Principal Compo-

nent Analysis (PCA) that supported our assumption that angle-torque pairs are fundamental to evaluate

screwing processes. Moreover, when we started our research, we performed an initial set of experiments

using a larger number of input variables (from Table 1). Yet, the ML models (e.g., LOF, IF, AE) obtained

much worst class discrimination results while requiring an expensive computational effort. In some cases,

such as when using LOF, the computational training process even halted due to an out-of-memory issue.

Based on these results, we then opted to focus on the low-dimensional angle-torque input data approach,

which provided better results with a much lower computational effort. Thus, in this work we developed

two ML algorithms ( IF and AE) that make use of two data features (angle and torque values) as the input

values, producing then an anomaly decision score (𝑑). It should be noted that during training, the ML

algorithms are only fed with normal instances.

Considering that each fastening cycle is comprised of 𝑘 ∈ {1, 2, ...𝐾𝑖} angle-torque observations,

the output of each detection model will contain 𝑑𝑖,𝑘 anomaly decision scores, where 𝑖 denotes the 𝑖 -th

screw being evaluated. The overall decision score (𝑑𝑖 ) is computed by averaging each individual score

such that 𝑑𝑖 =
∑
𝑖 𝑑𝑖,𝑘/𝐾𝑖 . For each unique 𝑖 value, the resulting score (𝑑𝑖 ) can be compared to a target

label of a test set (𝑦𝑖 ), making the computation of the ROC curve (Fawcett, 2006b) possible. Given

that human operators require a class label, a fixed 𝑇ℎ threshold value is adopted such that for the 𝑖 -th

output is considered anomalous when 𝑑𝑖 > 𝑇ℎ. The overall procedure used to compute the final screw

classification score (𝑑𝑖 ) is shown in Fig. 11.
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Figure 11: Schematic of the overall screw tightening anomaly detection process.

Selecting the most appropriate𝑇ℎ requires either domain knowledge or a semi-automatic selection of

the best specificity-sensitivity trade-off of a ROC curve generated using a validation set (with labeled data).

In this work, we assume the usage of domain knowledge, as provided by the screw tightening human

operators. To support the expert 𝑇ℎ value selection, we propose a specialized XAI interactive visual tool

that includes a threshold selection mechanism. The tool allows a finer control over the threshold selection
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process, allowing experts to manually specify individual thresholds for different families of products and

to easily identify problematic angle-torque regions within the screw tightening profile curves.

The data collected during each individual assembly process contains 44 unique attributes spanning 3

granularity levels. Table 1 summarizes the 16 attributes related to the actual fastening process, while the

remaining 28 features are used by the assembly management systems. As described in Section 3.2, each

process is composed of multiple observations of angle-torque pairs (𝛼𝑖,𝑘 - 𝜏𝑖,𝑘 ) and the torque gradient

between two consecutive angle values is grouped by step number. Each step is comprised of multiple fine-

grained observations, the total angle and torque for the given step. Subsequently, each step is grouped

under a specific fastening identifier which, alongside the aforementioned data, reflects the whole industrial

screw tightening process.

While there is a large number of attributes, several experiments were conducted beforehand by manu-

facturing experts to try and address the problem currently being studied. Experts designed a multitude of

experiments using multivariate techniques which proved to be inefficient and incapable of discriminating

good from bad screwing cycles. For confidentiality reasons the results of such experiments can not be

made public. In one of their runs, the conducted PCA further supported our hypothesis that angle-torque

pairs contain the bulk of the information necessary to evaluate screwing processes. Additionally, during

the set up of our previous work (Ribeiro, Matos, Cortez, et al., 2021), a group of experiments with multiple

combinations of variables and encoding techniques (such as one-hot encoding) which not only increased

the overall model complexity but proved to add no extra capacity to our models. As such, and given

the previously obtained results using older screw tightening data it was found that the low-dimensional

angle-torque input data provided a better anomaly detection performance while requiring much less com-

putational effort. Thus, all screw anomaly methods described in this work assume just two input values:

the simpler angle-torque pairs: (𝛼𝑖,𝑘 , 𝜏𝑖,𝑘) for each (𝑖, 𝑘) example.

3.4 Learning Models

Three unsupervised (one-class) learning algorithms were selected for the empirical comparison: LOF,

IF and a AE. These methods are are only trained with normal cases (one-class approach). For benchmark-

ing purposes, we selected the popular RF method. However, we note that RF is a supervised learning

method that, contrary to the one-class methods, requires labeled data for the training procedure. Thus,

RF was trained with both normal and abnormal angle-torque instances.

To implement the methods we used the scikit-learn (for RF, LOF and IF) (Pedregosa et al., 2011) and

TensorFlow (for AE) (Gulli and Pal, 2017) Python modules. At an initial stage, we also explored the OC-SVM

implementation of scikit-learn. However, our training sets are too large for the algorithm, which did not

compute results in an affordable time (e.g., the first rolling window iteration execution was halted after 40

hours of execution time). In order to provide a fair comparison, and also reduce the computational effort, in

the experiments we assumed in general the default scikit-learn and keras hyperparameter values. Before
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feeding the models, all angle-torque data values were first normalized, where the numeric values were

transformed to fit into a [0,1] scale by using a max-min normalization, via the MinMaxScaler procedure of

the sklearn module.

Unlike the other anomaly detection methods, LOF is a density-based algorithm (Breunig et al., 2000)

that heavily depends on K-Nearest Neighbors (KNN) (Fix and Hodges, 1989). It is designed as local

because it depends on how well isolated an object is from the surrounding neighborhood. Instead of

classifying an object as being an outlier or an inlier, an outlier factor is assigned describing up to which

degree the object differs from the rest of the dataset. It should be noted that LOF can be used to detect

both local and global outliers. Moreover, it can be trained with multi-class instances. In this paper, in

order to provide a fair comparison, we only use normal examples to fit the model, where the outlier factor

score is directly used as the anomaly decision score (𝑑𝑖,𝑘 ).

IF is an anomaly detection algorithm which, as the name indicates, uses the isolation principle to

classify data as anomalous rather than modeling normality. It leverages the power of smaller decision

trees combining them into a single, more capable architecture. As it makes no use of labeled data, it

is an unsupervised model. It operates based on the principle that anomalies are few and numerically

different from normal instances. This forces anomalous instances to be isolated easier (separated from

all other instances) than normal data. Using these principles as foundation, a tree structure is created in

an attempt to isolate every single instance by applying multiple splits with random parameters and then

assessing on their normality. Anomalous observations with fewer attributes capable of describing them

tend to be positioned closer to the root of the tree. This structure is usually regarded as an iTree and

is the main component of anomaly detection of this algorithm. As such, an IF (F. T. Liu, Ting, and Z.

Zhou, 2008) is an ensemble of iTrees that when combined can discriminate between good and bad data.

Fig. 12 summarizes the working principle of this algorithm, where the data points with shorter average path

lengths are indicated as anomalies. On the other side of the spectrum, data points with bigger average

path lengths are considered normal. Data points which fall in between these too extremities are classified

as potential anomalies. These distances are computed and expressed by scikit-learn as an anomaly score

ranging from 𝑦𝑖,𝑘 =-1 (highest abnormal score) to 𝑦𝑖,𝑘 =1 (highest normal score), where 𝑦𝑖,𝑘 denotes

the IF output for the 𝑘 -th angle-torque pair of the 𝑖 -th screw tightening instance. In order to compute an

anomaly probility, we rescale the IF score by computing 𝑑𝑖,𝑘 = (1 − 𝑦𝑖,𝑘)/2.
Unlike the IF, an AE is a type of artificial neural network that learns normality rather than computing

abnormality scores. The AE is comprised of two main stages: an initial stage where it learns a represen-

tation for a set of data (encoding), typically by reducing the input data (the number of features describing

the input data) and is usually unaffected by noise; and a decoding stage, in which the model tries to

reconstruct the input signal. This neural network architecture imposes a bottleneck out of the encoding

stage (which forces dimensionality reduction), resulting in a compact knowledge image of the original

input, usually referred to as latent space. When applied to the specific case of anomaly detection, the

architecture accepts normal data as input and then attempts to produce (𝛼𝑖,𝑘 , 𝜏𝑖,𝑘) outputs which should
be identical to the input pair (𝛼𝑖,𝑘 , 𝜏𝑖,𝑘), where 𝛼𝑖,𝑘 denotes the angle and 𝜏𝑖,𝑘 the torque for the 𝑘 -th
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Figure 12: The Isolation Forest working principle, adapted from Regaya, Fadli, and Amira (2021).

measurement of the 𝑖 -th screw tightening instance. To ascertain the quality of this reconstruction, on

each new (𝑖, 𝑘) instance we compute its MAE (Alla and Adari, 2019), formulated as follows:

𝑀𝐴𝐸𝑖,𝑘 = (|𝛼𝑖,𝑘 − 𝛼𝑖,𝑘 | + |𝜏𝑖,𝑘 − 𝜏𝑖,𝑘 |)/2 (3.1)

The reconstruction MAE is used as the anomaly decision score 𝑑𝑖,𝑘 = 𝑀𝐴𝐸𝑖,𝑘 for each input instance,

where higher reconstruction errors stand for a higher abnormality probability. As previously mentioned,

the architecture we developed assumes (𝛼𝑖,𝑘 , 𝜏𝑖,𝑘) pairs as input and produces two output nodes which
form a fully-connected structure including a stack of layers for both stages. All intermediate hidden layers

are activated using the Rectified Linear Unit (ReLU) function, contrasting with the output nodes which

assumes a logistic function (all 𝛼𝑖,𝑘 and 𝜏𝑖,𝑘 values are normalized ∈[0,1] as previously described). To
address and reduce the internal covariate shift, which occurs when the input distribution of the training

and test set differ but the output label distribution remains intact, we apply a BN layer, discarding the

need for dropout layers. In fact, BN also normalizes the layer inputs for each batch of data that passes

through it (Ioffe and Szegedy, 2015). The development of this network architecture, all its assumptions

and decisions resulted from several trials, conducting during preliminary experiments using older screw

tightening data. Each experiment was conducted by imposing one bottleneck layer with 1 hidden node

and a varying range of additional hidden layers. The best performing architecture was achieved when the

AE was composed of 20 layers (input, BN and output layers) as show in Fig. 13. Additionally, all models

were trained using the Adam optimization algorithm (which proved to be slightly better than Stochastic

Gradient Descent (SGD) in our test case), using the previously described loss function MAE, a total of 100

epochs and early stopping (with 5% of the training data being used as the validation set).

As explained in Section 2.8, the AE model can be adapted to dynamic environments when there are

frequent data updates. In Matos et al. (2019), two neural network learning modes were compared: reset

and reuse. When new data arrives and the neural network is retrained, the former assumes a random

weight initialization, while the latter uses the previously trained weights as the initial set of weights.

As explained in the AE model can be adapted to dynamic environments when there are frequent

data updates. In Matos et al. (2019), two neural network learning modes were compared: reset and
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Figure 13: The adopted deep dense AE structure (the numbers denote the number of hidden units per
layer and the term BN represents a Batch Normalization layer).

reuse. When new data arrives and the neural network is retrained, the former assumes a random weight

initialization, while the latter uses the previously trained weights as the initial set of weights. In this work,

we compare both learning modes when executing the rolling window evaluation.

Finally, RF is a supervised learning algorithm that works as an ensemble of decision trees that form

a “forest”. Each tree depends on the values of a randomly sampled input vector and a bagging selection

of training samples (Breiman, 2001). RF can be used for both regression and classification tasks. In this

work, we used RF to output anomaly class probabilities (∈[0.0,1.0]), which are used as the decision score
(𝑑𝑖,𝑘 ).

3.5 Evaluation

To compare the anomaly detection models, we execute the realistic rolling window procedure (Tash-

man, 2000; Matos et al., 2019). This procedure is more robust than the popular random holdout train-test

split, since it realistically simulates an anomaly detection through time, producing several training and test

updates, as exemplified in Fig. 14. A fixed training window with𝑊 examples is first set. Then, in the first

iteration (𝑢 =1), the model is trained with the oldest𝑊 instances. Once the model is fit, it performs 𝑇

ahead predictions. Then, it simulates the passage of time by “rolling” the training and test sets by assum-

ing a temporal jump step (𝑆 ). The oldest 𝑆 instances are discarded from the training set, being replaced

by 𝑆 more recent ones. A new model is then fit, allowing to perform 𝑇 new subsequent predictions, and

so on. In total, there are 𝑈 = (𝐷 − (𝑊 +𝑇 ))/𝑆 model updates (training and test iterations), where 𝐷

is the total dataset size.

For the initial dataset we adopted the screw tightening granularity, where all 𝑘 instances for a particular

𝑖 tightening process are always kept together, thus 𝐷 = 6, 162. After consulting the industrial experts,

we adopted the values𝑊 = 5, 000, 𝑇 = 500 and 𝑆 = 33, which produces a total of 𝑈 = 20 model

updates. Besides the predictive decision scores, for each anomaly detection method we recorded the

computational effort, measured in terms of the average (over all𝑢 iterations) total training and and anomaly

screw tightening inference times (both in s). All experiments were executed using a 2.3 GHz Intel Core i9

processor.

Using the most recently collected data (regarding the three analyzed products), and also with the help
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Figure 14: Schematic of the adopted rolling window procedure.

of the manufacturing experts, we assume a total of𝑈 = 8 standard rolling window train and test iterations

by fixing the following values: Product A – 𝑊 =6,809, 𝑇=851 and 𝑆=106; Product B – 𝑊 =36,529,

𝑇=4,566 and 𝑆=570; Product C –𝑊 =10,530,𝑇=1,316 and 𝑆=164 (all values related to numbers of screw

fastening processes). We particularly note that these values are much higher than the ones employed in

the initial dataset. This occurs because previously we have collected only two days of screw industrial data,

while the most recent datasets have a substantially higher number of data records (67,337 fastening cycles

related with two months). For each ML model, we collected the computational effort, measured in terms

of the rolling window average preprocessing, training and testing (inference) time (all in seconds s), per

anomaly detection method. This is of particular interest to the manufacturing experts that need to deploy

the developed systems in an industrial context with near real-time requirements. All experiments were

executed on a M1 Pro processor with integrated GPU.

To evaluate the anomaly detection performance, we adopt the ROC curve (Fawcett, 2006a), which

produces a visual representation of the ability of a binary classifier to distinguish between normal and

anomalous data as its discrimination threshold varies. In the case of both the standard and static training

rolling window procedures, the ROC curves are computed by using the target labels and the anomaly

scores (𝑑𝑖,𝑘 ) for the𝑇 tightening test examples of each rolling window iteration. The overall discrimination

ability is then measured by the AUC (AUC =
∫ 1

0
ROC𝑑𝑇ℎ) and the EER. As argued in Pereira, Cortez, and

Mendes (2021), the AUC measure has several advantages. For instance, the measurement of quality is is

unaffected by balancing issues in the dataset (as previously explained, our datasets are highly unbalanced).

Additionally, interpreting its results is fairly easy and can be categorized as follows: 50% – performance of

a random classifier; 60% - reasonable; 70% - good; 80% - very good; 90% - excellent; and 100% - perfect.

The EER is used to predetermine the threshold value for which the false acceptance rate and false rejection

rate is equal (Reich and Vijaykumar, 2021). Under this criterion, the lower the value, the more accurate is

the classification. Given that multiple AUC and EER values are generated for each rolling window iteration,

the experimentation results are aggregated by computing their median values and using the Wilcoxon
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non parametric statistic test (Hollander, Wolfe, and Chicken, 2013) to check whether the paired median

differences are statistically significant.

3.6 Results

3.6.1 Experiments on the initial dataset

Table 4 summarizes the rolling window evaluation results, while Fig. 15 shows the evolution of AUC

values through the rolling window iterations. The supervised method (RF) provides an almost perfect

median AUC score (99%), which sets a high comparison standard for the unsupervised one-class methods.

Regarding LOF, it corresponds to the fastest training method, requiring an average of 18.3 s for each

rolling window iteration. However, this method also provides the worst median discrimination capability

(AUC of 80%). When comparing both AE learning modes, reuse and reset, the former provides slightly

better median AUC results and lower average computational training times (explained by the usage of the

early stopping procedure). The best one-class median AUC result is obtained by the IF (99%), which is

equivalent to the RF performance and that slightly outperforms the AE reuse method (by 4 percentage

points). As shown in Table 4, the median AUC differences are only significant when comparing RF, IF

and AEs with LOF. Fig. 15 confirms that the two best one-class performing models continuously provide

an excellent (almost perfect) discrimination along the distinct evaluation iterations. Given these results,

we recommend the two unsupervised methods IF and AE, since they do not require labeled data (as RF).

In particular, IF obtains the highest discrimination capability. As for AE reuse, the method produces an

almost similar performance while requiring much less computational effort. In effect, when compared

with IF, the AE reuse training is around 7 times faster. Moreover, the AE reuse anomaly inference time is

half of the one required by IF and one third of the response time required by RF.

Table 4: Rolling window screw tightening anomaly detection results (best values in boldface font; selected
models in italic font).

AUC Train Inference
Time (s) Time (s)

LOF 0.80 18.30 0.12
RF 0.99★ 25.33 0.12
IF 0.99★ 168.18 0.08
AE reset 0.93★ 29.64 0.04
AE reuse 0.95★ 23.00 0.04

★ – Statistically significant under a paired comparison with LOF.
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Figure 15: Rolling window AUC evolution for the screw tightening anomaly detection methods (dashed
black line denotes the performance of a random baseline classifier).

As an example, Fig. 16 plots the individual ROC curves for the selected models during the third rolling

window iteration. The curves overlap in the sensitive (top right) region, with the AE reuse model slightly

presenting a better specificity (bottom left region) in this example.
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Figure 16: ROC curves for the best two models for the rolling window iteration 𝑢=3 (dashed black line
denotes the performance of a random baseline classifier).

To demonstrate the secondary goal (identification of the anomaly process angle-torque regions), we

selected the IF and AE reuse models that were obtained in the same rolling window iteration and a defect

example from the test set. Then, we defined a threshold value (𝑇ℎ) that corresponds to the mean plus

one standard deviation of the training decision scores (a different 𝑇ℎ value was used for each method).

Fig. 17 shows the obtained anomaly points that correspond to the highest decision scores, such that

𝑑𝑖,𝑘 > 𝑇ℎ. It is interesting to note that both models signal several identical abnormal regions, such as

the three abrupt torque decays (set at the normalized 𝑥 -axis angle values of 0.30, 0.46 and 0.86).
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Figure 17: Anomaly points identified by IF (top) and AEreuse (bottom) for a screw fastening defect process.

The obtained results were shown to the industrial experts, who considered them very positive. Besides

the high quality AUC results, the IF and AE reuse models allowed to detect one real defect example that

was labeled as “normal” by the screw assembly expert system tool. Thus, there is a potential for a

better screw tightening defect detection by the proposed data-driven models. Moreover, the secondary

goal demonstration example (Fig. 17) was valued as interesting and useful, particularly in the end part

of the process (right 𝑥−axis region) when there is an abrupt torque decay. The experts highlighted that

this is one of the defect behaviors. Nevertheless, they also mentioned that there are other types of screw

tightening failures (at more initial stages), which will be analysed in future work.

3.6.2 Experiments with Larger and More Recent Data

In this section, we further compare the performance of the two unsupervised anomaly detection

methods that previously provided the best results (Section 3.6.1): IF and AE reuse. For such purpose, we

adopt more recently collected data and that corresponds to a larger time period (two months). Moreover,
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the analyzed datasets are associated with three distinct assembled product families, which tend to produce

different screw tightening profile curves (as shown in Fig. 10).

Table 5 summarizes the rolling window evaluation results for the three products and the two selected

learning architectures (IF and AE reuse), while the individual AUC and EER values (obtained for each

rolling window iteration) are shown in Fig. 18. The results attest an excellent discrimination level that

was achieved by the two learning methods for all three products, almost reaching the perfect AUC value

(in effect, we had to increase the AUC precision values to three digits in order to distinguish them from

the maximum AUC=1.0 value Table 5). In terms of the discrimination power, both methods present very

similar performances. For instance, the maximum median AUC difference is just 0.7 percentage points).

Also, as shown in Fig. 18, the IF and AE reuse curves are very close (e.g., the maximum individual

difference for the same iteration is just 3.8 percentage points (second iteration for Product A). Turning to

the EER criterion, it clearly favors the AE models, which produce lower values for all three products when

compared with the IF model. Moreover, the AE is computationally much faster when compared with IF. In

effect, the latter method requires on average around 2.7 times more computational effort for training and

around 3.0 times more inference time (to detect if a screwing procedure is anomalous). Given that the

screw tightening domain often generates BD, this computationally light property of the AE reuse method

is highly valuable.

Table 5: Rolling window screw tightening anomaly detection results (best values in boldface font).

AUC EER Train Time (s) Inference Time (s)

IF

Product A 0.998 0.840 115.933 0.018
Product B 0.999 0.899 1664.067 0.029
Product C 0.999 0.917 321.862 0.019

AE

Product A 0.996 0.793 61.250 0.005
Product B 0.996 0.832 842.869 0.012
Product C 0.999 0.593 76.467 0.006

While the EER criterion can be used to set classification score thresholds, the assumed balance

between false acceptance and rejection rate is not applicable to the analyzed industrial screw tightening

context, where a higher false acceptance rate is less costly than failing to accept a valid unit. To better

explain the anomaly detection results to the human operators, we have developed an interactive tool that

assumes a dynamic threshold selection. (Figs. 19a and 19b). The tool works by first loading a trained

anomaly detection model. Then, each time a new fastening cycle is analyzed (the inference process),

the operator can manually perform a real-time experiment with different threshold values (𝑇ℎ) by using

a slider button (shown at the bottom of the figures). Each time a new threshold is selected, angle-torque

regions with high anomaly scores (i.e., 𝑑𝑖,𝑘 > 𝑇ℎ) are highlighted (yellow colored points in Figs. 19a

and 19b). As shown in the graphs, a lower threshold produces a higher angle-torque region selection
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Figure 18: AUC for each rolling window iteration.

area.

The purpose of the interactive tool is twofold. Firstly, it can be used by the human operators to fix the

final threshold, which is adopted to signal all abnormal screw cases. Secondly, it can be used to better

reason about the ML anomaly detection decisions. In effect, the interactive threshold graphs works as an

XAI tool, helping in the identification of the angle-torque regions that were responsible for the anomaly,

which can potentially support the identification of screw anomaly causes.

We experimented the tool with both IF and AE resuse methods. In general, the same threshold level

produced the same anomaly angle-torque region selection. To simplify the visualization, the two selected

XAI screw anomaly examples are related with the AE reuse model. Fig. 19a demonstrates a torque reached

too soon error. Although the tightening curve resembles the one presented in Fig. 10, the model correctly

detected that the torque values for the corresponding angle were reached too soon (which usually indicates

a stripped plastic thread fault). On Fig. 19b a different type of failure mode was detected by the AE model.

The unexpectedly steep torque values at the beginning of the process point at a mating problem between

the screw and plastic threads. This seems to be confirmed by the expected values of torque being reached

at a higher angle (meaning the screwdriver had to perform a few more rotations). The apparent loss of

torque in the middle of the curve signature is normal for some parts, given that the tolerances for the

screw cavities are rather high on this product.

3.6.3 System Integration on the shop floor

Research in BDA and ML is usually done by different teams, who independently work in providing

analytical means to analyse the available data. This work aims to integrate the scientific and technological

contributions from both fields, supporting the integration of predictions to enrich a BDW that is used in

an advanced data analytics environment that assists decision-makers for better decisions. The proposed

architecture (Fig. 20) creates a unified environment between ML processes and the BDW, as the main

storage component, in BD contexts. Besides the storage itself, this architecture allows the monitoring of

the ML models and the BDW, expanding the analytical scope beyond the decision-making at the business
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(a) Example of the dynamic threshold tool usage for a Product A torque reached too soon error.
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(b) Example of the dynamic threshold tool usage for a Product B stripped screw error.

level - it is now possible to establish performance metrics for the BDW and the ML models and monitor

them over time.

3.6.3.1 Components and Supporting Technologies

The advanced data analytics architecture (Fig. 20) is composed of three main components: Data

Sources, BD Cluster, and Visualization Tools. The Data Sources can be of different types, depending

on the data they produce/handle: data can be structured, semi-structured, or unstructured. Besides

this classification, the data sources may present data that is produced at different speeds, with different

sizes and formats, thus justifying the context of BD (Cai and Zhu, 2015). The BD Cluster component

integrates two areas, which are Data Lake (DaL) and BDW. A distinction in data storage was made to

accommodate analytical data and non-analytical data. The DaL is used to support the storage of any

kind of data/processes/models such as Raw Data, Data Pipelines, ML Models, among others. The BDW

is a storage ecosystem supporting the storage of data modeled as Analytical Object (AO)s, representing

highly independent and autonomous entities with focus on analytical subjects in terms of decision support
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(M. Y. Santos and Costa, 2020). In the proposed architecture, the DaL has three subareas, the Standard

Raw Data, the Data Pipelines Repository, and the ML Models Repository and its interfaces. The purpose

of the Standard Raw Data subarea is to standardize the data and its access, so that throughout the

system data follows the same naming structure, making it easier for all users to understand and use. To

be efficient and coherent, this standardization needs the definition of a set of basic rules that must be

applied to all the data that is here stored. These rules should follow the DATSIS principles, which enable

data to become Discoverable, Addressable, Trustworthy, Self-describing, Interoperable, and Secure. For

example, this proposal includes rules for standardization of the attributes’ name, sharing the information

about the BDW and DaL, and ownership in the Organization Wiki, among others included in organization

directives. The Standard Raw Data is used to feed two distinct, interrelated subareas, namely the Data

Pipelines Repository and the ML Models Repository and its Interfaces. More specifically, data is stored

in different sets linked to their Business Process (BP)s, where can be accessed in a Jupyter Notebook,

which allows it to be read in the form of a Spark Dataframe. These technologies are examples and

were the ones used in this implementation. Nevertheless, other technologies with similar purposes can

be used, as the technological landscape is quite diverse in this field. The same applies for the other

technologies mentioned throughout this paper. Data Pipelines in the Data Pipelines Repository prepare,

transform and enrich data according to the defined data model, creating one or several tables in the

BDW. These tables are the physical implementation of the modeled objects. BPs have their data, but they

also use data that can be shared between them. This data that can be shared by several BPs is stored

inside the Complementary Analytical Objects (CAO) folder of each BP. The ML models in the ML Models

Repository provide predictions of events in the data, which brings a competitive advantage for the decision-

making process. The modeled AOs integrate historical attributes with predictive attributes obtained from

trained ML models. To access these predictions, an interface needs to be established between the Data

Pipelines and the ML models. This interface is based on a class, developed in PySpark, which encodes

a series of functions that allow a ML model to run on the Spark Dataframe. Thus, in the Data Pipelines

development environment (in this case in Jupyter Notebooks), another notebook containing the ML Class

is invoked. After invoking and correctly importing it, the functions in it are applied to the Spark Dataframe

that contains the Standard Raw Data. The output is a Spark Dataframe, which contains the predictions for

the processed events. Once the output of the ML model is obtained, it is integrated into the Data Pipeline.

After integrating the predictive outputs, the AO including the historical and predictive attributes is stored

in the BDW as a Hive table. The BDW is organized according to the purpose of the data and integrates

two distinct subareas: Business Warehouse and Monitoring. This division is important to efficiently store

data regarding the BPs and the performance of the BDW and the ML models. Besides training ML models

and using them, or creating AOs and storing them in the BDW, their evolution must be monitored over

time so that these components can be improved, updated, and maintained. Otherwise, the system can

become obsolete or not address performance requirements in an industrial context. For the ML models,

for example, due to the volatile nature of the data in a business activity, the data that is used for training

the models can change and the models need to evolve to meet the new data needs, thus obtaining more
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accurate predictions. Once all the data has been integrated and properly stored into the BDW, it is possible

to analyse it in the Visualization Tools component. This includes data visualizations that support analytical

tasks with associate indicators regarding ML (such as accuracy, for instance), Data Processing (such as

processing time, for instance), and AOs (such as the number of records, for instance). This component

foresees analytical dashboards for the analysis of the different BPs, and for the monitoring of the Data

Storage Processing and Analysis and the ML models. In the work here presented, the visualizations were

implemented in PowerBI . Although the architecture presents the Monitoring subarea and the related

visualizations, they are considered future work and for this reason are not described in this paper.

Figure 20: Advanced Data Analytics Architecture, from Galvão et al. (2022).
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Figure 21: MO Screws, from Galvão et al. (2022).

3.6.3.2 Data Model

In this demonstration case, the screw data model was identified following the steps presented in

Galvão et al. (2022) subsection 3.2 and integrates one AO (AO Screws), two Special Objects (Dates and

Locations), and one materialized object (MO Screws). Due to confidentiality reasons, Fig. 21 only presents

MO Screws as only this object is used to feed the dashboards here presented.

AO Screws will provide the necessary analytical information to MO Screws so that predictions can be

made in the backend, and these predictions are stored in MO Screws along with other relevant attributes.

It is important to mention that AO Screws has, for each screw, more than 400 records, and the MO Screws

only has one record for each screw with the aggregated data (as described in Section 3.2). In the proposed

model, the attributes highlighted in blue are considered NA in the AO Screws, but not in the MO Screws.

3.6.3.3 Integration and Flows

All the available data sources were integrated in the Data Pipelines that load the historical data of

the screws. Once the necessary standardization has been made to the data, it is stored in the Standard

Raw Data Screw folder. The screw data stored in the Standard Raw Data was used to train and optimize

the prediction models. Those prediction models are stored in the ML Models Repository and mapped in

the corresponding API. To feed the Business Warehouse another Data Pipeline is created. This pipeline

loads the screw data from the Standard Raw Data, and for each screw, the ML API is called to predict the

result of the GoF test. With the prediction results, a Dataframe is created containing the screw data from

the Standard Raw Data grouped by part_number, serial_number, cycle_id (only available on business

level databases), and screw_number, along with the GoF prediction. After that, the Dataframe is stored

in a Hive Table that matches the AO Screw (AO Screws), an AO modeled for this BP and that integrates

all the data relevant to support the decision support needs in this industrial plant. The decision process

is supported by several analytical dashboards available in the Visualization Tools. As proposed in the

architecture, all pipelines are stored in the Data Pipelines Repository.
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3.6.3.4 Decision Support Dashboards

Dashboards are key elements in the daily work of the decision-makers, so their design was achieved

with the engagement and validation of the final users. As a requirement for this demonstration case,

decision-makers must have a set of dashboards that present macro visualizations of the screwing pro-

cess, as well as more detailed ones capable to show the results of the GoF test of each screw. All the

dashboards developed for this demonstration case have two main areas, an L shape bar along top and

left side is dedicated to filters and a more central area with all the graphical/table elements that integrate

the dashboard. In the filters area, the user can select from a wide range of options, such as temporal

options, production line, or equipment, among others. Regarding all the examples presented in this pa-

per, it is worth mentioning that all data was anonymized for confidentiality reasons. The first dashboard

example (Fig. 22) is a general dashboard, with a holistic view of the screwing process. The purpose of

this dashboard is to allow the user to consult potentially important data of the business process in a fast

and effective way. Starting with the first element (Fig. 22, part 1), it is possible to analyse data regarding

the quantities by equipment. These quantities are related to the successful or unsuccessful production

of each equipment (Screw GoF 1 and Screw GoF 0, respectively). The available data is presented in a

descending order considering the produced quantity. It is possible to apply top and side filters to this

same visualization, allowing, for example, a visualization of the equipment with an unsuccessful produc-

tion, with the Screw GoF at 0 (Fig. 22, part 6), or filter this data by a specific equipment or production

line (Fig. 22, part 4). It is important to see in the dashboards the temporal attributes, year, month, week,

and day filters (Fig. 22, part 5), allowing the user to filter the data by a specific date, thus increasing the

level of detail and specificity of these visualizations. It is important to see in the dashboards the temporal

attributes, year, month, week, and day filters (Fig. 22, part 5), allowing the user to filter the data by a

specific date, thus increasing the level of detail and specificity of these visualizations.

Fig. 22, part 2, provides information about the most common errors that cause problems in a produc-

tion equipment. It is possible to apply again the filters to a specific equipment, to a specific production

line, to detail a specific date, search by error code and error description (Fig. 22, part 7), resulting in

information regarding the equipment that most tend to suffer that specific error during the production

process. In the last element (Fig. 22, part 3), a table calculates the percentage of failures relative to the

production cycles (cycle GoF), for each production line. This table shows the count of the total cycle GoF

values per production line, the count of the lines with cycle GoF at 0 and calculates the failure percentage.

Again, the user can filter a specific production line to return the failure percentage for that same line in the

chart. It is also possible to quickly clear all the filters selected by pressing the clear button (Fig. 22, part

8) which resets all the previous settings. The dashboard with more detailed data (Fig. 23) takes as input

the part_number and the serial number of a product (Fig. 23, part 1). For that part and serial number,

the user has an overview of the GoF test results in a bar graphic (Fig. 23, part 5). Also, the user can see

the stations where the product pass considering the screws GoF test results in each station (Fig. 23, part

6). If the user selects a station, the bar graphic in Fig. 23, part 7, will highlight the screw cycles of that
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Figure 22: Macro Screw Tightening dashboard, from Galvão et al. (2022).

Figure 23: Detailed Screw Tightening dashboard, from Galvão et al. (2022).
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Figure 24: Detailed Screw Tightening dashboard with GoF 0, from Galvão et al. (2022).

station and, for each cycle_id, the number of GoF tests OK vs NOK (Not OK) is presented. Fig. 23, part 8,

shows in detail what are the results of the GoF test for each screw id based on a previously selected cycle

id. Also, the prediction of the GoF test result is presented to the user, since in this phase decision-makers

want to see the GoF test results and their prediction to evaluate if they can stop doing GoF tests or if they

decide to do it by sampling. In this dashboard, a set of temporal filters can be used, Fig. 23 parts 2 and

3, and it is also possible to filter by GoF test result (part 4). Additionally, the dashboard has two cards to

show the values about the percentage of failures (Fig. 23, part 9) and the total of screws (Fig. 23, part

10).

Fig. 24 presents a different serial number of the same part_number presented in the dashboard of

Fig. 23. For this product, in the selected cycles, 7 screws were tight (OK) and 1 is not ok (NOK), ending

the process with 14,3 % of failures. Also, it is possible to see that the tightening fails in the first screw and

then the product changes to a different station, starting a new screw cycle that also starts the screwing

process. Moreover, it is important to highlight that the prediction was capable to detect the failure in the

first screw.

3.7 Summary

In this work, we target an unsupervised approach for screw tightening quality inspection, focusing

more on the main task of detecting an anomaly process. Our approach assumes that only normal (thus

one-class) angle-torque input pairs are used to train the models. Using recently collected data, from an
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automotive electronics assembly company. First, we collected around 2.8 million angle-torque pairs, re-

lated with 6,162 screw fastening cycles. Four different learning algorithms were compared: unsupervised

– LOF, IF and a dense AE (under two learning modes: reset and reuse); and supervised - RF, used for

benchmarking purposes. The algorithms were trained with individual angle-torque observations (two input

variables), allowing to output an anomaly decision score for each angle-torque pair. The anomaly detec-

tion methods were compared by using a realistic rolling window evaluation, which simulated 20 training

and test iterations through time. Overall, the best unsupervised learning results were obtained by the IF

and AE reuse. Both methods provide an excellent anomaly discrimination capability that is identical or

similar to supervised RF (99%) benchmark. In effect, IF produces the best unsupervised anomaly detec-

tion result (99%), slightly outperforming the AE reuse (95%) approach. However, it should be noted that

the AE reuse method requires much less computational effort, which is relevant in this industrial domain,

since it generates high velocity data. Since competitive results were obtained, we have further evaluated

the IF and AE methods on a more recent and larger data, regarding three types of assembled products

and two months of production, from February 12 to March 2021. In total, 67,337 fastening cycles and

roughly 26.9 million angle-torque pair observations were considered in this second evaluation stage. Over-

all, an excellent anomaly discrimination detection performance was obtained by both methods, with the

AE requiring much less computational effort. We have also designed an interactive visualization tool that

provides XAI knowlegdge to the human operators, helping them to better identify the angle-torque areas

associated with anomalies. The integration demonstration case was presented, providing historical and

predictive data made available throughout a set of dashboards fed by the BDW.
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4.1 Overview and Discussion

The Fourth Industrial Revolution, also known as Industry 4.0 (I4.0), has compelled companies to

adapt to a more competitive market, where optimized productive processes are crucial for success. In the

assembly industrial sector, reducing costs and increasing efficiency are paramount. Advances in Informa-

tion Technology (IT) paved the way for improved approaches and tools to store and process sensory data.

The introduction of smart sensors and actuators facilitated the use of autonomous or semi-autonomous

robots to assist human operators during production processes. This resulted in the collection of large

volumes of data (some with the characteristics of Big Data (BD)) at the shop floor across diverse indus-

tries. However, some assembly tasks still required human involvement. This PhD thesis was conducted

within a large electronics manufacturer, primarily supplying assembled automotive instrument clusters

to renowned automobile brands. The focus of this study lay in one of the final phases of the assembly

process, specifically the combination of the plastic housing with either the PCBs or other plastic parts. It

particularly targets the assembly of individual parts using handheld screwdrivers with torque and angle

sensing capabilities, enabling faster and more accurate detection of anomalous processes. By leverag-

ing the power of BD architectures, advanced warehousing techniques, and tailored Machine Learning

(ML) algorithms, previously unexplored domains could now be investigated. These advancements held

tremendous potential for anomaly detection in industrial environments.

The state of the literature revealed a research gap, with a lack of studies specifically addressing this

particular issue (as highlighted in Section 2.8). This study aimed to contribute novel insights and fill this

gap, advancing knowledge in the field. The main objective was to develop a ML-based Intelligent Decision

Support System (IDSS) for predicting the success or failure of assembly processes. The study leveraged

Big Data (BD) extracted from a Big Data Warehouse (BDW) to construct a IDSS.

The production lines in the plant were optimized for efficient assembly cluster throughput. Handheld

tools were loaded with the appropriate screw tightening program, playing a critical role in this stage.

Each inserted screw triggered a Good or Fail (GoF) status message indicating the success or failure of

the fastening process (see Section 3.2). During the course of this work, significant improvements were

made to the acquisition and storage of industrial data, ultimately resulting in data being stored in a BDW

through an ETL process. As the research literature suggested, datasets in this domain were typically highly

unbalanced, with a minimal percentage of faulty processes (see Table 3). Therefore, this study focused

on One-Class Classification (OCC), unsupervised approaches for screw tightening quality inspection, with

the primary objective of detecting anomalous processes. The models were trained using only normal

angle-torque input pairs.

The performance of four learning algorithms, including Local Outlier Factor (LOF), Isolation Forest (IF),

and a dense Autoencoder (AE), was initially compared (Section 3.6.1 and Table 4). Additionally, a super-

vised algorithm, Random Forest (RF), was used for benchmarking. The results showed that the IF and AE

reuse methods achieved the best anomaly discrimination capabilities, comparable to the supervised RF
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benchmark. The AE reuse method demonstrated superior computational efficiency, as demonstrated in

our first paper (Ribeiro, Matos, Cortez, et al., 2021), recognized with the best paper award of the confer-

ence. The effectiveness of the proposed approach was further validated using a larger dataset from the

same automotive electronics assembly company (Section 3.6.2). The evaluation confirmed the excellent

anomaly discrimination performance of both the IF and AE reuse methods, with the AE method requiring

significantly less computational effort (Fig. 18, Ribeiro, Matos, Moreira, et al. (2022)).

To aid human operators in identifying angle-torque regions associated with anomalies, an interactive

visualization tool was designed, providing Explainable Artificial Intelligence (XAI) knowledge (Section 3.6.2).

The tool enabled the setting of the final threshold for abnormal screw cases and facilitated reasoning

behind ML anomaly detection decisions.

This study also brought together in the form of an integration the scientific and technological con-

tributions from Big Data Analytics (BDA) and ML fields. The proposed architecture created a unified

environment between ML processes and the BDW, serving as the main storage component in BD con-

texts. The architecture enabled monitoring of ML models and the BDW, extending the analytical scope to

performance metrics over time (Section 3.6.3, Galvão et al. (2022)).

Conducting experiments in a constrained environment poses various challenges, including issues

related to timings, permissions, and accessibility. As a result, certain extended experimentation that

was initially planned had to be postponed until there was insufficient time remaining to perform them.

Consequently, the performance of the developed algorithms in such an evolving environment remains

uncertain. While the initial tests provided insights into the effort required to maintain certain performance

levels, several questions still remain unanswered. These include determining whether the same model

can be applied across multiple product families and identifying the optimal frequency for retraining the

models.

4.2 Future Work

In future research, there are several potential avenues to explore in the expansion of deep learning

architectures. One intriguing direction involves the utilization of AE with LSTM layers. This architectural

framework exhibits the capability to directly capture sequential data patterns, which holds the promise of

bolstering the performance of our system (Cao et al., 2019).

Moreover, it would be worthwhile to extend our data-driven approach by conducting a prolonged com-

parative analysis with the screw assembly expert system tool. By subjecting both approaches to long-term

evaluation, we can gain valuable insights into their respective strengths, weaknesses, and overall capabil-

ities. This endeavor would require continuous monitoring of system performance over an extended period

and the acquisition of feedback from screw tightening human operators. This real-world assessment would

enable us to gauge the practical effectiveness of our approach and identify any challenges or areas for

improvement that may arise.
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