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Resumo
Explicar Falhas de Software no Código Fonte

A remoção de falhas, ou bugs, de software é chamada de depuração e é amplamente reco-

nhecida como a tarefa mais árdua no desenvolvimento de software. Envolve deteção, localização

e reparação. Enquanto os dois primeiros passos foram amplamente automatizados, a reparação

tem sido menos priorizada devido aos desafios na geração de código que aborda vários tipos de

bugs e imita estilos de escrita semelhantes aos humanos.

Acreditamos firmemente na melhoria da automatização da fase de reparação, ecoando De-

Millo: ”os programadores criam programas que estão quase corretos.” Esta tese foca-se em

aproveitar informação contextual do código-fonte para melhorar a reparação automática de pro-

gramas (APR), reconhecendo a ligação entre a localização de falhas e a reparação e propondo

abordagens para integrar grandes modelos de linguagem (LLMs).

Primeiro, apresentamos o Morpheus, uma técnica de inferência de operadores de mutação

que identifica o onde e o porquê da ocorrência de falhas em software, associando mudanças

na árvore do programa com padrões de operadores de mutação. Demonstramos eficiência e

eficácia superiores em comparação com métodos tradicionais.

Segundo, utilizando o modelo generativo CodeGPT, abordamos APR como um desafio de

code completion, gerando linhas de correção candidatas, com base num ficheiro defeituoso e

número de linha, através de um processo de várias etapas que envolve parsing do código, geração

de sequências de tokens, restrição em caracteres de sintaxe e alinhamento de sequências.

Terceiro, propomos o Mentat, uma técnica que utiliza o GPT-3 para reparação automática

de erros de tipo através do bypass de sistemas de tipos para localizar expressões candidatas.

O Mentat supera outras técnicas do estado da arte e permite análise escalável de programas

através de uma validação totalmente automatizada, algo raramente feito em investigação.

Coletivamente, estas contribuições abrem caminho para demonstrar como a integração es-

tratégica de LLMs pode superar as limitações inerentes em APR.

Palavras-chave: Compreensão de Programas, Geração de Código, Grandes Modelos de

Linguagem, Localização de Falhas, Reparação Automática de Programas
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Abstract
Explaining Software Faults in Source Code

Removing faults, or bugs, from software is called debugging and is widely recognized as the

most arduous task in software development. It involves detection, localization, and repair. While

the first two steps have been largely automated, repair has been less prioritized due to challenges

in generating code that addresses various bug types and mimics human-like writing styles.

We firmly believe in improving the automation of the repair phase, echoing DeMillo: ”de-

velopers create programs that are almost correct.” This thesis focuses on leveraging contextual

information from source code to enhance automated program repair (APR). It acknowledges the

link between fault localization and repair and proposes approaches to integrate large language

models (LLMs).

First, we introduce Morpheus, a mutation operator inference technique that identifies where

and why software faults occur by associating changes in the program’s tree with mutation operator

patterns. We demonstrate superior efficiency and effectiveness compared to traditional methods.

Second, using the generative model CodeGPT, we approach APR by treating it as a code

completion challenge, generating candidate patch lines based on a given buggy file and line

number through a multi-step process involving parsing the code, generating token sequences,

constraining syntax characters, and sequence alignment.

Third, we propose Mentat, a technique that utilizes GPT-3 for automated repair of type errors

by bypassing type systems to locate candidate expressions. Mentat surpasses other state-of-

the-art techniques and enables scalable program analysis through a fully automated validation,

something rarely done in research.

Collectively, these contributions pave the way to showcase how strategically integrating LLMs

can overcome inherent limitations in APR.

Keywords: Automated Program Repair, Code Generation, Fault Localization, Large Lan-

guage Models, Program Comprehension
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1Introduction

Computer programs are vital to the correct operation of a wide range of critical scenarios. They

are a driving force in the field of space exploration controlling sophisticated rovers on the Moon

and Mars; they oversee transportation systems ensuring quick and safe mobility in the busiest

urban centers; and they contribute to healthcare by enabling life-threatening diagnostics.

Computer programs are also an integral part of our daily lives. They enable mobile apps to at-

tend our everyday conveniences assisting our navigation and reminding us of our daily schedules;

they make our workplaces more efficient through the automation of data processing; and they

constantly monitor our cars assuring we can react on time by warning about potential collisions

and correcting any issues with wheels or axis spins that may be out of sync.

Initially, a ”computer program” referred to a set of instructions for a specific task. As comput-

ers advanced, the simpler term ”program” became synonymous. The terminology progressed

further, and the term ”software” emerged, encompassing the various ways we employ com-

puter instructions. The terms ”computer program,” ”program,” and ”software” have become

interchangeable. This linguistic progression reflects the seamless integration of computers into

society. By now, we can safely state that:

Software. Is. Everywhere.

Figure 1.1: The text so far interpreted by DALL·E 3 — an AI image generator1

1As we move forward in this thesis, this mention of AI will become especially relevant.
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CHAPTER 1 INTRODUCTION

But, where does software come from? Developers create software. That is, developers, or

programmers, are the people that implement software. The way they do this is by writing code

that conveys what the programs should do.

However, despite the best efforts from developers, programs are not immune to errors. Just

as humans are prone to making mistakes, programmers can inadvertently introduce bugs into

their code. But, what is a bug?

A bug can be defined as a flaw or mistake in the code of a program that leads to incorrect or

unintended outcomes, i.e. errors.

These errors can cause unexpected behavior, system failures, and security vulnerabilities.

Ultimately, this can result in catastrophic consequences and, because of that, some bugs have

made it into history:

• Therac-25: A software bug in a medical radiation therapy machine led to patient over-

doses, causing serious health complications and fatalities.

• Ariane 5: A rocket launch failure occurred due to a software bug in the guidance system,

leading to a catastrophic explosion.

• Patriot Missile Failure: During the Gulf War, a software bug in the Patriot missile

defense system caused it to miscalculate the time, resulting in the failure to intercept an

incoming Scud missile and causing casualties.

• Shellshock: A critical vulnerability in the Bash shell — a tool that interprets commands

and helps users interact with computers — allowed attackers to execute harmful com-

mands, posing significant security risks.

• Heartbleed: A flaw in OpenSSL — which acts as a digital lock that keeps information

secure — exposed sensitive data, compromising the security of numerous websites and

online services.

• Spectre and Meltdown: These vulnerabilities in computer processors allowed unau-

thorized access to sensitive information, affecting a wide range of devices and systems

worldwide.

While developers employ various techniques to minimize the occurrence of bugs, it is prac-

tically impossible to eliminate them entirely. Indeed, software may very well be released with

unknown bugs (Liblit et al., 2005). Given this issue, established companies like Mozilla (Moz,

2



1. INTRODUCTION

2017) and Google (Goo, 2021) have bug bounty programs, providing rewards to external devel-

opers that detect and fix bugs.

Even more surprisingly, software can be distributed with known bugs! (Anvik et al., 2005;

Tian et al., 2013; Natella et al., 2016) Think about it, the existence of bugs is recognized to be

so frequent that entities consciously choose to release their software even knowing beforehand

that some problems still exist. The effort needed to locate and fix all detected bugs can be

so overwhelming, that the preferred option is to publish software before addressing every bug.

Granted, these bugs cannot be so severe as to compromise a software’s primary functionality.

In 2002, a study revealed that software defects alone incurred an annual expense of $60

billion for the United States economy (Tassey, 2002). According to a 2013 research conducted

by Cambridge University, global software bugs were estimated to result in an annual cost of $316

billion for the industry (Cam, 2013). A parallel scenario unfolded in the global economy when

a spreadsheet error in a study by economists Reinhart and Rogoff distorted the impact of high

debt ratios on economic growth. Many politicians publicly cited this study as a justification for

austerity measures before the error was discovered (Gua, 2013).

As a consequence, detecting, locating, and repairing bugs are topics of the utmost

importance to ensure the reliability and robustness of software systems:

• Bug Detection: This involves recognizing the presence of errors. Test cases play a key

role in signaling these issues.

• Fault Localization (FL): It refers to identifying where the bugs occur within the source

code. That is, the location where the bug resides.

• Program Repair: This focuses on modifying the program in order to correct its behavior

while minimizing the introduction of new bugs.

In a regular situation, fixing bugs involves going through these steps one after the other, and

we call this whole process debugging. Estimating the precise cost of debugging is challenging,

given the fluctuating effort required for each step. Despite that difficulty, one thing is sure: the cost

is significant (Vessey, 1985). Research suggests debugging tasks constitute 50% to 75% of total

development costs (Hailpern and Santhanam, 2002), with manual debugging and maintenance

often consuming 80% of a project’s resources (seacord et al., 2003).

In response to the real-world demand for a more effective debugging process, the commu-
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nity has looked for techniques to optimize it. The use of automated techniques in debugging

not only meets the demand for improved effectiveness but also enables greater efficiency. As

software systems become more complex, the integration of automated debugging tools becomes

increasingly essential to meet the demands of modern development practices.

It is in this context that generative AI offers a promising avenue, presenting a potential solution

to streamline and improve the overall efficiency of the debugging process. Generative AI refers to

a class of computational techniques that have the capability to generate new content, be it text,

images, or other data, based on patterns learned from vast amounts of existing information2.

Specifically, we will focus on large language models (LLMs), a subset of generative AI. LLMs

are powerful systems trained on extensive textual data, enabling them to understand and gen-

erate human-like language. This positions them as valuable tools for assisting the debugging

process.

In this thesis, our main aim is to explore ways to make fixing computer programs easier

and more effective. To do this, we will primarily target an area called automated program

repair (APR). We will be delving into the world of automated techniques that help find and repair

mistakes in source code. We will focus on pinpointing not only where things went wrong but also

why they went wrong. We will see how understanding the structure of computer programs can

help with this. Imagine it like doctors for source code — our goal is to create smarter tools that

can find and fix problems on their own, making the process of building and maintaining software

smoother and more reliable.

1.1 Bug Detection

One crucial approach to identifying bugs is through the use of test cases. A test case is a specific

input or set of inputs along with expected outcomes, designed to assess the behavior and cor-

rectness of a program. By running test cases, developers can determine whether their program

behaves as expected and if bugs are present.

While test cases are a crucial tool for identifying bugs in software, it’s important to note that

tests do not actually prove the correctness of a program. Instead, they focus on uncovering errors

or unexpected behaviors that might exist in the code. This distinction is essential because there

2Hopefully, it now makes sense that we placed Figure 1.1 earlier.
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are formal methods and techniques that aim to mathematically prove program correctness. How-

ever, these formal approaches often require complex specifications and are not always feasible

for every type of software.

Formal methods involve mathematical logic and rigorously defining the behavior of a program

in a way that allows for verification of desired properties. While formal proofs can provide a higher

level of confidence in the correctness of a program, they come with their own challenges and

limitations.

On the other hand, tests provide a practical means of assessing how a program behaves

under various conditions. They are designed to simulate real-world scenarios and input variations,

exposing bugs and deviations from expected outcomes. However, it’s important to acknowledge

that tests are not infallible themselves. Just as a formal proof may fail if it is built upon incorrect

assumptions (Smith, 1985; Fonseca et al., 2017), tests can only detect issues that are within the

scope of the test cases themselves (Fraser and Arcuri, 2011; Holler et al., 2012). If a test case

is flawed or doesn’t cover a specific aspect of the program, it might not uncover certain bugs.

Tests do provide valuable insights into a program’s behavior and help improve its reliability,

but they don’t guarantee absolute correctness. This is why a combination of testing, code reviews,

formal methods, and other software engineering practices are often used together to ensure the

quality and dependability of software systems. In essence, both tests and formal proofs have

their strengths and limitations, and their effectiveness depends on how well they are applied to

the unique challenges of a particular software project.

1.2 Fault Localization

Fault localization (FL) is a critical aspect of the software development process that focuses on

identifying the location of bugs within a program’s source code. This process is crucial for effective

and efficient bug fixing, thus improving the overall reliability of software.

Imagine you’re searching for a needle in a haystack. In this analogy, fault localization is the

process of narrowing down the area of the haystack where the needle might be located. Instead

of sifting through the entire codebase, developers employ various techniques and tools to narrow

down the possible locations of errors, making the debugging process more efficient.
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Spectrum-based Fault Localization (SFL) utilizes program spectra as a window into program

behavior. It distinguishes between normal and problematic scenarios by abstracting behavior

into spectra, providing a high-level overview of component contributions. In similarity-based SFL,

components behaving like failing tests indicate potential issues, identified through similarity co-

efficients. On the other hand, reasoning-based SFL, leveraging Bayesian reasoning, addresses

both single and multiple, intermittent problems, enhancing fault localization for complex scenar-

ios. Note, however, that single fault scenarios are more prevalent in real-world projects (Perez

et al., 2017). Intermittent faults occur sporadically, posing challenges in detection due to their

unpredictable nature. In that sense, Q-SFL is a more advanced fault localization method that

uses qualitative reasoning (QR) to partition system components, enriching diagnostic insights.

This approach considers qualitative properties as distinct components, such as specific values

for parameters, recording their involvement and ranking based on similarity to failures.

In this thesis, we depart from the more conventional fault localization methods, particu-

larly aligning with the innovative perspective of Q-SFL. Our approach ventures beyond traditional

boundaries by incorporating concepts not commonly associated with fault localization, such as

program mutation. This unconventional strategy aims to enhance diagnostic capabilities, in-

troducing novel dimensions to fault comprehension. Moreover, our methodology embraces well-

established language engineering techniques which are robustly implemented in tools like parsers

and compilers.

This stems from an interesting observation: certain tasks that software tools perform during

the development process inadvertently aid in fault localization. Parsers, for instance, are tools

that analyze the structure of code to ensure it adheres to the syntax rules of the programming

language. While their primary purpose is to validate the correctness of the code’s syntax, they

also play a role in identifying potential issues or inconsistencies that could lead to errors.

Similarly, type checking and type inference are mechanisms used to ensure that variables

and expressions within the code are used in ways that are consistent with their data types. These

mechanisms help catch errors related to incompatible data types, but they also provide valuable

hints about where potential issues might lie in the code.

By combining the unconventional with the tried-and-true, we forge a path toward a more

comprehensive fault localization paradigm.
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The hints provided by fault localization significantly enhance and, in some cases, enable

the automated repair process, by offering precise guidance on where to focus corrective efforts

within the codebase. This is especially significant when considering LLMs, as they heavily rely

on the context provided in their input to generate more accurate and precise code solutions. By

enhancing prompts with contextual information and hints extracted from fault localization, these

models are empowered to better understand the intricacies of the codebase and subsequently

generate code solutions that are not only syntactically correct but also contextually appropriate.

1.3 Automated Program Repair

Automated program repair refers to the use of computational techniques and algorithms to auto-

matically fix bugs in software. This emerging field combines concepts from software engineering

and program analysis to develop tools that can autonomously generate patches or fixes for iden-

tified bugs.

Continuing with the needle in the haystack analogy, if fault localization identifies potential bug

locations, APR operates like a precise robotic hand equipped with a versatile toolkit, similar to a

screwdriver with interchangeable heads. It systematically experiments with different ”screwdriver

heads” to discern the most effective one for handling the needle. Alternatively, it can intelligently

analyze the suspicious area, selecting the optimal strategy to approach and handle the needle.

Much of the pioneering work in APR has revolved around evolutionary repair, leveraging ge-

netic programming to evolve incorrect programs into their correct counterparts. This approach

draws inspiration from biological evolution, treating programs as individuals in a population that

systematically reproduce and may undergo mutations. However, despite their flexibility and intu-

itiveness, many evolutionary repair techniques face a challenge known as overfitting. Overfitting

leads to overly specific fixes that address only a part of the verified problem, lacking generalization

to other similar scenarios.

Moreover, to address the risk of generating nonsensical patches, some approaches rely

on repair templates, representing common methods for addressing prevalent types of bugs.

Constraint-based approaches, on the other hand, analyze information from test executions to

create constraints fed to a solver for patch generation.
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Some of the focus of this thesis intersects with the usage of mutation operators for automated

bug fixing. These techniques leverage standard mutation operators documented in the literature

and their combination in the form of higher-order mutants.

Let’s take a moment to emphasize a core theme in this thesis. As we progress in our dis-

cussion, our primary focus becomes apparent: the integration of deep learning (DL) into APR. In

the beginning, we labeled APR as an ”emerging field”. Despite this, APR has quickly matured

into an area with impactful contributions, already allowing us to distinguish between traditional

approaches — marked by experimenting with various program variants to assess effectiveness —

and cutting-edge endeavors that leverage DL.

Despite being a more recent development, DL-based approaches have rapidly evolved, re-

fining their framework for APR in a comparatively short time compared to traditional techniques.

Initially perceived as a translation task from buggy code to fixed code, akin to translating between

languages, these approaches faced challenges. The advantages offered by pre-trained language

models in natural language tasks prompted the software engineering community to explore the

utilization of LLMs for automatic repair, addressing these challenges head-on.

Ultimately, the primary goal of APR is to streamline the bug fixing process and reduce the

manual effort required from developers. By automating bug repair, developers can save time and

resources, enabling them to focus on other critical aspects of software development. Moreover,

APR techniques can provide rapid bug fixes, minimizing the impact of bugs on software systems

and reducing the time it takes to deploy bug-free updates. This has tremendous implications.

One might think that by automating away this laborious task, developers can simply focus on

writing more code for the sake of increasing productivity. While this is a reasonable and worthy

objective, the sole focus on this benefit is shortsighted. Bug fixing can be as tedious as it is

enduring, if not more. Therefore, ridding developers from the burden of fully manual bug fixing

opens up opportunities to enhance the quality of their work. Consequently, developers can shift

their attention to more stimulating and rewarding tasks. This way, there is more space for critical

thinking and imagination, improving the creative process in software development. Freedom and

availability to focus on these aspects allow developers to take pride in their work and enjoy it

more. Ultimately, programmers will deliver higher quality software. This emphasis on quality

over quantity leads to more innovative software.

In the context of APR, the main contributions of this thesis lie in understanding how to best in-
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tegrate LLMs into APR tasks. This exploration delves into comprehending the mechanisms behind

these models and optimizing their utilization to enhance automated program repair, positioning

it as an integral component of the software development process.

1.4 Large Language Models

While this thesis doesn’t delve into building or fine-tuning large language models, it is imperative

to acknowledge their crucial role in the majority of the contributions here. Here, ”large” refers

to both the amount of data the models have been trained on and the model’s size. When we

talk about the ”size” of a model, it means the number of internal parameters, called weights, it

has. Think of these weights like the gears in a machine. Having more of them allows the model

to understand and work with information in a more complex way. As such, a larger model size

often means a more powerful system.

Before making language models larger, it is often useful to extrapolate the performance of

smaller models to predict some of the effects. However, an intriguing phenomenon, known as

emerging properties, comes into play. These are abilities that manifest in larger models but are

absent in smaller ones. These emergent properties cannot be predicted because they are not

purely a function of scale. That is, emerging properties are qualitative in nature and, therefore,

unforeseen by merely studying quantitative changes (Wei et al., 2022).

GPT-33 popularized few-shot prompting: the model is provided with a few input-output exam-

ples before performing the task on a new example. Under this setting, a significant amount of

emerging abilities have been observed. One example is arithmetic reasoning, for which GPT-3

and LaMDA (Thoppilan et al., 2022) exhibit near-zero performance during a significant amount of

training effort, but experience a sudden improvement, transforming from relatively weak to highly

proficient at the given task.

Indeed, other factors have also played a crucial role in the recent success of LLMs. The

introduction of the Transformers architecture (Vaswani et al., 2017) has sped up training times

and improved the ability to learn from long sequences, allowing models to better understand

3GPT stands for generative pre-trained transformer and is a type of LLM. While OpenAI has a numbered ”GPT-n”

series, the term ”GPT” is not exclusive to the company. If we wish to be precise, we should refer to them as OpenAI’s

GPT models, although we will loosen this rule throughout this thesis, as is common.
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connections between distant words in a sentence. This last point is particularly significant in pro-

gramming languages because related code elements are more likely to be dispersed compared to

natural languages. Therefore, in the context of programming, the capability to establish essential

relationships between distant sections is critical.

Traditional APR typically employs intelligent design and domain-specific knowledge — top-

down. While many traditional static analysis techniques are effective in such scenarios, they face

limitations, especially when dealing with intricate problems. LLMs introduce a transformative

perspective, implicitly resolving various types of issues without adhering to predetermined pat-

terns — bottom-up. This shift is crucial, as LLMs excel not only in common issues but also in

addressing intricate problems related to program logic and flawed reasoning, providing a more

comprehensive approach for APR.

Recent contributions leveraging LLMs for APR cover a range of creative methods, from Al-

phaRepair (Xia and Zhang, 2022) — which makes direct use of CodeBERT (Feng et al., 2020) to

complete missing code — to Tare (Zhu et al., 2023), which teaches the LLM to understand and

respect different data types used in the code.

The success of LLMs in APR is dependent on the quality of input prompts. To yield accurate

and contextually relevant results, considerable effort must be dedicated to constructing infor-

mative prompts that encapsulate the nuances and specifics of the buggy code. The correlation

between good-quality input and output highlights the importance of meticulously crafting prompts

with relevant context, ensuring that the generated suggestions align with the code’s structure and

constraints.

In this thesis, we will explore methods to blend LLMs into APR. This will involve extracting valu-

able insights from buggy code to construct effective input prompts and adjusting LLM-generated

output to seamlessly fit it into the programs undergoing repair.

1.5 Problem Statement

Let us take this chance to precisely establish our focus: we exclusively delve into the realm

of software bugs. As such, we exclude hardware faults. To refine our scope further, our pri-

mary emphasis lies in behavioral repair — the targeted modification of source code to rectify a
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program’s behavior. Note that these efforts are distinct from addressing a program’s runtime

state. Throughout this work, we will commonly refer to these software bugs simply as ”bugs.”

While bugs can potentially lead to catastrophic consequences, it’s essential to recognize bugs

will inevitably happen. We believe this justifies our efforts to fix them. Complete prevention is,

ultimately, futile. Therefore, we must do our best to repair bugs as soon as they are detected in

the wild or, even better, before they have a chance to cause any trouble in the real-world.

As previously noted, the process of eliminating bugs is called debugging and is the most

costly step in software development with conservative estimates accounting for at least 50% of

the effort (Vessey, 1985; Hailpern and Santhanam, 2002; Zeller, 2009; Rößler et al., 2013; Wang

et al., 2021; Lampel et al., 2021; Steinhöfel and Zeller, 2022; Dutra et al., 2023; Eberlein et al.,

2023).

Simultaneously, the escalating trend of software shipping with more bugs has a significant

implication: a substantial portion of the debugging effort extends into the maintenance phase

(Liblit et al., 2005). Indeed, developer teams, constrained by resources and time, grapple with

addressing every bug before releasing software (Anvik et al., 2005). Now recall that software

maintenance accounts for between 80% to 90% of the cost of a software project (seacord et al.,

2003). As bug repair becomes increasingly prevalent during this phase, the cumulative effect can

be overwhelming (Erlikh, 2000; Ramamoorthy and Tsai, 1996; Le Goues et al., 2012b; Yan et al.,

2023). This trend is reinforced by the ongoing growth in software deployment, accompanied by

a subsequent influx of bug reports (Anvik et al., 2006).

Quoting Dr. Werner Vogels ”the cost to build is dwarfed by the cost of operating your appli-

cations” — as Figure 1.2 shows.

Cost to
build Cost to

operate

Figure 1.2: Cost Breakdown: Distribution of Building and Operating in Software Endeavors4

4Adapted from ’AWS re:Invent 2023 - Keynote with Dr. Werner Vogels’: https://maglit.me/cost
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Given that debugging is an ever-present and costly step in both software development and

maintenance, automating it becomes imperative. Regarding fault localization, the methodologies

often focus on ’where’ issues occur, but the ’why’ remains somewhat overlooked. Indeed, efforts

to increase the granularity of components have been made, yet the contextual intricacies of code

changes introduced with bugs are not fully explored.

After locating the source of a bug, we are still left with the task of fixing it. Automating this

aspect has historically received less attention despite its critical role, as ensuring the generation

of correct code is inherently more challenging than merely detecting bugs or locating their causes,

requiring meticulous scrutiny and precision throughout preceding steps. In more recent years,

APR techniques have been trying to tackle this issue. Still, they exhibit limitations in generalization,

often being confined to specific bug types, languages, or programming constructs — a challenge

akin to ’overfitting.’ Thus, LLMs present themselves as a promising avenue. While LLMs excel at

generating code akin to human writing, they are not inherently geared toward spontaneous repair.

To harness these capabilities, we must intelligently explore code, extracting context to construct

high-quality prompts for LLMs. The quality of these prompts directly influences the quality of the

outputs produced.

With this in mind, the main question we want to address in this thesis is:

Main Question

How can we incorporate LLMs into APR by combining context from source code and FL?

To help us answer this question, we partition our efforts into four peripheral questions, each

serving a distinct facet of the overarching investigation.

1.5.1 Understanding Failures

In modern software development, collaborative teams use sophisticated tools for productivity, in-

troducing new features or updates through version control systems. Continuous integration tests

result in a new build. Yet, unintentional bugs arise, leading developers to inspect source code.

Identifying changes solely by analyzing modified lines, e.g. through diff reports, lacks contextual

insight, thus hindering problem resolution. Upon deeper inspection, developers identify the kind

of modification caused the bug. Frequently, these modifications unveil contextual insights and

can be mapped to well-known transformations called mutation operators. These specific and well-
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structured changes, like altering method invocations or control structures, offer valuable context,

enhancing developers’ understanding and facilitating solution development. Indeed, recent stud-

ies affirm the connection between real-world software faults and mutation operators (Just et al.,

2014; Andrews et al., 2005; Daran and Thévenod-Fosse, 1996; Namin and Kakarla, 2011).

This sets the stage for the question:

Research Question 1

Can we describe a program’s evolution using mutation operators? (Chapter 3)

1.5.2 Contextual Repair

Inferring mutation operators is a crucial step in integrating APR into continuous integration sys-

tems, aiming to fix faulty programs by considering contextual modifications leading to bug intro-

duction. Examining how contextual information shapes fault localization sets it apart from tra-

ditional SFL. Unlike SFL’s focus on ”where” faults occur, contextual insights explore the ”why,”

providing a more comprehensive understanding of fault origins. This shift toward mutations and

context potentially influences APR. Concentrating on mutations introduced during software evo-

lution enriches APR with additional context behind faults.

With this in mind, we define the question:

Research Question 2

Does the information about inferred mutations benefit APR? (Chapter 3)

1.5.3 Generative Repair

So far, our questions have revolved around the impact of inferring context on fault localization

and program repair. However, a key focus of this thesis is the integration of LLMs into APR.

To address this concern, we need to scrutinize the effectiveness of these AI tools in a more

isolated manner. Specifically, we aim to explore how generated code can be utilized when fault

localization is conducted flawlessly and relies solely on immediate and readily available context.

Moreover, as we confront the challenges of repairing faulty programs, we encounter limitations in

current techniques that prompt the exploration of innovative solutions. Patches are traditionally

generated from developers’ efforts that resulted in almost accurate programs. Stepping away
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from traditional methods like evolutionary repair, constraints, and templates, known for their

restrictiveness and potential limitations in producing effective bug-fixing code, we aim to explore

a novel avenue. Thus, justifiably, our focus turns to LLMs, which are pre-trained on extensive

code datasets. We aim to investigate the capability of these LLMs to generate patches that, when

integrated into faulty programs, could prove effective in fixing faults. Although we anticipate a

more flexible and creative solution to the inherent challenges of program repair, there is a need

to evaluate the potential advantages.

As such, the following question arises:

Research Question 3

Can LLM-generated code evolve and fix faulty programs? (Chapter 4)

1.5.4 Type Error Repair

Within programming languages, type systems play a crucial role in upholding correctness by en-

suring the compatibility of operations with program terms. Despite their effectiveness in signaling

logical errors through failed typechecking, type systems often fall short in precisely pinpointing and

explaining type inconsistencies. The necessity for such exploration becomes apparent when con-

sidering that reported type inconsistencies may deviate from the user’s intended modifications.

Additionally, the left-to-right bias in error detection, influenced by the sequence of expressions

in a program, introduces challenges that demand attention. Efforts have been done to enhance

the quality of type error messages, highlighting the need for approaches to boost the accuracy

and comprehensibility of type error resolutions. Even if we assume these limitations have been

overcome, the task of rectifying such type errors remains. We wish to explore whether the code

understanding capabilities of language models, augmented with information from type systems

and their detected type errors, can effectively address and fix these issues. This marks a signifi-

cant shift in focus, diverging from traditional APR approaches that concentrate on faulty programs

capable of execution. Often overlooked are programs that fail to compile.

This is the basis for our last question:

Research Question 4

Can integrating type system information into LLM interaction fix type errors? (Chapter 5)
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1.6 Contributions

Overall, this thesis makes several contributions. In particular, we:

• Propose a mutation operator inference technique that examines changes between an orig-

inal program and its updated bug-introducing version, making it easier to identify the

responsible modifications. This technique is implemented as a tool, validated using a

dataset and further complemented by a repair strategy and its corresponding tool. The

significance of these contributions is highlighted through a case study investigation of real-

world bugs, demonstrating the practical benefits of our approach in program analysis and

repair. (Chapter 3)

• Redefine code completion, shifting its role from aiding developers in writing code to serv-

ing as a tool for APR. This involves using the code generation capabilities of pre-trained

models to handle program repair as a code completion task. The tool implementing this

repair technique fixes programs by determining the optimal places in a faulty line for code

completion and seamlessly integrating the generated code. We test our effort on a real-

world dataset and showcase its capabilities through case studies for which patches were

automatically produced. (Chapter 4)

• Introduce an innovative approach that uses language models to automatically fix errors

in OCaml programs, specifically the ones related to types. The methodology involves

analyzing the program’s source code and generating prompts with hints on how to create

a corrected version. A publicly available tool supplements these efforts and enables their

validation, with a discussion of the corresponding results made available. Unlike other

methods that focus on improving error messages or letting people interactively fix mistakes,

our approach uniquely automatically repairing these type errors. (Chapter 5)

1.6.1 Other Contributions

The contributions mentioned above, presented and explained in detail in their respective chapters,

stem from the primary focus of this thesis. Apart from these, additional contributions were made

throughout the course of this PhD, although they are not extensively discussed in this thesis.

Nevertheless, they are noteworthy and deserve mention. Some directly align with the main thesis

topic, while others diverge from it, yet remain pertinent.
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Intrinsic Contributions

These contributions, though smaller in scale, are related to the overarching topic and their content

is adequately addressed by the main contributions in the relevant chapters.

This contribution summarizes the efforts conducted in employing LLMs for APR and has been

published, presented, and discussed at the Doctoral Symposium of SPLASH 2023. The contents

are explored in detail in Chapters 4 and 5.

“Large Language Models for Automated Program Repair”

Francisco Ribeiro

In: Companion Proceedings of the 2023 ACM SIGPLAN International Conference on Systems,

Programming, Languages, and Applications: Software for Humanity, SPLASH 2023

Cascais, Portugal, October 22—27, 2023

DOI: 10.1145/3618305.3623587

This contribution is as a position paper advocating for the incorporation of type-awareness in

LLMs, setting the stage forChapter 5. Notably, as this thesis approached completion, significant

works in prominent venues emerged (Zhu et al., 2023), echoing and implementing the same

concerns. We believe this shows the relevance of the introduced ideas and suggests a shared

recognition of these concerns within the members of the research community.

“Beyond Code Generation: The Need for Type-Aware LanguageMod-

els”

Francisco Ribeiro, José Nuno Macedo, and Kanae Tsushima

In: 2023 IEEE/ACM International Workshop on Automated Program Repair, APR 2023

Melbourne, Australia, May 16, 2023

DOI: 10.1109/APR59189.2023.00011

Separate Contributions

Some work does not directly align with the thesis topic, while remaining pertinent to many of the

inherent objectives of this work.

The work ”Ranking Programming Languages by Energy Efficiency” aligns with program repair

concerns, as both prioritize efficiency. In certain contexts, optimizing for energy efficiency can be

viewed as addressing a latent issue akin to fixing a bug in the code. This connection becomes
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increasingly important, particularly in today’s discussions around proper and adequate measures

for sustainability, where one of the emphasis is on energy efficiency.

“Ranking Programming Languages by Energy Efficiency”

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo

Fernandes, and João Saraiva

In: Science of Computer Programming, Volume 205, May 1, 2021, 102609

DOI: 10.1016/j.scico.2021.102609

The integration of the functional paradigm in various scenarios in recent years has not only

expanded its application but has also contributed to enhancing software sustainability. Under

certain circumstances, where functions become a ”first-class citizen,” this shift towards modu-

larization, in the form of functions or similar components, fosters better software maintenance

practices. A prime illustration of this is the enhanced flexibility facilitated by property-based test-

ing, a concept that commonly walks hand-in-hand with the functional paradigm.

“Functional Going Green: An Empirical Evaluation of Functional Lan-

guages Performance”

José Nuno Macedo, Francisco Ribeiro, Rui Rua, Marco Couto, Jácome Cunha, João

Paulo Fernandes, João Saraiva, and Rui Pereira

In: Lectures Notes in Computer Science

(to be published)

1.7 Origin of Chapters

Apart from Chapters 1, 2 and 6, all chapters in this thesis have been published in peer-reviewed

venues. All publications have been co-authored with João Saraiva and Rui Abreu. Publication of

Chapter 5 has also been co-authored with José Nuno Macedo and Kanae Tsushima.

Chapter 3 has been published in the Proceedings of IEEE International Conference on

Software Quality, Reliability and Security (QRS’21) (Ribeiro et al., 2021).

Chapter 4 has been published in the Proceedings of the International Workshop on Auto-

mated Program Repair (APR’22) (Ribeiro et al., 2022).

Chapter 5 has been published in the Proceedings of the ACM SIGPLAN International Con-

ference on Software Language Engineering (SLE’23) (Ribeiro et al., 2023a).
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1.8 Thesis Outline

The first two chapters of this thesis are the foundation for the research work:

Chapter 1 Presents the motivation for this thesis, introduces relevant topics, states the main

question it will target and the peripheral questions that will guide our research. Also, it lists the

accomplished contributions and mentions their respective publications.

Chapter 2 Touches on the State of the Art directly pertaining to the areas this thesis aims

to directly influence. Namely, fault localization and automated program repair.

The three contributions outlined in Section 1.6 are described in their respective chapters:

Chapter 3 Introduces a mutation inference technique, a complementary repair strategy and

their corresponding validations.

Chapter 4 Showcases the use of a code-specific generative LLM to automatically fix pro-

grams by highlighting the necessary steps to generate and integrate the produced patches, along-

side a validation.

Chapter 5 Presents a novel approach using prompt engineering to guide an LLM in fixing

programs with type errors, validates the approach and compares it to relevant techniques.

In the end, the only thing left is to wrap up and conclude:

Chapter 6 Summarizes how the contributions answered the proposed main question and

its more specific peripheral questions and discusses possible future lines of work.
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2.1 Fault Localization

In software development, identifying and rectifying errors is a cornerstone activity. Central to this

pursuit is the task of fault localization which can, most certainly, be regarded as the first step in

the debugging process — one of the most expensive actions in the development cycle (Vessey,

1985). In this section, we will delve into the pivotal role that fault localization plays in software

engineering. We will explore its significance, historical evolution and key aspects. Before moving

further, note that effective fault localization not only expedites the debugging process but can also

be used to inform subsequent stages, such as automated program repair. It acts as a guiding

compass, directing APR techniques to the precise regions of code that require attention. This

connection is of paramount importance as it underscores the symbiotic relationship between fault

localization and automated program repair. By establishing a comprehensive understanding of

fault localization, we pave the way for a more nuanced exploration of automated program repair,

which we will delve into in the subsequent section.

2.1.1 Spectrum-based Fault Localization

In the realm of fault localization, one valuable and pioneering technique is Spectrum-based Fault

Localization (SFL). Central to SFL is the concept of program spectra, first introduced by Reps

et al. (1997). In essence, program spectra serve as a window into a program’s execution behav-

ior. These spectra are generated by a path profiler, which instruments a program to accumulate

data on the unique loop-free paths that are executed during a program’s runtime. In other words,

it records what parts of a program are active during a particular run. Initially, the focus was on

comparing program spectra between successful executions (where the program completed with-

out errors) and unsuccessful executions (where errors were detected), all while keeping the same

program but varying the data inputs, which ultimately determined whether an execution passed

or failed. As a result, each program execution yields a distinct path spectrum, offering a snapshot
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of the paths traversed during that specific run. These path spectra collectively provide a finite

and precise characterization of a program’s execution, encapsulating its behavioral signature for

that run. One notable historical application of this approach was in addressing the Y2K problem,

a famous bug in the field of software engineering. The Y2K issue arose due to the widespread

practice of representing year values with only two digits in dates. This practice inadvertently led to

ambiguous interpretations when processing year values such as ’00’, which could be interpreted

as ’1900’ instead of ’2000’. This phenomenon could result in faulty computations, especially

in cases where calculations extended into the future. By comparing different execution spectra

produced by different input dates (which passed or failed tests), software engineers could identify

variations in program behavior related to date calculations. These divergences pointed them to

specific sections of code where date-related issues might be lurking. While the Y2K issue was

fundamentally a date-handling problem, the application of SFL showcased its utility in identify-

ing and localizing software defects — a utility that has since become prevalent in modern fault

localization practices.

While previous research primarily involved the comparison of hit spectra — whether a com-

ponent is exercised or not — derived from executing the same program on varying input data,

subsequent work (Harrold et al., 1998) expanded on the notion of hit spectra by introducing count

spectra — number of times a component is exercised. Furthermore, the study goes beyond the

usual path spectra consideration and introduces different kinds of program spectra, like branch

spectra and execution-trace spectra. However, Harrold et al. (1998) use a different methodol-

ogy to collect program spectra in which the original program and a slightly modified version of

the same program are executed on identical input data. This means that attention now turns to

regression testing, a scenario in which both the original, error-free version of the program and

its subsequent, potentially buggy iteration are evaluated while maintaining the input data as a

constant factor — a departure from prior work — which concentrated on different inputs to the

same program. Enhancing granularity by utilizing execution trace spectra appears to yield more

effective results in fault localization efforts. However, it’s important to note that this type of spec-

tra tends to exhibit greater variation, even in scenarios where no faults are present. While the

increased sensitivity of execution trace spectra can be advantageous in detecting subtle defects,

it also demands careful consideration to distinguish genuine anomalies from the natural variabil-

ity that can arise during program execution. Striking the right balance between granularity and
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specificity is a crucial aspect of precise fault localization, especially under real-world market con-

ditions where exhaustive testing may be impractical. In such scenarios, software cannot always

undergo exhaustive testing and high-impact bugs require prioritization.

Generally speaking, when disparate spectra emerge from different executions, it suggests

divergences in program behavior. These divergencesmay not inherently pinpoint the root cause of

a defect, but they serve as critical indicators for the initial point of interest for further investigation

by programmers towards the regions where anomalies may reside. Thus, the power of SFL lies

in its ability to compare different execution spectra.

An indispensable component of this comparative analysis task revolves around the calcula-

tion of similarity measures between various vectors within the program spectra data and a vector

containing vital information about detected errors. Comparing and contrasting different spectra

is accomplished through the application of similarity coefficients. These coefficients serve as

quantitative metrics that assess the likeness or resemblance between vectors representing dif-

ferent aspects of program execution behavior. Abreu et al. (2006) study and report the accuracy

of various similarity coefficients when applied to block hit spectra — a type of program spectra

that records whether a block is executed or not. This investigation considered a range of simi-

larity coefficients, including Jaccard (Chen et al., 2002), Tarantula (Jones et al., 2002), AMPLE

(Dallmeier et al., 2005), and Ochiai (Meyer et al., 2004). It’s worth mentioning that Ochiai, while

not traditionally associated with the field of software engineering and borrowed from molecular bi-

ology, outperformed other coefficients in this context. On average, it exhibited a 5% improvement

in correctly locating anomalies, with specific instances showcasing a 30% enhancement.

2.1.2 Model-based Fault Localization

The concept of model-based fault localization (MBFL) (de Kleer and Williams, 1987; Wotawa et al.,

2002) represents a diagnostic approach where differences between a model of a system and

the actual observed behavior of that system guide the search for discrepancies. This approach

requires a comprehensive model of the system’s structure and function. While it can provide

superior diagnostic accuracy compared to SFL (Abreu et al., 2009), modeling complex systems

can be exceptionally intricate and, many times, simply infeasible in practice. Consequently,

many software diagnosis techniques tend to be black box approaches, which do not rely on in-
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depth knowledge of the system’s internal structure and are easily integrated with existing testing

methods.

In contrast, white box techniques, such as MBFL, require understanding the internal com-

ponents and behavior of the system. While they hold the potential for more accurate diagnosis,

the complexity and cost associated with modeling can pose significant challenges in practical

software development scenarios.

The idea of combining model-based software debugging (MBSD) with dynamic program anal-

ysis techniques, as discussed when presenting SFL, has been explored (Mayer et al., 2008).

MBSD can guide automated debugging efforts but may generate large result sets, making it

challenging to rank and discriminate between potential explanations for faults. While promising,

integrating MBSD and dynamic program analysis still faces the inherent complexity of modeling.

Indeed, formal specifications for non-trivial systems that accurately capture the semantics of said

system can be as hard as implementing the system in question (Musuvathi and Engler, 2003).

In a more refined hybrid approach, a framework known as DEPUTO (Abreu et al., 2009)

combines SFL with MBFL. Here, SFL is used initially to rank likely faulty components, inheriting

its low computational complexity. Subsequently, MBFL is employed to refine this ranking by

eliminating components that do not explain observed failures, inheriting the inherently enhanced

diagnostic in MBSD. This integrated approach aims to strike a balance between computational

efficiency and diagnostic precision, leveraging the strengths of both techniques to enhance fault

localization.

2.1.3 Mutation-based Fault Localization

Although SFL is often regarded as lightweight and adaptable, making it easy to integrate with

intended systems due to its black box nature, its limitations (Parnin and Orso, 2011; Ang et al.,

2017) are diverse and have prompted a search for more accurate and efficient fault localization

techniques. These limitations include:

• Diagnostic Inaccuracy: Despite extensive community efforts, SFL is still perceived as a

relatively inaccurate method for pinpointing software faults. It relies on statistical analysis

of program execution traces, which can introduce imprecision when attempting to identify

the exact location of a fault within the codebase. This imprecision can lead to false positives
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or false negatives in fault localization results.

• Test Case Dependency: One of the prominent challenges with SFL is its heavy reliance

on the availability of comprehensive and diverse test cases. To effectively employ SFL, a

sufficient number of test cases covering various program behaviors and edge cases are

required. Unfortunately, in many real-world scenarios, obtaining an exhaustive set of test

cases can be a daunting task. The limited availability of test cases can undermine the

accuracy and reliability of SFL.

• Long Lists of Candidates: SFL often generates ordered but lengthy lists of statements,

especially when faults are complex or deeply embedded within the codebase. These lists

can be overwhelming for developers tasked with debugging and can include a substantial

number of statements unrelated to the actual fault. This inundation of information can

lead to a phenomenon where developer interest drops over time.

• Diminished Developer Engagement: The extensive and sometimes convoluted lists

produced by SFL can lead to a drop-off in developer engagement. Developers may lose

motivation and interest in the fault localization process when they perceive it as a time-

consuming and unproductive endeavor, causing them to abandon this process prema-

turely.

In response to these limitations, researchers have explored alternative fault localization ap-

proaches, such as mutation-based fault localization, which aims to provide more precise and

actionable fault localization results. These alternative approaches seek to address the challenges

associated with SFL and offer improved accuracy, reduced dependency on test cases, and more

comprehensible fault localization reports to enhance developer engagement and software debug-

ging efficiency.

Program mutation

Before understanding mutation-based fault localization, we must first get into the definition of

program mutation.

Program mutation is a software analysis technique pioneered by DeMillo et al. (1978) and

initially introduced within the context of software testing. In essence, it revolves around the

creation of variants, known as mutants, from a target program. These mutants are generated by

applying specific, predefined syntactic changes, or mutations, to the original program’s code.
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The primary objective of program mutation is to assess whether a given test suite adequately

tests a program. In simpler terms, it’s a way to ”test the tests”, and is a way to build confidence

on the quality of a test suite. More broadly, it confronts the more general philosophical question

of ”Who will guard the guards?”. The process involves two possible outcomes for each mutant

and assumes the original program passes the provided test suite:

• If a mutant produces a different result from the original (target) program when subjected to

the test suite, it is deemed dead. This signifies that the test data successfully distinguished

the mutant from the original program.

• Conversely, if a mutant and the original program produce the same result under the test

suite, the mutant is alive. This can suggest that either the existing tests lack the sensitivity

to detect the error introduced by the mutant, or the mutant and the original program are

equivalent and, therefore, indistinguishable in this scenario.

Ultimately, a test suite is considered adequate if it can ”kill” every mutant, meaning that all

mutants introduced are detected by the tests. Alternatively, the test suite may let some mutants

survive and still be deemed adequate if those mutants are considered equivalent to the original

program.

While the definition of program mutation is closely associated with software testing due to its

origins, it has found applications in various domains and is sometimes referred to as mutation

analysis. In a broader sense, mutation analysis entails the application of well-defined transfor-

mations to the syntactic structure of a program, resulting in variants that exhibit minor semantic

differences from the original program. This general definition highlights the versatility of muta-

tion analysis beyond its initial testing-centric context, making it a valuable tool in diverse software

engineering and analysis scenarios, namely fault localization.

Mutating Faulty Code for Fault Localization

Mutation-based fault localization presents a distinct approach compared to traditional mutation

testing. In mutation-based fault localization, the process revolves around applying mutations to

programs that are already known to be faulty, with the goal of pinpointing the specific faults. This

differs from mutation testing, where mutations are injected into an ostensibly correct program to

evaluate the effectiveness of the test suite.
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If we think about the basic concept of fault localization in simple terms, it mainly boils down

to one idea: segments of code covered by failing tests are more likely to harbor faults than

segments predominantly covered by passing tests. Mutation-based fault localization builds upon

this foundation. The fundamental concept is that by generating variant programs from a known

faulty one through the mutation of specific statements, it becomes possible to identify the fault’s

location. When faulty statements are mutated, more failing tests are expected to pass, whereas

mutating correct statements (i.e., where the fault is not located) is anticipated to cause previously

passing tests to fail.

Existing techniques approach this in different ways. In a tool like Metallaxis (Papadakis and

Le Traon, 2012, 2015), mutations are applied to various statements within a faulty program.

The test suite is executed for each mutated program, and suspiciousness values are assigned to

individual statements employing the Ochiai coefficient. However, there is a challenge in assigning

suspiciousness values to the statements of the original (faulty) program. Each original statement

may have multiple associated mutant statements, with this number depending on the applicable

mutation operators for a given original statement. In such cases, Metallaxis assigns the highest

suspiciousness value among all the associated mutants to each original statement.

On the other hand, MUSE (Moon et al., 2014) adopts a different approach. Its focus lies

in analyzing the outcomes of individual test cases. MUSE examines scenarios where mutants

transform initially failing test cases into passing ones, and vice versa. The underlying principle

is that a faulty program can be rectified by modifying (mutating) the problematic statements.

Therefore, the intuition is that applying mutations to faulty statements should cause more failing

test cases to pass. Conversely, mutating correct statements is more likely to induce previously

passing test cases to fail, effectively injecting new faults. In generating its ranking of suspicious

statements, MUSE disregards test case results and focuses exclusively on the impact of mutations

on test case outcomes.

Metallaxis and MUSE primarily focus on the C programming language. Indeed, modern soft-

ware projects often involve multiple programming languages. This multilingual approach allows

developers to harness various control and data abstractions, as well as utilize legacy libraries.

The software landscape has evolved considerably in recent decades, and complex programs are

frequently composed of code written in multiple languages. Hong et al. (2015) have applied

mutation-based fault localization to such multilingual environments. Their approach includes the
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development and application of both new and conventional mutation operators, with experiments

conducted on six real-world multilingual programs showing that bugs can be located accurately for

such subject programs. In fact, some approaches (Hanam et al., 2016) mine project repositories

to find frequent bug patterns for languages that research has yet to report mutation operators.

In a different approach, Zhang et al. (2013) introduce a technique that involves the mapping

of artificially generated mutants to higher-level programming edits. The fundamental idea behind

this approach is to capture the core characteristics of failure-inducing edits made by developers

using mechanical program transformations, such as mutation changes. The authors address this

challenge within the context of evolving codebases, where code is continually updated. Their so-

lution leverages the notion that certain transformations are likely to coincide with failure-inducing

edits if these transformations alter the old program version (i.e., the version just prior to the

introduction of faults) to produce similar test pass/fail results as the new version with actual

developer edits. Through experiments conducted on nine real-world Java projects, the authors

demonstrate that strategies combining spectrum information and injected faults outperform the

previous approach that relied solely on spectrum data.

Mutants as real faults

Real-world programs with actual faults can be challenging to acquire. While such programs do

exist, they may not always be readily available for experimentation. Even when real programs and

associated faults are accessible, they may not be available in sufficient quantity. This scarcity of

faults can hinder the conduct of experiments, as small-scale experiments may lack the statistical

significance required for robust conclusions.

Due to these limitations, it is common practice to introduce faults deliberately into the pro-

grams under investigation. Faults can be introduced manually or automatically. Manual fault

introduction, although potentially more realistic, comes with several drawbacks. First, the real-

ism of the introduced faults can be subjective, and different individuals may hold varying opinions

about the authenticity of the fault. Second, it is challenging to reproduce experiments conducted

by other researchers, limiting the reliability of experimental science. Lastly, manual fault intro-

duction can be time-consuming and impractical for generating a substantial number of faults.

Program mutation offers a solution to some of these challenges. It employs well-defined
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operators to precisely seed faults into programs, enhancing the ease of replicating experiments.

Additionally, program mutation enables the generation of a large number of mutants relatively

easily, improving statistical significance in experiments.

However, a pivotal question remains: Are artificial mutations representative of real-world

faults? The answer to this question holds significant importance. If artificial mutations do not

accurately emulate real-world changes, the conclusions drawn from experiments employing pro-

gram mutation may not be valid. As such, the authenticity and realism of mutations as fault

representations play a crucial role in the credibility of experimental findings in software analysis.

Some studies have been conducted to determine the suitability of mutants as proxies for

genuine faults.

Initially, this question was not addressed (Daran and Thévenod-Fosse, 1996) in terms of

whether mutations could serve as a representative fault model for real faults. The prevailing

perspective seemed to lean towards a negative response to this inquiry. Instead, the primary

emphasis was placed on ascertaining whether errors and failures induced by mutations exhibited

similarities to those associated with real faults. The results support the representativeness of

errors generated by mutations, with 85% of these errors corresponding to those produced by real

faults, highlighting the ability of mutations to trigger error behaviors of comparable complexity

to real faults. In an earlier work by Offutt (1989), empirical investigations into the coupling

effect were conducted, providing evidence for it. Research concluded that test data generated

to uncover simple faults, such as first-order mutations, could effectively reveal more complex

mutations. Similarly, DeMillo and Mathur (1990) had already recognized that mutations had the

potential to induce significant variations in a program’s internal state during testing executions.

These variations played a pivotal role in uncovering complex faults within the software.

In another study (Andrews et al., 2005) aimed at evaluating the appropriateness of muta-

tion analysis for software testing experiments, researchers compared test suites’ fault detec-

tion capabilities across three distinct fault categories: hand-seeded faults, automatically gener-

ated mutants, and real-world faults. To conduct this assessment, the researchers used a set

of widely-used software programs featuring hand-seeded faults, as well as a widely-recognized

program known to exhibit real-world faults. The findings demonstrated that the generated mu-

tants were representative of real-world faults, setting them apart from the hand-seeded faults.

Moreover, an interesting aspect was also shown: hand-seeded faults proved to be considerably
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more challenging to detect when compared to their real-world counterparts. Namin and Kakarla

(2011) addressed these findings and the controlled experiments conducted in their paper yield

complementary insights, demonstrating the high sensitivity of mutation in testing experiments

to external factors, including mutation operators, test suite size, and programming languages.

These findings highlight the importance of considering these factors when interpreting or gen-

eralizing experimental results based on mutation analysis. The study deliberately employed the

same subject programs as (Andrews et al., 2005) to minimize potential bias arising from the use

of different artifacts. Furthermore, the utilization of a distinct mutation tool, featuring a greater

number and more complex mutation operators enriches the experimental context.

On a related note, another one of these studies (Andrews et al., 2006) centered on an in-

dustrial software program with documented faults. The principal aim was to assess whether

mutation analysis could viably serve as a means to measure the cost-effectiveness of control and

data flow criteria in software testing. The findings suggest that mutation analysis exhibits con-

siderable potential for this. Most notably, the study revealed that mutation analysis often yields

results analogous to those derived from actual faults. This underscores the value of mutation

analysis in a research context, enabling the comparison and evaluation of emerging testing tech-

niques. Moreover, it also helps determine the necessary coverage levels to attain acceptable fault

detection rates.

One consequential finding from this investigation was the absence of a single control or data

flow criterion that demonstrated unequivocal superiority in terms of cost-effectiveness. Never-

theless, the study discerned a somewhat expected finding: more intricate criteria, necessitating

larger test suites, were more effective at detecting a greater number of faults.

Another related work (Just et al., 2014) focused on the correlation between a test suite’s

mutation score and its real fault detection rate. A general correlation between a test suite’s muta-

tion score and its proficiency in detecting genuine faults was observed. Notably, this correlation

was found in a substantial portion of the real faults under examination, approximately 73%. Fur-

thermore, the research emphasized particular mutation operators — such as conditional operator

replacement, relational operator replacement, and statement deletion — which displayed a more

frequent association with genuine faults. Drawing from these insights, the researchers provided

suggestions for potential enhancements to mutation analysis. They proposed an in-depth explo-

ration of uncoupled faults and advocated for the inclusion of class-level mutation operators (Offutt
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et al., 2006; Ma et al., 2002; Kim et al., 2000) to augment the efficacy of mutation analysis.

It is worth noting, however, that class-level mutation operators, while valuable, are not as uni-

formly implemented in mutation tools nor used in experiments as their traditional counterparts.

The authors argue that including them could hinder the ability to compare and apply findings be-

cause class-level operators, which are more specific, are not as widely applicable across different

programming languages as the broader set of traditional operators.

Higher-order mutants

Jia and Harman (2009) introduced the concept of higher-order mutation testing, a novel approach

in which mutants are not individual faults but instead comprise multiple faults. This approach

aims to identify those intricate higher-order mutants that represent subtle and challenging to

detect faults. Achieving this involves employing automated search-based optimization techniques

to identify combinations of simple faults that partially mask each other, making them collectively

more challenging to detect than their individual constituent faults. Such fault combinations are

relatively rare but hold significant value in software testing.

In this scenario, mutants are classified into two categories: First Order Mutants (FOMs), gen-

erated by applying mutation operators only once, and Higher Order Mutants (HOMs), generated

by applying mutation operators multiple times. Within this context, the authors focus on a specific

type of HOM known as subsuming higher-order mutants, which are notably more challenging to

eliminate than the FOMs that compose them.

Subsuming HOMs can only be eliminated by a subset of the test cases that detect each in-

dividual FOM from which they are constructed. There is also the concept of strongly subsuming

HOMs, where a single HOM can replace all of the mutants from which it is derived without compro-

mising test effectiveness. This concept highlights the efficiency and effectiveness of higher-order

mutation testing.

Higher-order mutants offer multiple advantages in software testing. First, they enhance fault

detection by introducing increased subtlety into the testing process. While most First Order Mu-

tants (FOMs) are easily identified by simple test cases due to their often trivial nature, subsuming

HOMs represent more intricate faults. These subtle faults may remain concealed during standard

testing but become apparent when exploring challenging corner cases that are more likely to be

29



CHAPTER 2 STATE OF THE ART

missed.

Second, higher-order mutation testing reduces the overall test effort required. Although there

are exponentially more HOMs than FOMs, this potential increase in testing complexity is effectively

mitigated by targeting strongly subsuming HOMs. These powerful mutants can replace multiple

FOMs, resulting in fewer mutants to consider without sacrificing the quality of test cases.

Third, higher-order mutants lead to a reduced number of equivalent mutants, which are

mutants that cannot be distinguished from the original program by any test input. While identifying

equivalent mutants is generally challenging, second-order mutation testing has demonstrated a

significantly lower density of equivalent mutants compared to first-order mutation testing (Offutt,

1992). This reduction, often overlooked in prior research, contributes to a substantial reduction

in test efforts by up to 50% while maintaining effective fault detection (Polo et al., 2009).

Program Mutation for Bug Detection

The role of test cases in modern software development cannot be overstated, as they serve as a

fundamental tool for detecting software defects. While the primary focus here is on bug detection

rather than localization, it’s worth noting the relevance of program mutation in the context of

test case generation. After all, effective fault localization is only possible when bugs are initially

detected. This underscores the versatility of program mutation as a technique that contributes

to various aspects of software quality.

As discussed earlier, program mutation is frequently employed to assess the quality of test

cases. When mutation analysis reveals that certain non-equivalent mutants remain unaddressed,

it signals the need for test case improvement. This process demands an in-depth understanding

of the source code and is a non-trivial task. While automated test generation can assist in code

coverage and mutant detection, the tester must still evaluate the outcomes of these generated

executions.

Fraser and Zeller (2010) introduce an approach that automates the generation of unit tests

for object-oriented classes by leveraging mutation analysis. Their strategy uses mutations, rather

than structural properties, as a coverage criterion. This not only guides testers on where to test

but also what specific aspects to test for.

Furthermore, the application of mutation-based test case generation extends beyond tradi-
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tional software development. It has found utility in domains such as web page testing (Almeida

et al., 2019). In fact, tools like Sapienz (Mao et al., 2016) are already implementing this approach

successfully, identifying bugs in widely-used mobile applications that impact millions of users.

2.1.4 Qualitative Spectrum-based Fault Localization

Recall that SFL is a methodology that associates a system’s components with observed failures.

This approach offers a lightweight means of identifying potential faults by analyzing code coverage.

Despite the advancements and accomplishments in SFL research, its widespread adoption

in the industry has been limited. This limitation is primarily driven by several issues identified

in prior studies (Parnin and Orso, 2011; Ang et al., 2017), such as the substantial decrease in

user interest after examining a small portion of the ranked list of potential faults. This problem

becomes more pronounced as the complexity of the system grows. Another challenge is that

many SFL studies assume perfect fault comprehension, expecting that users will correctly identify

faulty components upon inspection. However, this assumption is not always verified in practice.

In fact, the abstractions that SFL incurs in also present other limitations. It may overlook

certain types of faults, such as omission errors, and often falls short of providing sufficient context

to explain why specific components are deemed suspicious.

Thus, it is imperative to augment fault localization approaches with more contextual informa-

tion, so that we can increase fault comprehension.

Q-SFL (Perez and Abreu, 2018), an enhanced approach building upon SFL, takes a qualitative

perspective on system components. In this methodology, system components are qualitatively

partitioned, treating each qualitative state as a distinct SFL component for diagnostic purposes.

The driving force behind this approach is Qualitative Reasoning (QR) (Forbus, 2004; Williams

and de Kleer, 1991; de Kleer, 1990), a technique for describing sets of values based on their

discrete behavioral qualities. Unlike traditional numerical quantities, which can be unmanageable

to record for each individual component in a system, QR employs qualitative descriptions like

”high,” ”low,” ”zero,” ”increasing,” or ”decreasing.”

These qualitative descriptions, also referred to as quantitative landmarks, partition the do-

mains of relevant components into distinct descriptions, each forming a new SFL component. As

behavioral qualities are now considered as components themselves, their involvement in system
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executions is recorded and ranked based on their similarity to observed failures. This enrich-

ment of the SFL report aligns with the initial goal of providing more comprehensive diagnostic

information to aid in fault comprehension.

This approach holds significant implications for fault comprehension because it not only

records the involvement of qualitative properties but also considers their correlation with fail-

ing behavior. When a qualitative state exhibits a stronger correlation with failing behavior than its

enclosing system component, this information can be extracted.

Empirical evaluation of Q-SFL has demonstrated its potential to enhance the accuracy of SFL

reports. In this evaluation, 54% of the considered subjects exhibited a reduced effort in diagnosing

faults. The study utilized program subjects from the Defects4J dataset, executing fault-revealing

test suites for each buggy subject and constructing method-coverage spectrums that, naturally,

encompass test outcomes. Additionally, the values of primitive-type arguments and return values

for every method call were recorded to support the creation of various landmarks.

Several partitioning strategies were explored, resulting in multiple variants of Q-SFL. These

strategies included static partitioning, which employed automated sign partitioning based on vari-

able types, and dynamic partitioning, using various clustering and classification algorithms such

as k-NN, linear classification, logistic regression, decision trees, random forest, and x-means

clustering.

2.2 Automated Program Repair

As discussed in Section 1.3 of the Introductory chapter, automated program repair plays a pivotal

role in addressing the challenges of modern software development (Goues et al., 2019). In this

chapter, we will take a closer look at the foundations of automated program repair. While the

introduction offered an overview of this field, this chapter aims to provide a more in-depth under-

standing. We will explore the historical developments, foundational concepts, and key techniques

that underpin automated program repair. This detailed background is essential for a comprehen-

sive grasp of the subject and will serve as a solid foundation for the subsequent chapters of this

thesis. In the following sections, we will delve into the intricacies of automated program repair by

exploring previous important works, ultimately setting the stage for our research contributions.
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2.2.1 Evolutionary Repair

Genprog (Le Goues et al., 2012b) stands as an influential and characteristic automated program

repair system that harnesses the power of genetic programming (GP) to evolve program variants

with the objective of rectifying known defects while preserving essential functionality.

At its core, Genprog takes as input a program, a set of positive test cases that exemplify the de-

sired program behavior, and a negative test case that detects the fault. GP, inspired by biological

evolution, operates by maintaining a population of individual programs. These programs undergo

variations akin to biological mutation and crossover, which yield program variants. The fitness

of each program variant is evaluated through a user-defined fitness function, ensuring that only

the most promising variants progress in the evolutionary process. GP has been demonstrated to

successfully address a diverse array of computational challenges (Hum, 2004).

In the context of Genprog, GP is employed to curate a population of program variants in-

tended to rectify the target program. Each variant is represented as an abstract syntax tree (AST)

paired with a weighted program path. Two specific genetic algorithm operations, crossover and

mutation, tailored to this representation are employed to modify program variants. Each modifi-

cation results in a new AST and weighted program path. The fitness of these variants is assessed

by compiling the AST and executing the program on the provided test cases. The final fitness

score is computed as a weighted sum of the positive and negative test cases that the variant

successfully passes. The evolutionary process continues until a program variant is produced that

satisfies all test cases, effectively resolving the defect.

Genprog introduces two fundamental considerations. First, it constrains the evolutionary

algorithm to generate changes that are rooted in structures found elsewhere in the program. The

guiding hypothesis is that a program missing essential functionality can often borrow and adapt

the necessary code from other sections of the program. This premise arises from the observation

that a program may correctly handle certain situations in one location even if it makes an error

in another (Engler et al., 2001). For instance, if a program lacks a null check or an array bounds

check, it may have a similar working check elsewhere that can serve as a template. Consequently,

only code similar in structure to existing code is inserted. Thus, specific if conditionals and precise

statements may be inserted given that these are present in the original program. Second, Genprog

restricts the genetic operations, mutation, and crossover, to operate exclusively on the part of the
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program that is relevant to the error, which are computed by the execution path leading to the

error. In other words, when selecting sections of the program to modify, those visited during the

negative test case but not visited during the positive cases are favored. These two critical factors

attempt to overcome a substantial challenge inherent in evolutionary algorithms like GP, which

is the need to traverse a potentially boundless search space in pursuit of a correct program.

To generate candidate program variants, Genprog operates on the program’s AST and applies

three types of operations: deletion, addition, and replacement of AST nodes. When adding or

replacing nodes, they are sourced from other parts of the codebase, aligning with the redundancy

assumption (Barr et al., 2014; Martinez et al., 2014), which ensures that existing, functional code

is leveraged in the repair process.

Genprog’s initial evaluation involved 10 C programs from open-source benchmarks, all of

which were reported to have been successfully fixed. Later, a more extensive evaluation was con-

ducted, covering 105 defects across 8 C programs, with 55 defects being automatically repaired

according to the authors (Le Goues et al., 2012a).

However, despite its significance in the APR field, subsequent studies have scrutinized the

patches generated by Genprog and discovered a high rate of incorrect patches (Qi et al., 2015).

This phenomenon raises an open question about whether this holds true for test-suite-based

repair methods in general (Martinez et al., 2017).

In cases where patches initially reported as successful repairs are found to be incorrect,

it is typically due to their reliance on specificities and vulnerabilities within the test suite, akin

to overfitting. Overfitting occurs when a synthesized patch functions only on failing inputs and

fails to generalize to broader cases. Furthermore, research by Smith et al. (2015) focused on

the overfitting issue in automatic repair, demonstrating that Genprog and related techniques are

indeed susceptible to overfitting, as they illustrated on a dataset of student programs.

The challenge of overfitting stems from the inherent limitation of techniques that focus on the

immediate program context they are attempting to fix, which can impede the evolution towards

meaningful solutions. Moreover, the process of mutation in Genprog may frequently produce

nonsensical patches (Kim et al., 2013).

Jaff (Arcuri, 2011), a research prototype, takes a similar but still somewhat distinct approach.

It models the repair task as a search problem and employs evolutionary algorithms to tackle it.
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Jaff’s focus centers on a subset of Java, using different search algorithms for comparison.

Three distinct search algorithms are considered and compared. These include a random

search serving as a baseline, a variant of Hill Climbing, and Genetic Programming. Similar

to Genprog, Jaff also strives to concentrate repair efforts around potentially problematic areas

within a program. To facilitate this, the authors introduce a novel search operator based on fault

localization techniques. This operator plays a crucial role in narrowing down the search effort to

promising sub-areas of the search space.

The authors are well-aware of the challenges posed by the vastness of the search space

and the risks of overfitting, where a program becomes too tailored to its initial test cases. They

acknowledge that using conventional GP in its standard manner may be insufficient to evolve a

correct program from scratch, especially given a set of test cases. However, the assumption

that programmers do not create programs at random (DeMillo et al., 1978) makes the task less

daunting. With this in mind, it is reasonable to assume that most repair sequences are not

excessively long, reducing the complexity. Starting with a solution close to a global optimum

influences the choice of search operations. In many GP applications, crossover is favored over

mutation, but in the case of Jaff, the scarcity of diversity in the population calls for a different

strategy. Hence, the focus is given to mutations instead.

Jaff works with program trees, specifically defining six mutation operators to modify abstract

syntax trees. During a mutation event, one of these six operators is chosen with uniform proba-

bility. This approach includes an initial investigation and outlines directions for future work. To

provide an initial validation, the authors evaluate their approach on toy programs and present a

case study. Notably, it’s highlighted that Genprog would be unable to repair the specific case

study, primarily because Genprog’s operators are ill-suited to address the faults in question used

in that case study.

Tackling Overfitting through Property-based Testing A common way to assess whether

a candidate patch is a valid fix is to execute a test suite (if available). However, there may be the

case where a patch passes all tests but does not provide all intended functionality. We already

discussed what overfitting is and described it as a scenario in which a patch, despite behaving

as expected for the provided input data, is so specifically implemented that it fails to generalize.

PropR (Gissurarson et al., 2022) is a technique that targets the overfitting problem by using
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property-based testing (Claessen and Hughes, 2000).

In property-based testing, instead of writing specific test cases, we define properties for a

program. A property is a specific behavior or characteristic that a program is expected to exhibit.

A property for the reverse function, which inverts the order of the elements in a list of integers,

can be defined in Haskell as:

1 prop_reverse :: [Int] -> Bool
2 prop_reverse xs = xs == reverse (reverse xs)

The property prop_reverse states that for any list of integers, reversing the list twice

should result in the original list, ensuring the correctness of the reverse function. To do that,

multiple lists of varying lengths are automatically generated to assess the function’s behavior.

Generally speaking, based on the defined properties, input data is randomly generated, which is

used to check if such properties hold true. Unlike traditional testing, which focuses on specific

input-output pairs, property-based testing explores a broader set of inputs to ensure that certain

properties remain valid. In theory, property-based testing can be applied to programs written in

virtually any programming language. Indeed, there are frameworks for a diverse array of pro-

gramming languages that support this testing approach. Still, it is a concept that is notably more

common in the functional programming paradigm. A well-known and established framework for

property-based testing in Haskell is QuickCheck with several adaptations for different languages.

For a given program to be repaired, PropR traverses its AST in order to determine the tests

and properties to analyze. To determine the function bindings to mutate, we traverse the ASTs

of the properties and find variables that refer to top-level bindings. These bindings will be the

targets for repair. Consider the following faulty implementation of len and two corresponding

properties:

1 len :: [a] -> Int
2 len [] = 0
3 len xs = product $ map (const (1 :: Int)) xs
4

5 prop_abc :: Bool
6 prop_abc = len "abc" == 3
7

8 prop_dup :: [a] -> Bool
9 prop_dup x = len (x ++ x) == 2 * len x

This implementation is incorrect because it calculates the length of a list by multiplying the

36



2.2 AUTOMATED PROGRAM REPAIR

elements’ contributions (product), instead of summing them (sum). Both properties refer to

len, so it will be the target in this case.

Fault localization is performed at an expression-level. Specifically, expressions involved in the

execution of a failing property are considered suspicious, to which the authors call fault-involved

expressions.

The next step is called perforation. For each expression computed in the previous fault

localization step, a variation of that program’s AST is produced in which only that expression is

replaced by a typed hole. A typed hole is a placeholder in Haskell code — represented by an

underscore (_) — that the compiler recognizes as incomplete. During compilation, we can obtain

type-related information about the typed holes. Moreover, we can also get valid-hole fits which

are potential completions for typed holes that adhere to the expected types in the code and take

into account the programming context in question, that is, the scope. Considering a typed hole

is introduced for the product function:

1 len xs = _ $ map (const (1 :: Int)) xs

ghc will tell us that one of the valid-hole fits is sum. This would be computed by using depth

1. PropR supports using greater values for depth, meaning we could further introduce typed holes

in hole-fits, which would allow to recursively refine hole-fits with more elaborate expressions.

A limitation is that the majority of specific constants and expressions requiring intricate expan-

sions are not included in these valid-hole fits. To overcome this, PropR also generates expression

candidates for certain types such as common values like 0, 1, and list concatenation ++ and

application candidates according to the _ x template in which x is an already existing expres-

sion. After finding candidate fixes, the corresponding typed holes are replaced, thus building new

targets. For the example used so far, replacing the typed hole with the valid-hole fit sum would

yield the target:

1 len xs = sum $ map (const (1 :: Int)) xs

Interestingly, even though PropR has a strong focus on types, the generated patches may not

necessarily compile. According to the authors, one of the causes may be an error in precedence,

a task performed after typechecking. If a target passes all properties, it qualifies as a possible

repair.
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PropR implements three search algorithms. Random search randomly selects evaluated

holes and valid matches for these holes are randomly chosen to be filled within them. Exhaus-

tive search systematically examines each hole-fit in a breadth-first manner, starting with single

replacement fixes, followed by two replacement fixes, and continuing until the search budget

is depleted. Genetic Search involves mutations such as dropping or adding replacements to a

fix. The fittest candidates, comprising the top x%, progress to the next generation, with the re-

maining (100x)% filled by random individuals. High mutation and crossover rates are used to

introduce substantial changes, as altering a single expression often causes more failures than

fixes in properties.

PropR was evaluated on a dataset with 30 programs written by students for a programming

task implementing a calculator that parses a term from text, calculates results and derivations.

Even though it is a small scale classroom exercise, the authors argue that the problem encom-

passes sub-problems (like parsing) are complex enough to be representative of real-world sce-

narios and worthwhile to explore. The programs in question fail at least one of 23 properties

and one of 20 unit tests. PropR was able to find patches for 13 buggy programs, producing

228 patches in total. In the study, it was observed that properties did not contribute significantly

to patch generation compared to unit tests. Unique patches were identified by properties that

were not generated by unit tests, and the disparity in results between genetic and exhaustive

searches was most pronounced for properties. Genetic search demonstrates faster patch dis-

covery for properties compared to unit tests, and the combined test suite further enhances the

overall search speed. 70 patches were sampled, with 49 being identified as overfit and 21 as

fit. Considering the overall population of 228 patches and a 10% error rate, the expected correct

patches range from 62 to 76, resulting in a total non-overfit rate of 27% to 33%. Specifically, unit

test-found patches were overfit in 85% of cases, while properties showed a lower overfit rate of

64%. The distribution varies across programs, with some consistently well-repaired and others

prone to overfitting. Deductively, of the 13 entries with fixes, an estimated 3 to 4 have non-overfit

repairs, yielding an effective repair rate of 10% to 13%, comparable to Astor’s rates and supe-

rior to GenProg. The addition of properties and combining with them reduced the overfit ratio

from 85% to 63%, leading to a twofold increase in the number of successful patches. Despite

overfitting, the resulting repair rate of 10% to 13% with properties is comparable to other tools,

indicating the overall strength of the test suite.

38



2.2 AUTOMATED PROGRAM REPAIR

Overall, PropR presents an interesting exploration with promising results and a robust proof

of concept. Still, the limited validation, with the dataset originating from the same team that de-

veloped the approach, and the percentages derived from sampling and manual inspection being

generalized as effective rates for the method being presented raise some questions, emphasizing

the need for a more diverse and rigorous evaluation.

2.2.2 Template-based Repair

PAR (Pattern-based Automatic Program Repair) offers an automated approach for the rectification

of Java code defects. In APR, the degree of randomness associated with evolutionary techniques

often leads to the generation of nonsensical patches. This inherent limitation highlights the ne-

cessity for evolved patches to exhibit qualities that go beyond mere satisfaction of test suites.

Effective patches should encompass a more profound understanding of the problem at hand,

ensuring that the modifications generalize the effect of the patch. Additionally, patches should

avoid overfitting to specific erroneous inputs and maintain clarity for human developers to under-

stand and approve.

PAR operates based on a set of repair templates, each representing a common method

for addressing prevalent types of bugs. For instance, one of these templates, known as the

”Null Pointer Checker,” is frequently applied to resolve null pointer access issues by inserting

a nullness check before the problematic access. These templates can also be parameterized,

accommodating variable names as inputs, for greater flexibility in addressing various issues.

Much like other automated repair approaches, PAR initiates its process by identifying fault

locations, or suspicious statements, using existing fault localization techniques. The adjacent

code surrounding these locations is then subjected to modifications, employing fix templates to

create program variants, which are essentially patch candidates. These candidates are then

evaluated using a fitness function that computes the number of passing test cases for each one.

A patch candidate successfully passes if it satisfies all provided test cases; otherwise, the process

of generating candidates and evaluating them is iteratively repeated.

To validate its effectiveness, PAR was empirically evaluated on a set of 119 real-world bugs,

successfully fixing 27 of them. For comparison, Genprog, the tool the authors used as a baseline,

managed to repair 16 of the same bugs.

39



CHAPTER 2 STATE OF THE ART

2.2.3 Constraint-based Repair

Semfix (Nguyen et al., 2013) is a program repair approach in which a test suite is available to

verify program correctness. In fact, the absence of a formal specification is generally the most

common scenario.

The repair process in Semfix is guided by the generation of repair constraints, with the primary

objective of ensuring the produced program successfully passes the given test cases. Following

the pattern of other APR approaches, Semfix initiates its workflow with a fault isolation step,

identifying potential locations for the problem. The suspicious lines of code are computed by

leveraging the ranking produced by a statistical fault isolation tool.

The subsequent step involves the automatic discovery of the correct specification for the faulty

statement using angelic debugging (Chandra et al., 2011), sometimes called predicate switching

(Zhang et al., 2006). This entails creating, for each input to the buggy statement, the output that

would lead to test success. The final piece involves synthesizing the repaired expression using

input-output component synthesis.

Semfix concentrates its efforts on the right-hand side of assignments and boolean condition-

als, aiming to synthesize expressions that integrate both arithmetic and first-order logics. The

program synthesis part harnesses the capabilities of the Z3 SMT solver (de Moura and Bjørner,

2008) to efficiently resolve the produced repair constraints.

The efficacy was assessed through a validation involving 90 bugs, in which 48 of them were

fixed. In comparison, Genprog, another well-known program repair tool, managed to repair 16

bugs in the same scenario.

Nopol (Xuan et al., 2017) also employs a constraint-based approach and specifically targets

conditional bugs. Its focus lies in either modifying existing if-conditions or introducing precondi-

tions before existing code.

The repair process in Nopol also requires a test suite, which is expected to encompass both

passing test cases, outlining the expected program behavior, and at least one failing test case

that exposes the bug in need of repair.

The fault localization phase in Nopol is orchestrated through angelic debugging, determining

the anticipated values of a condition during test execution. Subsequently, runtime trace collection

40



2.2 AUTOMATED PROGRAM REPAIR

captures variables and their values, encompassing both primitive data types and object-oriented

features like nullness checks. This data forms the foundation for patch generation. The encoded

information is then translated as an SMT problem and presented to the Z3 SMT solver. The

solution derived from the solver is then transformed into a code patch, featuring either a modified

or newly inserted condition.

Nopol’s evaluation involved 22 real-world bugs — 16 with faulty if-conditions and 6 with miss-

ing preconditions - across two expansive open-source projects: Apache Commons Math and

Apache Commons Lang. Nopol successfully repaired 17 bugs: 13 out of 16 bugs with faulty

if-conditions and 4 out of 6 bugs with missing preconditions.

The technique was later expanded to address the repair of infinite loops and implemented

as a tool called DynaMoth (Durieux and Monperrus, 2016), showcasing its adaptability to diverse

fault scenarios.

2.2.4 Mutation-based Repair

Debroy and Wong (2010) introduce an APR approach that makes use of standard mutation oper-

ators documented in the mutation testing literature. This technique considers specific mutation

operators: the replacement of arithmetic, relational, logical, increment/decrement, or assign-

ment operators by another operator within the same class, along with decision negation in if and

while statements.

The fundamental question posed by the authors is whether mutating a faulty program using

realistic mutation operators can yield a plausible fix for certain faults. Recognizing the potential

computational challenges posed by mutant generation and execution, they contemplate the sig-

nificant cost and the explosive number of possible mutants for a given program. To address this,

and in line with what is conventionally done in other works, the authors leverage the rankings

provided by a fault localizer to guide the mutation process. This strategy aims to mutate program

components, such as statements, in the order of their likelihood to contain faults, streamlining

the search for a potential fix.

The fault isolation step employs the Tarantula spectrum-based fault localization technique

to identify potentially faulty statements. Results indicate a reduction in overhead, ranging from

16.67% to 50% of the total possible number of mutants, by utilizing a fault localizer to prioritize
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and filter the lines of code subjected to mutation.

Validation of the technique unfolds across 7 benchmark programs within the Siemens suite

and the Ant project. This evaluation, encompassing a total of 135 faults, culminates in a 18.52%

repair rate, with 25 successfully fixed faults. The authors offer nuanced insights into the ex-

perimental design, emphasizing the trade-off between effectiveness and efficiency in selecting

mutation operators. While a broader set maximizes fault coverage, a more focused set ensures

efficiency by minimizing overhead, albeit at the expense of addressing certain fault types.

Astor, a publicly available program repair library for Java programs, contains an adapted

implementation of Debroy and Wong (2010)’s work for this target language. Furthermore, Astor

implements two other repair approaches: jGenProg2, which is based on Genprog, and jKali which

only performs code removal.

The Defects4J benchmark was used for Astor’s evaluation, which encompasses 224 bugs.

Astor successfully repairs 33 out of the 224 bugs, showcasing a repair rate of 14.7%. Alone,

jMutRepair is able to fix 17 faults. Furthermore, jMutRepair stands out as the sole strategy to

achieve success in rectifying at least one fault within the Apache Lang project.

Rothenberg and Grumberg (2016) introduce a distinctive program repair methodology with

AllRepair, shifting the focus to the earlier stages of development. Unlike prevalent automated

repair tools designed for scalability and targeted at deployed software, AllRepair aims to be a

user-friendly solution applicable in the initial debugging phases. The authors envision its utility for

independent programmers dealing with small code snippets and as a routine tool that developers

can effortlessly integrate into their workflow immediately after making program changes.

Notably, AllRepair embraces a non-scalable approach, prioritizing simplicity and rapid exe-

cution. It operates under the premise that even a non-scalable automated repair method can

significantly save time and alleviate frustration during the early stages of development. The tool

makes no assumptions about the number of mutations required for repair, accommodating mul-

tiple co-dependent buggy locations in its repair solutions.

AllRepair’s approach involves turning the program into a set of SMT constraints. The authors

make the observation that changing something in the program (mutation) is equivalent to chang-

ing one of these constraints. As such, instead of exploring all possible mutations, AllRepair looks

for the smallest unsatisfiable set of constraints. This way, it efficiently explores and finds ways to
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fix the program.

Evaluation is performed on the TCAS benchmarks from the Siemens suite, featuring 41 faulty

versions. Two levels of granularity are explored: level 2 utilizes all mutation operators and level

1 employs a subset. While level 2 fixes 11 bugs efficiently, level 1 introduces a trade-off between

repairability and runtime, with a noticeable increase in the number of fixed faults to 18 at the

cost of slightly extended execution times: 48 seconds on average compared to 2.3 seconds.

2.2.5 Deep Learning-based Repair

While the APR approaches presented so far have made significant strides in automatically ad-

dressing software bugs, they are not without their inherent limitations. As discussed in this thesis,

challenges include the production of patches acceptable to programmers, the risk of overfitting

to specific test cases in generate-and-validate techniques, and the observation that some meth-

ods might seemingly achieve repair by predominantly removing pieces of functionality (Qi et al.,

2015). Additionally, existing approaches often exhibit limitations in scope, focusing solely on spe-

cific types of bugs, relying on handcrafted rules or templates, and struggling with the handling of

long-range dependencies within code.

To tackle these challenges, researchers have explored leveraging project history. Approaches

like that of Le et al. (2016) delve into the past history of projects, examining bug-fix patches and

comparing them to automatically generated patches. Similarities to patches found in the historical

data of mined projects are deemedmore relevant, increasing the effectiveness of repair strategies.

Another notable approach, Prophet (Long and Rinard, 2016a), identifies patches from past fixes

by first localizing likely faulty code through test case execution and then generating patches from

correct code using a probabilistic model.

The significance of utilizing software development history, abundantly available in code repos-

itories like GitHub, cannot be overstated. These repositories provide extensive change history and

bug-fixing commits from diverse software projects. Deep learning techniques can leverage this

rich dataset to learn from large software engineering repositories.
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Neural Machine Translation

In this section, we will be looking into Neural Machine Translation (NMT) techniques. This ap-

proach not only allows for insights into bug-fixing activities in real-world scenarios but also empow-

ers the emulation of genuine patches crafted by developers. Under this scenario, the repair task

is interpreted as a translation task in which the languages involved are ”buggy” and ”fixed”, thus

harnessing the power of NMT to “translate” buggy code into fixed code. As we explore the area

of NMT for program repair, the potential to overcome existing limitations becomes increasingly

promising.

Learning Patches via NMT Tufano et al. (2019b) pioneered the use of NMT to learn bug-

fixes and automatically generate patches for buggy code, thus introducing a novel approach

to APR. Their method is based on three critical observations. Firstly, it highlights the effective

utilization of past project histories to discern meaningful program repair patches. Secondly, it

addresses the limitations of traditional APR approaches, which often rely on a manually-crafted

and somewhat restricted set of transformations or fixing patterns, necessitating significant manual

effort and expertise. Lastly, the study aligns with the broader trend in research showcasing the

potential of advanced machine learning techniques, specifically deep learning, to extract insights

from extensive software engineering datasets.

For bug-fix mining, the researchers analyzed GitHub events from March 2011 to October

2017, identifying commits using specific message patterns suggesting fault-addressing actions.

This process yielded 10,056,052 bug-fixing commits, with a 97.6% true positive rate verified

through a manual sample analysis. The researchers then extracted source code before and

after the fix, discarding non-Java files and new files as these lacked a buggy version for learning

purposes. Additionally, commits impacting more than five Java files were also discarded to focus

on acquiring specific and localized bug-fixes. This selection resulted in 787,178 bug-fix pairs

(BFPs), which formed the dataset for further analysis.

The process to extract information from BFPs involves utilizing the GumTree Spoon AST Diff

tool to compute the AST differences between the buggy and fixed files. This tool identifies the

sequence of edit actions performed at the AST level, which leads to the transformation of the

buggy file’s AST into the fixed file’s AST. GumTree Diff recognizes four edit action types: update,
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insert, delete, andmove. The analysis considers the set of AST edit actions as defined by GumTree

Diff, and the outcome is a triplet comprising the buggy method, the fixed version, and the tree

edit actions necessary to convert the buggy code into the fixed code.

The next step involves abstracting the source code of the BFPs into a form more suitable for

learning. This process begins by using a Java Lexer and Parser to tokenize the source code, creat-

ing a sequence of tokens. Subsequently, an AST representation of the source code is employed

to capture its structural aspects. Throughout the abstraction, the researchers retain frequent

identifiers and literals, referred to as idioms within the representation. The outcome of this phase

includes the abstracted BFPs and the corresponding mapping to original values, facilitating the

reconstruction of the original source code. The goal of the abstraction process is to simplify the

source code’s complexity while maintaining crucial information necessary for learning bug-fixing

patterns.

The evaluation involved the creation of two datasets categorizing fixes for small and medium

methods. Subsequently, an encoder-decoder model was employed for each set to learn the trans-

formation of buggy code into corresponding fixed versions. The trained models demonstrated the

ability to generate patches for unseen buggy code. The NMT-based model trained on small BFPs

achieved developer-inspired fixes for 9.22%–50.16% of bugs, while the model trained on medium

BFPs produced fixes for 3.22%–28.55% of bugs, with the number of successful fixes increasing

when more candidate patches are generated by the models, also called the beam size. The gen-

erated patches exhibited high syntactic correctness, ranging between 99% and 82%. Although

the models learned to apply a subset of AST operation types used by developers to fix bugs in

the test set, these learned operations represent the most crucial ones, theoretically enabling the

repair of a significant percentage of bugs.

After around 15 hours of training, the model is able to consistently and efficiently generate

50 candidate patches for a single bug in under a second. This one-time cost was considered

acceptable for building a cross-project bug-fixing model. Despite a slight increase in average

time per bug with larger beam sizes, ranging from 0.006s (1 patch) to 0.226s (30 patches), the

average time per patch generated stayed well below 0.030s.

It’s important to highlight that AST edit actions are excluded from the training process; the

models do not have access to this information. These actions serve two main purposes: first, to

filter bug-fix pairs during consideration, ensuring pairs with excessive or no tree edits are excluded.
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Second, they are employed to evaluate the model’s ability to emulate frequent edits required for

bug fixes. The authors measure the model’s performance by comparing the set of edit actions in

fixed bugs against those in the entire test set, defining this overlap as ”theoretical bug coverage.”

The model demonstrates robust performance, achieving theoretical bug coverage of 94% and

84% for the small and medium sets, respectively (assuming a beam size of 50).

Tufano et al.’s pioneering work in NMT-based program repair stands out as one of the first sig-

nificantly impactful initiatives that paved the way for a fusion between historical project knowledge,

streamlined repair methodologies, and the capabilities of machine learning, thereby contributing

to the transformative evolution of program repair techniques.

Sequence-to-sequence Translation to Locate and Fix Faults Typical APR approaches

often assume pre-identified faulty locations or incorporate external fault localization techniques.

Moreover, these techniques primarily target logical errors, assuming the code compiles success-

fully. DeepFix, an end-to-end solution, abdicates of external methods to locate errors. Instead, its

neural network is trained to predict both the location and the correction for erroneous statements,

making it an iterative solution capable of addressing multiple errors in a single program. Another

point that sets DeepFix apart is its focus on what it calls ”common programming errors,” which

it defines as those responsible for compilation failures or build errors. Unlike similar approaches

tied to specific programming tasks, DeepFix addresses syntax and structural issues applicable

across various programming contexts, analogous to grammatical errors in natural languages. At

first, one might think that these common mistakes are almost exclusive to novice programmers.

However, it has been observed that experienced developers can inadvertently introduce them into

their code too.

DeepFix is based on a variant (Vinyals et al. 2015) of the sequence-to-sequence model

(Sutskever, Vinyals, and Le 2014) taking advantage of an attention mechanism (Bahdanau, Cho,

and Bengio 2014). Being a ”sequence-to-sequence” model, it means it’s designed to handle a

sequence of data, understand it, and transform it into another sequence of data. More precisely,

we are dealing with sequences of code in this case. As such, we give it the buggy code (input

sequence) and expect it to produce the corrected code (output sequence). The ”attention mech-

anism” is a feature in the model that helps it focus on specific parts of the input sequence when

generating the output sequence, making it more effective at understanding and fixing code.
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The program representation in DeepFix encompasses a range of tokens, including types,

keywords, special characters, functions, literals, and variables. For types, keywords, special

characters, and library functions, a fixed-size pool of names is defined in order to create a shared

vocabulary. Each program receives a unique encoding map by randomly assigning distinct iden-

tifiers to names in the pool, maintaining semantics and reversibility. Literal values are mapped

to special tokens based on types, and the exact values of literals are non-essential. In line with

similar techniques, there is an <eos> token denoting the end of a sequence. A program is rep-

resented as a sequence of tokens (X), and to enhance prediction accuracy, line numbers are

incorporated. Each statement (S) at line (L) is represented as (l, s), forming a program represen-

tation of (l1, s1), ..., (lk, sk) <eos>, with l1 to lk as line numbers and s1 to sk as token sequences.

The neural network is trained to predict a fix, a smaller output comprising a line number (li) and

an associated statement (s’i) that corrects errors in the original statement (si). Making the output

sequence smaller than the input sequence facilitates the prediction task.

Overall, DeepFix introduces a robust strategy for addressing multiple errors in a program

through an iterative process. The network predicts a single line fix for a tokenized input program,

and an oracle evaluates and updates the program accordingly, either accepting or rejecting the

fix based on whether the compiler does not produce more errors and other heuristics. The it-

erative approach continues until the program is error-free, the network deems it correct, the fix

is rejected, or a predetermined iteration limit is reached. The network’s actions include poten-

tial line insertions, deletions, and substitutions, and the oracle ensures successful program text

reconstruction via the encoding map previously mentioned.

DeepFix’s repair strategy offers several advantages. Firstly, it takes a comprehensive ap-

proach by showing the entire program to the network, helping it analyze and fix programming

errors globally. The network’s ability to focus on different parts of the program allows it to un-

derstand the structure and syntax, making predictions more accurate. Including line numbers

in both input and output simplifies the prediction task. DeepFix can also fix multiple errors in a

program through an iterative process. The oracle, an important part of the strategy, keeps track

of progress and prevents unnecessary changes during fixing. Additionally, the strategy is versatile

and can handle various error types. For example, it can address logical errors by using a test

engine and test suite as an oracle, accepting fixes that make the program pass more tests.

In terms of fault localization, DeepFix is able to autonomously localizes errors, achieving a
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78.68% accuracy in identifying 7262 out of 9230 erroneous lines in the first iteration. Utilizing

beam search, the network’s top-5 predictions include 87.50% of the erroneous lines. This means

that beyond the primary goal of predicting fixes, DeepFix can also assist programmers by reporting

suspicious lines.

DeepFix achieves a comprehensive success rate, fully fixing 27% and partially fixing 19%

of the 6971 erroneous programs. It effectively resolves 32% (5366) of the originally generated

16743 error messages. Additionally, DeepFix demonstrates efficiency, taking only a few tens of

milliseconds on average to rectify errors in a test program. When applied to a seeded dataset

with known expected fixes, DeepFix fully fixes 56%, partially fixes 17%, and successfully resolves

63% of the compilation error messages. Indeed, DeepFix fixes substantially more programs in

the seeded dataset than the raw dataset. Comprehensively, the authors created that particular

seeded dataset to enable a more controlled analysis of the results and better understand the

limitations and areas they need to work on the approach. Nonetheless, this indicates that the

dataset in question does not reflect all possible errors from the raw dataset with the authors

acknowledging there is still room to improve in this regard.

Unlimited Vocabulary and Long-range Dependencies SequenceR is also an end-to-end

method for fixing program errors based on sequence-to-sequence learning. As already noted,

working with code comes with unique challenges. The raw data is inherently noisy, demand-

ing careful curation efforts to sift through commits and pinpoint those addressing specific tasks.

Unlike natural language, programming languages exhibit a low tolerance for the misuse of rare

words, such as identifiers and numbers. The compilers or interpreters in programming are un-

forgiving, requiring a great deal of precision when using the language. Plus, in code, the range of

dependencies connecting different parts of it can stretch over longer distances compared to nor-

mal language; variables declared dozens of lines before or even in completely separate modules

might very well present a great impact, a characteristic distinct from the shorter-range dependen-

cies typical in natural language, in which associated words are often used in the same sentence

of particularly close to each other.

SequenceR tackles these problems by first focusing on one-line fixes: it predicts the corrected

version for a buggy line. To make this work, the researchers build a dataset of one-line commits

for training and testing. What sets SequenceR apart is its sequence-to-sequence network archi-
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tecture, specifically designed to handle challenges like the unlimited vocabulary and long-range

dependencies problems. Indeed, a common problem with sequence generation is that only to-

kens which are in the training set are available for output — vocabulary problem. To tackle this,

the authors use the copy mechanism. The basic intuition behind it is that words not available

in the vocabulary may be directly copied from the input sentence over to the output translated

sentence. Ultimately, this allows SequenceR to predict fixes even if they contain rare tokens

not explicitly in its vocabulary. This is particularly helpful for dealing with uncommon API calls

or identifiers. To address the long-range dependency problem, the team constructs an abstract

buggy context from the buggy class, capturing crucial context around the buggy code and sim-

plifying the input sequence’s complexity. This approach allows SequenceR to handle the lengthy

connections needed for effective fixes.

SequenceR specializes in replacing existing source code, omitting scenarios involving line

deletions due to compatibility issues with sequence generation and excluding additions because

spectrum-based fault localization, commonly used in related works, proves ineffective in such

cases. Leveraging fault localization techniques, SequenceR identifies problematic methods and

lines, proceeding to organize this data through a buggy context abstraction process. The challenge

lies in balancing the need for a concise sequence of tokens, given the limitations of sequence-to-

sequence models with long sentences, while preserving as much relevant information as possible.

In each bug location, SequenceR includes the buggy line, marked by special tokens indicating

its start and end to propagate this information to the model, the buggy method to provide insights

into its interaction with the rest of the method, and the buggy class containing only instance vari-

ables, initializers, constructor signature, and non-buggy method signatures. SequenceR utilizes

truncation to control the size of the abstract buggy context, ensuring efficient processing of input

files with varied lengths. This involves choosing a truncation size, minimizing its use, including

as many tokens as possible from the buggy line within the limit, and maintaining a ratio of twice

as many tokens before the buggy line as after it.

The abstract buggy context, used as input for the sequence-to-sequence network predicting

the fixed line, is internally represented with a token sequence from the vocabulary, substituting

out-of-vocabulary tokens, i.e. unknown tokens, with the ”<unk>” token. During patch inference,

the abstract buggy context is still generated, but beam search is employed to produce multiple

likely patches for the same buggy line. SequenceR’s accuracy, tested on CodRep4 and Co-
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dRep4Medium, is 344/1,116 (30.8%), outperforming Tufano et al.’s 157/1,116 (14.1%). This

highlights the efficacy of constructing the abstract buggy context with the copy mechanism for

higher accuracy. For an external evaluation, the authors tested SequenceR on 75 Defects4J bugs

fixed by human developers using one-line patches. SequenceR successfully generated patches

for 58 bugs, with 53 having at least one compilable patch, 19 passing all tests (plausible), and

14 deemed correctly fixed, being semantically identical to the human-written patches. Notably, in

12 out of these 14 cases, the patch with the highest ranking in the beam search results coincided

with the semantically correct solution.

Some of the limitations with SequenceR include only addressing bugs inside a method, fo-

cusing on one-line fixes, and lacking an iterative process like Tufano’s work. Moreover, while

long-range dependencies are acknowledged, they are limited to class-level, potentially overlook-

ing complex connections in software projects.

Context Learning and Transformation Learning NMT-based approaches encounter three

significant challenges when applied to APR. Firstly, they treat APR as a translation task, lacking

explicit knowledge of modified parts in the faulty code during training. This requires the models

to implicitly learn alignment, leading to potential imprecision in identifying fixing locations in new

faulty code. Secondly, the sequence-based representation struggles to capture the well-defined

syntax and semantics of source code, risking imprecise mappings and incorrect fixes due to the

implicit recovery of code structure. Lastly, handling the context of code around fixing locations

proves challenging, with noise introduced by using entire methods and insufficient context limiting

the accuracy of derived fixes.

With this in mind, DLFix (Li et al., 2020) was introduced as a two-layer tree-based DL model.

DLFix targets APR as a code transformation learning challenge. It diverges from conventional

sequence-to-sequence NMT approaches by utilizing a tree-based Recurrent Neural Network (RNN)

with the AST representing the source code. More specifically, DLFix introduces a separation

between the learning of the context surrounding the code and the learning of bug-fixing code

transformations. This separation is implemented through the incorporation of two distinct layers.

For context learning, the AST of a buggy method is subject to a process where the identified

buggy sub-tree is replaced by a summarized node, encapsulating its structural details. This, along

with the non-buggy AST sub-trees, forms the contextual information fed into the context learning
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layer. The output from this layer is a vector that precisely encapsulates the surrounding context.

In the subsequent code transformation learning step, a distinct tree-based RNN model is trained

using the changed sub-tree before and after the fix. The context transformation vector, derived in

the earlier context learning layer, is integrated as an additional input. DLFix’s separation between

context and transformation learning enhances its understanding of surrounding code by focusing

on aligning changed sub-trees, avoiding incorrect alignments and acquiring more fine-grained

transformations during training.

DLFix underwent evaluation on two established bug datasets, Defects4J and Bugs.jar, as well

as a novel dataset encompassing over 20,000 real-world bugs from eight large Java projects.

In contrast to 13 pattern-based APR tools, DLFix surpassed eleven and exhibited compatibility

with the top two tools. Furthermore, when compared against four state-of-the-art DL-based APR

approaches (Hata et al., 2018; Chakraborty et al., 2022; Tufano et al., 2018, 2019a), DLFix

outperformed them, identifying 2.5 times more bugs than the best-performing baseline and 19.8

times more bugs than the worst-performing baseline.

Convolutions and Ensemble Learning State-of-the-art techniques have limited success in

locating correct patches within their search spaces (Long and Rinard, 2016b). CoCoNuT (Lutellier

et al., 2020) is a context-aware NMT architecture that has two separate encoders: one for the

buggy lines, the other one for the context, similar to DLFix but without representing source code

as an AST. However, it uses ensemble learning on a combination of convolutional neural networks

(CNNs) instead of RNNs. This may seem like an intricate technical aspect; but is what sets this

technique apart. Ensemble learning is used to address the diversity of bugs and fixes, as it allows

combining models with different levels of complexity, capturing various relations between buggy

and clean code. This enables the approach to learn diverse repair strategies suited for different

types of bugs. As for the use of CNNs, the authors justify it due to a specific difference between

natural language and source code. Unlike natural language, which is read sequentially from left

to right, source code is not executed sequentially in the same manner. Relevant information

may be situated farther away from the buggy location, posing a challenge for traditional RNNs

and LSTM layers. To tackle this, the authors propose an architecture that leverages CNN layers.

These layers capture relations at different levels, addressing both short-term dependencies within

statements and long-term dependencies within functions.
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As we say when discussing other NMT-based approaches, effectively representing context

in bug-fixing tasks poses a challenge for NMT models, with concatenation of context and buggy

code leading to long input sequences, limiting applicability to short methods (Chen et al., 2021;

Tufano et al., 2018). Furthermore, it also hinders the extraction of meaningful relations between

tokens primarily due to the addition of noise from excessive context. In contrast to natural lan-

guage, source code’s larger vocabulary, including infrequent tokens and the significance of letter

case, requires practitioners to reduce the vocabulary size. The authors adopt a tailored tokeniza-

tion approach akin to word-level tokenization but tailored to programming languages, separating

operators and variables without space. Enhancements include considering underscores, camel-

case, and numbers as separators. A new token (<CAMEL>) marks camel case splits. String and

number literals are abstracted, excluding common numbers (0 and 1) from the training set. This

minimizes out-of-vocabulary tokens to less than 2% in benchmarks.

In an evaluation against 27 APR techniques across six bug benchmarks in four programming

languages (Java, C, Python, and JavaScript), CoCoNuT successfully fixed 509 bugs, notably ad-

dressing 309 bugs not remedied by other tools. Its effectiveness stems from learning new pat-

terns, extracting donor code from the bug’s context, and leveraging historical training data. The

incorporation of ensemble learning significantly enhances CoCoNuT’s performance, demonstrat-

ing a 50% improvement when employing 10 models compared to a single model. In terms of

efficiency, with 10 models, CoCoNuT averages 16.7 minutes to generate 20,000 patches for one

bug, while a single model achieves this in an average of 1.8 minutes.

Pre-trained Language Models

Even though translation-based techniques have shown good results and proved to be promising

research paths to explore for APR, some inherent limitations still affect their performance. No-

tably, their search space frequently lacks the correct fix. Moreover, their strategy overlooks strict

code syntax. Ultimately, these drawbacks hinder both their effectiveness, by preventing such

approaches to even reach a useful patch, and also their efficiency, by generating numerous un-

compilable patches overly often. Despite surpassing manual rule/template crafting techniques

in certain aspects, translation-based methods still exhibit equitability or introduce new drawbacks

in specific scenarios.

In natural language, pre-trained language models have significantly enhanced various NLP
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tasks, leveraging the learned probability distribution over word sequences from extensive text

data. These models offer the flexibility of fine-tuning for specific tasks or direct out-of-the-box use.

Because the training process is based on unsupervised learning, which means it does need any

ground truth or data labeling, a pre-trained language model is typically trained on a very large

dataset. This way, it is able to gather more information regarding sentence structure (syntax) and

about what human-like text is (readability).

The effectiveness of these models is often amplified by their sheer size, allowing them to

capture intricate patterns and nuances in language. For this reason, it is common to refer to

them as large language models (LLMs). Overall, this improves the quality of the generated text.

Specifically, the application of LLMs for programming languages has allowed for a significant

enhancement in code understanding and generation. These capabilities allow for a great deal of

automation in code-related tasks. In this section, and in line with this thesis, we will focus on the

use of LLMs for program repair.

Separating PL Learning from Patch Learning CURE (Jiang et al., 2021) is a technique

that does not separate itself entirely from NMT-based approaches. Yet, it recognizes the inade-

quacies of targeting the APR problem by implementing a translation-based approach and suggests

integrating the use of a pre-trained language model. Afterwards, this model is specialized for the

APR task by fine-tuning it, thus building what the authors call an APR model.

First, to address the challenges of learning developer-like source code, the authors train a

language model on open-source programs. This improves the probability of a sequence of tokens

being a real-world code snippet. Specifically, CURE uses a Generative Pre-trained Transformer

(GPT) (Radford et al., 2018) for their language model. GPTs are a type of LLM that have shown

tremendous improvements in many NLP tasks (Radford et al., 2019). The pre-training of this

LLM is an essential part of CURE’s approach. It allows for the separation of programming lan-

guage learning and patch learning. The authors mention two advantages with this. First, it uses

unsupervised learning; therefore one can extract a large amount of data automatically and train

it. Second, during fine-tuning, the APR model already knows the syntax, making the fine-tuning

more efficient.

After pre-training the first model, CURE fine-tunes it for the APR task. This is done by com-

bining the pre-trained model with an NMT model as the APR model. The APR model takes buggy
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lines and their context as input and aims to generate a correct patch. During the fine-tuning

process, the APR model is trained to learn the transformation from the buggy lines and context

to the correct fix.

As for the tokenizer, CURE uses byte-pair encoding (BPE) to tokenize compound words and

rare words. BPE still allows for the flexibility of considering camel letters, underscores, and

numbers to split long identifiers while further addressing the OOV problem.

Indeed, CURE is very similar in nature to the NMT-based approaches presented previously.

However, by explicitly separating the learning process of learning how to write source code, with-

out the end goal of repairing programs in mind, and the learning process of producing correct

patches, which is common to other translation techniques, CURE aims to mitigate the negative

effects that having that whole part in a single step presents.

For evaluation, two widely-used benchmarks, Defects4J and QuixBugs were used. Patched

projects are compiled and test suites are executed to find plausible patches, i.e., patches that pass

the relevant test cases. Two co-authors independently checked plausible patches and considered

as correct patches only those that are equivalent to developers’ patches. CURE fixes the most

number of bugs, generating plausible patches for 104 Defects4J bugs, in which 57 were correctly

fixed, and generating plausible patches for 35 QuixBugs bugs, in which 26 were correctly fixed.

According to the paper, CURE outperforms all the APR tools in was compared with.

There is one bug for which CURE is the only approach able to fix it:

1 - Object clone = createCopy(0, getItemCount() - 1);
2 + Object clone = createCopy(0, Math.max(0, getItemCount() - 1));

The correct fix requires ensuring the second parameter is non-negative. Pattern-based approaches

fail to produce a correct patch because they implement no patterns or combination of patterns

that recreates the necessary transformation. NMT-based approaches fail to fix it as they are de-

pendent on having patches that recreate similar scenarios. In fact, the authors state that in their

patch training data consisting of 2.72 million training instances there are only two similar fixes.

This makes it virtually impossible for NMT-based approaches to capture this transformation due

to the lack of representation. However, ensuring non-negativeness is a common Java coding

practice and the pre-trained language model, which is not coupled to any particular repair task,

captures that.
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Considering the top-30 patches produced for each bug, CURE generates compilable patches

(39%) more often that SequenceR (33%) and CoCoNuT (24%).

Repairing with Out-of-the-box Infilling We have noted that the context in which a bug

occurs is crucial to fix it. Such context is usually represented by source code that is immediately

near the bug or by elements, such as variables, that may be defined further away but are still

referred to in the buggy area. This context provides extremely useful syntactic and semantic

information.

Many of the learning-based techniques explored so far in this thesis have this in mind by

clearly pointing out their efforts in extracting relevant context in order to associate it to the buggy

code they intend to fix. Generally speaking, those techniques combine such context and the

associated buggy code as plain text (Jiang et al., 2021; Lutellier et al., 2020) or through more

structured representations (Li et al., 2020; Zhu et al., 2021). AlphaRepair (Xia and Zhang, 2022)

argues that this process in unnatural. The basis for the argument is that it is challenging for the

models to distinguish the patch location within the context, or effectively merge the separate bug

and context encodings. Indeed, in light of what we have been discussing so far, this makes sense.

We previously saw that we are limiting APR’s potential by forcing models to learn how to write

source code while teaching them how to write patches. By seeing these as two separate steps:

language learning and patch learning, we allow APR to break free from the boundary imposed by

inadvertently merging those two.

Still, we have to deal with the strong focus that many learning-based APR approaches place

on training, either by creating NMT models from scratch or by fine-tuning existing pre-trained

models. AlphaRepair recognizes this issue and deviates from modeling what a repair edit should

look like and, instead, directly predicts what the correct code is based on the context information.

They do this by leveraging the out-of-the-box infilling capabilities of CodeBERT (Feng et al., 2020),

a pre-trained language model for multiple programming languages. Infilling is the capability of

predicting or completing missing code elements within a given code snippet. The key aspect

is that the surrounding context can be used and we are not limited to what is before, that is,

on the left. CodeBERT uses the masked language modeling (MLM) objective, which is what

enables it to perform infilling. During training, MLM randomly masks out tokens and the model is

trained to recover them. During inference, this allows the model to operate via zero-shot learning,
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which essentially means filling in blanks (in the form of masked tokens) without receiving explicit

examples in the prompt.

First, AlphaRepair replaces each potentially buggy line with a mask line. Note that, unlike

in the MLM training objective, tokens are not randomly masked out. A mask line is a line with

one or more mask tokens — <mask>. AlphaRepair uses 3 strategies to produce mask lines. The

simplest strategy is to replace the entire buggy line with a line containing only mask tokens —

line replacement — and to insert mask lines where only mask tokens are added before or after

the buggy line — line insertion. Another strategy for generating mask lines is by reusing partial

code from the buggy line. The buggy line is first separated into its individual tokens and then the

last/first token is kept while replacing all other tokens before/after with mask tokens. This process

is repeated by appending more tokens from the original buggy line to generate all the possible

versions of partial mask lines. Finally, several template-based mask line generation strategies

targeting conditional and method invocation statements were implemented as they are two of the

most common bug patterns (Le et al., 2016; Xuan et al., 2017; Durieux and Monperrus, 2016;

DeMarco et al., 2014).

CodeBERT is then queried to fill the mask line with replacement tokens to produce candidate

patches for a buggy program input. This is where zero-shot learning is performed (with no fine-

tuning). The bidirectional nature of CodeBERT also allows to capture both the contexts before and

after the buggy location for effective patch generation. A key difference between AlphaRepair’s

input and the MLM objective used for training is that in AlphaRepair the masked tokens are

grouped together, which means there may be multiple mask tokens contiguously, the immediate

context before and after are masked tokens. In contrast, during training, the masked tokens

are spread out and each of them has sufficient context tokens before and after. To circumvent

this, AlphaRepair uses an iterative process to produce candidate patches. In the initial input,

certain tokens are masked and CodeBERT is used to predict the top N most likely replacements

for the first masked token. N represents the beam width which allows for multiple possibilities.

In the next iteration, AlphaRepair replaces the first masked token with the top N replacements

from the previous step and seeks token pairs (first and current masked token) with the highest

joint conditional probability. This joint score is then used to retain the top N generated token

sequences and the process continues until tokens are generated for all the masked positions in

the input. This joint score is temporary as it is conditioned on the mask tokens whose values have
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not yet been decided and the conditional probability does not account for their future concrete

values. Under this approach, CodeBERT has at least one side of the immediate context — the

left side. This is similar to what is commonly used in code generation tasks which can only

access the context on the left. But for this case, it is only an approximation as the true probability

depends on the tokens to the right, which are still masked and yet to be predicted. To address

this issue, AlphaRepair re-ranks the fully generated N candidate patches. Each originally masked

token (now with a concrete value) in each patch in masked again and CodeBERT is queried to

obtain the conditional probability of that token. The same process is applied for all other previous

mask token locations and the true joint score is computed given both contexts before and after.

Patches are validated by compiling them and, if successful, executing the test suite. AlphaRe-

pair is evaluated using the Defects4J and QuixBugs benchmarks. Furthermore, for Defects4J, the

evaluation considers two scenarios: perfect and non-perfect fault localization. For Defects4J un-

der the perfect fault localization scenario, AlphaRepair can successfully generate correct fixes for

74 bugs and outperforms all the learning-based and traditional APR approaches it was compared

with. Also for Defects4J but instead considering a non-perfect fault localization, AlphaRepair is

able to produce correct patches for 50 bugs. For this last scenario, because there is no ground

truth for the suspicious line, the beam width is lowered from 25 to 5 and only the top-40 ranked

lines are considered. As such, less bugs — 50 instead of 74 — are fixed but state-of-the-art tools

are still outperformed. For QuixBugs, AlphaRepair fixes 28 and 27 bugs for Java and Python,

respectively, and outperforms the techniques it was compared with.

Type-awareness in DL-based repair Generating untypable patches is transversal to pro-

gram repair techniques. Although DL-based APR approaches are able to learn a programming

language’s syntax very effectively, the learning process does not explicitly take into account type

information. In fact, the repair process as a whole tends to ignore this aspect, or at least takes it

very lightly. Normally, this concern is moved (or postponed) to a validation step, in which patches

are discarded if they fail to compile. As a result, APR approaches often generate patches that

are syntactically correct but violate typing rules, creating patches that are not executable or that

introduce new bugs.

In this sense, Tare (Zhu et al., 2023) aims to improve the effectiveness of APR approaches by

taking into account typing rules. The way Tare addresses this limitation is by incorporating type-

57



CHAPTER 2 STATE OF THE ART

awareness into the repair process, resulting in more accurate and typable patches. Specifically,

Tare trains the model to acquire a set of typing rules, effectively learning the inherent constraints.

This approach introduces three components:

• T-Grammar is a type of grammar that integrates type information into a standard gram-

mar. Each non-terminal symbol in the grammar is assigned a type, resulting in a set of

new symbols that refine the original grammar. For example, instead of the production rule

E xp → E xp +E xp, T-Grammar has the production rules such as E xp_Numer i c →
E xp_Numer i c+E xp_Numer i c and E xp_Str i ng → E xp_Str i ng+E xp_Str i ng .

This allows the neural network to predict not only the grammar rule, but also its types,

enabling the construction of T-Graph from partial programs.

• T-Graph is a representation of code that integrates the key information needed for type

checking an AST. In T-Graph, each part of the code is represented by a node, and the

relationships between the parts of the code are represented by edges between the nodes.

The edges are labeled with the types of the relationships between the nodes.

• Tare is the type-aware neural program repair approach that encodes the T-Graph and

generates the patches guided by T-Grammar. It is built upon Recoder, one of the state-

of-the-art DL-based APR approaches that also uses a structural representation for code,

instead of plain text like commonly done in other works. Tare changes the grammar in

Recoder into a T-Grammar and replaces the neural components of Recoder encoding ASTs

with neural components encoding T-Graphs.

In a comparative study, Tare outperformed 5 DL-based APR approaches: CoCoNuT (Lutellier

et al., 2020), CURE (Jiang et al., 2021), RewardRepair (Ye et al., 2022), DLFix (Li et al., 2020),

and Recoder (Zhu et al., 2021). For the Defects4J v1.2 benchmark, Tare repaired 62 out of 393

bugs (15.8%) and generates compilable patches 54.6% of times considering the top-30 patches.

It is questionable if Tare generalizes well for other programs, as for the new 444 bugs introduced

in Defects4J v2.0, it repairs 32 of them (7.2%). For Quixbugs, Tare repairs 27 out of 40 bugs

(67.5%). However, Quixbugs is a dataset with much smaller and simpler bugs.

As we mentioned, Tare is built on Recoder, a technique by many of the same authors. The

key contribution in Recoder is a syntax-guided process which integrates the grammatical con-

straints but not typing relations. Indeed, Tare is not the first APR approach to try to incorporate

type information in the repair process. RewardRepair introduces a semantic training approach to
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help neural models learn the corresponding knowledge via backpropagation. That is, when the

model generates an uncompilable patch, RewardRepair punishes the candidate via decreasing

the reward during training. On the contrary, Tare directly encodes the knowledge into the en-

coder. The authors argue that encoding the typing rules in the encoder directly is more effective

because the model estimates higher probabilities for the compilable patches. Thus, more typable

candidates will be preserved in the beam.

While the overall compilable rate experiences a decrease with increasing beam size (k) in

Tare, with rates of 54.6% for k=30, 48.6% for k=100, and 46.7% for k=200, the comparative

improvement of Tare over other tools shows an upward trend. Specifically, for k=30, Tare exhibits

a 9.3% improvement, for k=100, an 11.1% improvement, and for k=200, a 12.5% improvement.

This indicates that Tare’s effectiveness relative to other tools becomes more pronounced as the

beam size increases, which further corroborates the authors argument for encoding typing rules.
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Abstract Recent studies show that many real-world software faults are due to slight

modifications (mutations) to the program. Thus, analyzing transformations made by a

developer and associating them with well-known mutation operators can help pinpoint

and repair the root cause of failures. This chapter proposes a mutation operator infer-

ence technique: given the original program and one of its subsequent forms, it infers

which mutation operators would transform the original and produce such a version.

Moreover, we implemented this technique as a tool called Morpheus, which analyzes

faulty Java programs. We have also validated both the technique and tool by analyzing

a repository with 1753 modifications for 20 different programs, successfully inferring

mutation operators 78% of times. Furthermore, we also show that several program

versions result from not just a single mutation operator but multiple ones. In the end,

we resort to real-world case studies to demonstrate the advantages of this approach

regarding program repair.

3.1 Introduction

Software development methodologies have quickly evolved in recent years. Teams of engineers

develop complex and large software applications in a collaborative environment, using version

control systems, testing frameworks and continuous integration mechanisms to improve produc-

tivity. As is increasingly common in such a development environment, a new software feature or
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maintenance update needs to be pushed (to the version control system) to be available to the

development team. After such a push, the continuous integration mechanism performs a set

of tests that the new software ought to pass. When all the tests pass, a new software build is

produced. However, often the software does not pass such tests because of a bug that was unin-

tentionally introduced. Developers typically look at the source code to identify changes between

versions that may have introduced the bug. This analysis is frequently based on diff reports and

misses the context of the fault. Let us consider an example taken from the Bugswarm (Tomassi

et al., 2019) repository containing real-world bugs and their fixes:

1 132c133
2 < ... property.toUpperCase());
3 ---
4 > ... property.toUpperCase(Locale.ENGLISH));

Simply knowing that line 132 got modified does not reflect the modifications’ semantics

(context), making it difficult to understand and fix the problem without concrete clues.

If we analyze further, we see that this modification essentially adds a parameter in an al-

ready existing method call. More precisely, property.toUpperCase() now gets an additional

parameter, represented by the call property.toUpperCase(Locale.ENGLISH). An argument

number change (Ma et al., 2002; Offutt et al., 2006; Derezin�ska, 2007) is an example of a mu-

tation that changes the number of input parameters in method invocations, given that there is a

definition for the same method name which accepts the new arguments.

Although this is a simple motivating example, recent studies show that many real-world soft-

ware faults are coupled to mutation operators (Just et al., 2014; Andrews et al., 2005; Daran

and Thévenod-Fosse, 1996; Namin and Kakarla, 2011).

This chapter presents a mutation operator inference technique that, given the original pro-

gram and one of its subsequent versions, infers the mutation operators capable of producing such

an alternative. This is achieved by interpreting the changes made to the abstract syntax tree (AST).

Although the different program versions are obtained by manually modifying the source code, as

it happens in a real-world software project, throughout this chapter, we sometimes refer to them

as mutants, even though there was no mutation testing tool involved.

The contributions of this chapter are:

1. a technique that allows for the detection/inference of mutation operators based on AST
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transformations;

2. a tool implementing this technique;

3. a dataset produced by validating our technique and tool over an existing repository of 1753

manually modified programs with information about the detected mutation operators;

4. a repair strategy that reverts the detected mutation operators and a tool implementing it;

5. a case study investigation with real-world bugs from the Bugswarm and Defects4J reposi-

tories showing how this work can benefit program repair.

Being able to infer the mutation operators is a first step to incorporate automated program

repair in a continuous integration system, where a faulty program is fixed by considering the

contextual modifications that led to the introduction of the bug. By analyzing a considerable

number of programs, we can verify the most common mutations. As far as we know, there is no

ranking that lists each mutation operator’s frequency in a real-world scenario. That is, the number

of times a manually created version of a program translates to the application of commonly known

mutation operators.

While mutation testing focuses on injecting faults as small modifications, our work aims

to analyze the prevalence of those exact patterns of modifications in source code modified by

humans.

3.2 Mutation Analysis

Mutation operators are one of the pillars of mutation testing (Coles et al., 2016), a technique

that introduces faults in source code to assess the quality of tests. This quality is measured by

evaluating the test suite’s ability to detect the mutated programs. That is, tests that cover the

mutated code should fail. Mutation testing relies on the quality of mutation operators and their

aim is to mimic programming errors, such as using the wrong value for a constant, applying

an incorrect binary operator or referring to a wrong variable’s name. The alternative programs

produced by these operators (called mutants) are semantically correct, i.e., the program is valid.

Research concerning mutation operators has been widely conducted. As a result, many operators

representing precise transformations have been defined. Although the study of mutation oper-

ators started by targeting general programming aspects (DeMillo et al., 1978; King and Offutt,

1991), the definition of such operators can be more specific, with some works describing mu-
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tations specialized for object-oriented settings (Ma et al., 2002, 2006). The mutation operators

considered in this work have been taken from previous literature and incorporated into existing

mutation testing tools (Coles et al., 2016; Just, 2014; Ma et al., 2006).

Table 3.1: Mutation operators: possible inferences

Mutation Operator Example

ConstantReplacement int i = 0→ int i = 1

RelationalOperatorReplacement x <= 2 → x < 2

VarToVarReplacement next = var1→ next = var2

StatementDeletion �����XXXXXint n = 1;

ArithmeticOperatorInsertion int a = b; → int a = b + 1;

NonVoidMethodDeletion String s((((((hhhhhh= getName();

VarToConsReplacement int i = j; → int i = 0;

ReturnValue return 2; → return 3;

UnaryOperatorInsertion setX(x); → setX(x++)

ConditionalOperatorReplacement x<=2 && y<4 → x<=2 || y<4

VoidMethodDeletion ������XXXXXXprint(”str”);

ConditionalOperatorDeletion x<=2 && y<4 → x<=2

ArithmeticOperatorReplacement float x = a * b → float x = a / b;

MemberVariableAssignmentDeletion private int x��HH= 3;

AccessorModifierChange public void... → private void...

UnaryOperatorReplacement i++→ i- -

RemoveConditional if(x < 2) → if(true)

ArithmeticOperatorDeletion float x = a * b → float x = a;

ConsToVarReplacement int x = 2; → int x = a;

ConditionalOperatorInsertion x<=2 → x<=2 && y<4

UnaryOperatorDeletion setX(x++) → setX(x);

ConstructorCallReplacementNull String s =((((((hhhhhhnew String() null;

StaticModifierDeletion public static int... → public int...

AccessorMethodChange point.getX(); → point.getY();

BitshiftOperatorReplacement 1 « 30 → 1 » 30

ReferenceReplacementContent someObj → someObj.clone()

StaticModifierInsertion public int... → public static int...

TrueReturn return x<=2; → return true;

FalseReturn return x<=2; → return false;

ArgumentTypeChange method(int x){ → method(long x){

ArgumentNumberChange new Person(); → new Person(”joe”);

BitshiftOperatorDeletion 1 « 30 → 1

BitwiseOperatorReplacement int x = a | b; → int x = a & b;

Negation int x = num; → int x = -num;

Test coverage is not enough to guarantee a test suite’s quality, as it is purely a quantitative

measure of the amount of source code we exercise. Having a way of automatically generating

alternatives to our programs is helpful, as now we can qualitatively measure if our test suite is
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robust enough to react to the presence of bugs. Moreover, interpreting the source code and

manually creating mutants of the most pertinent parts of the program’s logic would be very inef-

ficient. However, there is still the question of whether artificial faults, i.e., mutants, are a suitable

replacement for real faults. Several studies (Just et al., 2014; Andrews et al., 2005; Daran and

Thévenod-Fosse, 1996; Namin and Kakarla, 2011) have analyzed the connection between real

faults, i.e., bugs accidentally introduced while developing a real-world application, and mutants.

In general, results obtained by using real errors are also obtained by using mutants. In particular,

one of these studies (Just et al., 2014) even shows that real faults are coupled with commonly

used mutation operators by mutation testing frameworks. This means that real faults can be

translated as the application of well-known mutation operators. Thus, we argue that if we better

understand how software was modified in terms of the application of mutation operators, we

can efficiently design a repair strategy that fixes the program. The changes introduced by these

operators represent small modifications to a program’s logic and can be interpreted as changes

to the program’s structure. Therefore, to accurately detect these modifications, we focus on the

structural representation of programs. The AST represents a program’s source code in which

emphasis is given to structure and contents. The nodes composing such trees represent con-

structs used in the corresponding program, e.g., if’s, while’s, expressions, etc. Therefore, when

obtaining the set of modifications by comparing programs based on their AST’s, we can better

understand how its structure changed. These modifications are additions, deletions, updates or

movements of nodes in the AST. Because these nodes have information related to the source

code’s context, we can see how a program changed semantically.

In terms of AST differencing, Figure 3.1 illustrates the introductory example1. As we can see,

the area pointed at shows where an insert operation was performed. By capturing this change

and verifying the context in which it occurs, we can realize its actual meaning. In this case, the

change is applied to an invocation and the number of its arguments gets modified. As such, we

can infer it translates to applying an ArgumentNumberChange operator. Creating a technique

that embodies this reasoning allows us to derive the semantics of source code modifications

automatically. As a result, developers can get support in reasoning why certain changes lead to

errors.

1Colors represent the action types applied to the AST: Green - Insert; Red - Delete; Yellow - Move; Orange -

Update
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Figure 3.1: Argument number change: introductory example

3.3 Inferring mutations

To infer the mutation operators responsible for a new program version, we focus on the AST repre-

sentations of both the original and the mutated versions. This approach allows us to circumvent a

significant limitation concerning textual diffs: we lose the code’s structural notion, i.e., what each

piece represents and how it connects to the remaining parts of the source code. Furthermore,

detecting changes at a textual level regarding the evolution of a file mainly considers two possible

representations: insertions and deletions. Detecting changes made to structured data is a topic

that has been subject to a considerable amount of research (Chawathe et al., 1996; Fluri et al.,

2007; Falleri et al., 2014). This set of changes, called an edit script, is computed at a node level

and considers more types of transformations: insertions, deletions, updates and moves. In short,

given two trees, T1 and T2, we are interested in obtaining the edit script, which, when applied to

T1, produces T2. Consider the following original code and corresponding mutant:

1 return h & (length - 1); //original
2 return h & (length); //mutant

In mutation testing, we could obtain the previous mutant by applying the

ArithmeticOperatorDeletion operator. Detecting such modifications based on the

textual representation of this part of the source code would be cumbersome. We only know

which lines changed and we have no information about which part of the line was modified.

Moreover, we would have to parse a partial program, which is a task subject to ambiguities

(Dagenais and Hendren, 2008). There is no sensible way of parsing incomplete code without

rapidly falling into errors. At some point, the degree of incompleteness will easily cause the
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failure of whatever workaround strategies the parser is using.

In turn, if we provide the two complete programs to an AST diff tool2, we obtain a set of

transformations, which Figure 3.2 illustrates.

...

Return

BinOp:

&

hleftOp:
BinOp:

-

rightOp:

1. Delete

lengthleftOp:
Literal:

1
rightOp:

2.
M
ov
e

Figure 3.2: Arithmetic operator deletion

Because an AST conveys the program’s structure, instead of being directed to a line in the

source code, the differencing algorithm analyzes the tree nodes and can detect changes at the

component granularity. Also, because tokens are split into their corresponding nodes, carrying

their meaning in the source code, we can isolate changes at a more elementary level. Here, a

total of two operations are involved:

• a delete operation of the node corresponding to the subtraction operator, which in turn

implies the deletion of one of its operands, in this case, the literal 1;

• a move operation of the leftover operand, which now takes the spot of the deleted one.

However, checking only for the types of operations, in this case, delete and move, is not

sufficient. The simple occurrence of such node modifications can have different meanings, as

other mutation operators also manifest themselves through these kinds of AST transformations.

In order to correctly pinpoint this case as the application of an arithmetic operator deletion, we

need:

• to check if the deleted node is a binary operator and if it is an arithmetic operator (in this

case: ”-”);

• to check if themoved node is one of the operands of the deleted node (in this case: ”length”).

Of course, when we only have the difference between ASTs, we do not know which mutation

operators are present. As such, we need to check against all possible operators until we exhaust

2https://github.com/SpoonLabs/gumtree-spoon-ast-diff
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all options. Similar to what we previously described regarding the arithmetic operator deletion,

each mutation operator is associated with a set of rules that must be observed to establish its

presence accurately.

3.3.1 Multiple mutations

A file may be modified in a way that reflects several mutation operator applications at once.

Jia and Harman (2009) define this concept as higher-order mutants, referring to them as the

injection of two or more simple faults, which they call first-order mutants. However, the AST diff

does not differentiate groups of transformations and it produces a set with all transformations.

We subdivide this set into subsets so that we can better isolate the occurrences of operators.

Overlapping mutations

Let us consider the textual diff:

1 173c173
2 < if (inflection.match(word)) {
3 ---
4 > if (true) {

In this example, we have at least two mutation operators:

• NonVoidMethodDeletion: removes a call to a non-void method; in this case, the call to

match() was deleted;

• RemoveConditional: removes conditional expressions with either true or false; in this

case, the expression inflection.match(word) got replaced by true.

The two operators overlap and, thus, we need to take special care when analyzing the follow-

ing transformations to the AST:

As we can see, there is:

• a delete operation of the method invocation node inside the if condition, which deletes its

children;

• an insert operation of the literal value true in the place where the previous deletion oc-

curred.
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Figure 3.3: Two overlapping mutation operators

As mentioned before, two operators overlap:

• NonVoidMethodDeletion is identified by the delete operation, for which we check if the

deleted node corresponds to an Invocation node and if the return type is not void (boolean in

this case);

• RemoveConditional is identified by both operations - delete and insert. For this, we need

to check if the deleted node’s parent is of If type, if the inserted one is a Literal node and

its value is a boolean (here, true) and if the inserted node is placed in the same spot as the

previously deleted node, i.e., if both nodes’ parent (If) is the same.

Independent mutations

Sometimes, the different places in a program where mutations are applied are independent of

one another. Similarly, analyzing fragments of the complete set of AST modifications helps in

detecting all the various operators.

1 191c191
2 < int oldCapacity = oldTable.length;
3 ---
4 > int oldCapacity = oldTable.length-1;
5 260c260
6 < next = n;
7 ---
8 > next = k;
9 303c303
10 < if (x == y) {
11 ---
12 > if (x != y) {

In this example, three mutation operators were applied in entirely different places of the
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program:

• ArithmeticOperatorInsertion: an arithmetic operator (+, -, *, /, %) is inserted,

performing an operation between an existing variable/constant in the code and an inserted

operand; here, the expression oldTable.length became oldTable.length - 1 (Fig-

ure 3.4);

• VarToVarReplacement: a variable’s name is replaced by another one; here, variable k

replaces n (Figure 3.5);

• RelationalOperatorReplacement: a relational operator (>, >=, <, <=, ==, !=)

is replaced by a different one; here, == was replaced by ! = (Figure 3.6).
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...

Assignment

inttype: oldCapacityname: FieldReadexpression:
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Figure 3.4: Arithmetic operator insertion

...

Assignment

nextname:
VariableRead:

�n k
expression: Update

Figure 3.5: Variable replacement

...

If

...then: ...else:
BinOp:

��== !=
condition: Update

xleftOp: yrightOp:

Figure 3.6: Relational operator replacement
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All three previous images illustrate the modified parts of the complete AST. For each mutation

operator, we need to check for different properties/rules:

• ArithmeticOperatorInsertion: check if the inserted node is a BinaryOperator and if

its type is arithmetic. We also need to verify if the inserted node is taking the spot of the moved

node. Additionally, it is necessary to confirm that neither of the operands is a String, as the

binary operator + is also used for string concatenation;

• VarToVarReplacement: check the update operation is being performed on a VariableRead;

• RelationalOperatorReplacement: check if the update operation is performed on a

BinaryOperator node and if it is of relational kind.

3.4 Inference Technique and Tool

This section describes the technique’s algorithm and its implementation in the Morpheus tool.

3.4.1 Algorithm

The algorithm for inferring mutation operators from AST transformations can be divided into two

phases (Algorithm 1):

1. partitioning — subdivides the set of AST operations so that each resulting subpart can

be analyzed separately, isolating it from the ”noise” of all other transformations;

2. matching — the subsets from the previous phase are matched against the mutation

operator patterns. An analogy can be made regarding type inference systems, where

expressions are associated with their correct types via automatic inference. Here, a set

of transformations are “expressions” for which we are trying to associate with mutation

operators (“types”). As we do not have any specific information regarding the nature of

the mutation (which would correspond to type annotations in languages using manifest

typing), we have to detect specific properties (type rules) in the provided transformations

to conclude what mutation operator it represents.

To better illustrate the first part of the algorithm, let us consider a list of the form [Operationnode]:

1 [DeleteA, InsertB, MoveC]
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Data: An AST Diff between trees T1 and T2 containing the list of modifications M which, if applied to

T1, will produce T2; a list of mutation operators MO to search for; an empty list of inferred

mutation operators I MO
Result: The list of inferred mutation operators I MO
subLists ← [];

for i ← 1,size(M ) do

add([Mi ], subLists); // appends list to subLists
for j ← i+1,size(M ) do

add([Mi , M j ], subLists);

for k ← j+1,size(M ) do

add([Mi , M j , Mk ], subLists);

end

end

end

foreach list ∈ subLists do

foreach mo ∈ MO do

inferred ← matches(mo, list);

if inferred != null then

add(inferred, IMO);

end

end

end

Algorithm 1: Algorithm for inferring mutation operators

This example indicates that we should apply one delete, one insert and one move operation

to the original program tree to obtain the target program tree. Applying the previously mentioned

sub-listing procedure would result in the sub-lists:

1 [ [DeleteA], [DeleteA, InsertB],
2 [DeleteA, InsertB, MoveC], [DeleteA, MoveC],
3 [InsertB], [InsertB, MoveC], [MoveC] ]

The first part of the algorithm is responsible for partitioning the complete list of AST modifica-

tions into sub-lists, each with a size between one and three (as these correspond to the minimum

and the maximum number of changes that define a mutation operator, respectively). There are

two reasons for this. First, because a program may have been modified in a way that reflects

the application of more than one mutation operator, we need to identify multiple patterns in the

complete list of alterations. As such, considering smaller portions of modifications enables us to

find such patterns. Second, although the changes made to the AST are provided in sequential

order, it does not mean that the ones characterizing the mutation operators are contiguous. The

described approach allows us to consider non-adjacent sets of modifications in the search space.

The matching phase of the algorithm looks for predefined patterns in the list of changes to

the AST. In such AST, different expressions of the language are represented in different subtrees.
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The subtrees are constructed according to the productions/constructors defining the respective

expression. In languages that use type inference systems, the inference mechanism traverses

these trees and takes a different approach according to the type of node it is visiting. In other

words, the node’s type influences what rules are checked for the system to try to infer the correct

data type.

Let us consider a simple syntax for expressions. Here, expressions can be a number, a

variable’s name or a binary operator that allows for more sub-expressions.

1 Expression = Num n | VarName n | BinOp
2 BinOp = Expression Op Expression
3 Op = + | - | / | *

A type inference system should have a mechanism that will take one of the possible ex-

pressions and, depending on the type it has in the tree, carry on with the appropriate action to

determine the data type.

1 infer(expr: Expression): Type
2 switch(expr)
3 Num n -> //check if n is Int, Float, ...
4 VarName n -> //check scope for variable n
5 BinOp e1 op e2 ->
6 infer(e1);
7 infer(e2);

As we can see by the pseudo-code of a hypothetical infer function, the switch statement

will perform different checks for different node types. That is, each node type encompasses its

own set of rules.

The algorithm we describe takes a similar approach, as we can see in line 1. Each mutation

operator comprises the group of rules it will analyze to report if some series of transformations

complies with them. Let us take the example of the ConstantReplacementmutation operator,

which changes the value of a constant in the source code. One of the inference rules for this

case is expressed like:
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M= program modification with set of transformations T = T1, ..., Tk

origk = original node of Tk newk = new node created by Tk

opx = operand of node x px = parent node of element x

Γ` si ze(T ) = 1 Γ` T1 : Upd ate Γ` or i g1 : Li t Γ` new1 : Li t

Γ` M : Const antRepl acement

In this case, the first thing to do is to check the number of transformations to the tree. If T

only has one transformation (T1), this needs to be an Update operation and both the original node

and the modified one have to be of type Literal (representing constants) to confirm the mutator.

An example would be changing methodCall(1) to methodCall(2).

This ConstantReplacement mutator can also be present through another pattern con-

sisting of two transformations, T1 and T2. If so, we analyze the case where the constant value

changed signals, e.g. from methodCall(0) to methodCall(-1).

The inference rule for this situation can be expressed as:

Γ` si ze(T ) = 2 Γ` T1 : Delete Γ` T2 : Inser t

Γ` or i g1 : Li t Γ` or i g2 : Unar yOp Γ` opor i g2 : Li t Γ` por i g1 = pT2

Γ` M : Const antRepl acement

For this example, operations T1 and T2 need to be a Delete and an Insert, respectively. The

Delete operation corresponds to removing the constant 0 from the code. As such, the node to

which the deletion operation is applied, or i g1, needs to be of type Literal. Because the new

value for the constant is −1, we have to consider this as the addition of two separate elements:

a unary operator representing the negative signal and a literal representing the number 1. Fol-

lowing this line of thought, the insertion operation T2 needs to be applied to a UnaryOp node,

or i g2. Furthermore, we also need to check if the operand associated with the unary operator is

a constant, that is, a Literal node. Note that, although two nodes are inserted, we only consider

the insertion of the top-level one, the UnaryOp, as the Literal node corresponding to the value

−1 is its child. Also, we need to check if this deletion and insertion occurred in the same spot

in the tree, which means the parent node of the deleted one must be the same as the parent of
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the insertion operation, represented by the expression por i g1 = pT2 . Figure 3.7 illustrates these

modifications.
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Figure 3.7: Constant replacement - positive to negative value

3.4.2 Morpheus

We have implemented our technique as the Morpheus tool3. Morpheus analyzes Java programs

and was developed using the Kotlin language. As shown in Figure 4.1, it consists of two compo-

nents: The Diff Calculation gets as input the original and the mutated programs and produces the

list of transformations representing the differences between the programs (Falleri et al., 2014).

The second component - the Inferrer - implements Algorithm 1, with its two parts: partitioning

and matching.

Original

Mutant

Original AST

Mutant AST

Parser Compare AST Diff

Diff Calculation

Partition [...] Match

Inferrer

Mutation Operators

Inferred

Mutation

Operatorsmatches?

Figure 3.8: Morpheus architecture

Morpheus is an extensible tool: it implements all operators in Table 3.1 and can easily be

extended with new mutation operators due to its extensible architecture.

3https://github.com/FranciscoRibeiro/morpheus
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3.5 Dataset and Analysis

In this section, we present the structure of the produced dataset and analyze the results. Mor-

pheus was used to analyze the CodeDefenders (Rojas et al., 2017) repository4 containing 20

original programs and 1753 mutants created by players. In CodeDefenders, attackers modify

programs to introduce faults and defenders write unit tests that detect these errors. The 20 orig-

inal classes are part of various real-world open-source projects. We identified 230 mutants that

failed to compile and 27 for which the AST diff tool failed to produce an edit script, leading to

1496 valid programs.

3.5.1 Dataset Structure

After using our tool to analyze every valid mutant in the repository, we produced a dataset5

containing information about each one. Therefore, each mutant has a corresponding record in

the dataset with the following fields:

• Mutant ID: Mutant identifier based on the repository;

• Nr. AST modifications: Number of modifications applied to the original AST;

• ASTmodifications: List with the types of operations performed on the AST in order to obtain

this mutant;

• Mutation overviews: List of the source code change for each inferred mutation operator;

• Inferredmutation operators: List containing the names of the inferred mutation operators

(according to Table 3.1);

• Callables: List containing the method/constructor names where each mutation was inferred;

• Old start-end lines: List containing the start and end lines in the original file where each

mutation operator was detected (same index in inferred mutation operator list);

• Old start-end columns: Same as the previous field but for columns;

• New start-end lines: List containing the start and end lines in the mutated file where each

mutation operator was detected;

• Start-end columns: Same as the previous field but for columns;

• Relative old start-end lines: List containing the start and end lines inside the callable’s

4https://study.code-defenders.org/
5https://doi.org/10.6084/m9.figshare.15173934
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body in the original file where each mutation operator was detected;

• Relative new start-end lines: Same as the previous field but for the mutated file.

Recalling the example in Figure 3.2, the fields for the corresponding dataset record have the

values shown in Table 3.2.

Table 3.2: Dataset record for one of the mutants

Mutant ID 1001/15/00000001/ByteArrayHashMap
Nr AST Modifications 2
AST Modifications [DeleteOperation, MoveOperation]
Mutator Overviews [AOD(from=(length - 1),to=length)]

Inferred Mutation Operators [ArithmeticOperatorDeletion]
Callables [ByteArrayHashMap#indexFor(int,int)]
Old Lines [324-324]

Old Columns [16-27]
New Lines [324-324]

New Columns [14-21]
Relative Old Lines [1-1]
Relative New Lines [1-1]

3.5.2 Dataset Analysis

Table 3.3 shows the number of mutants associated with each class in the repository. Further-

more, it also displays the number of mutants for which Morpheus could infer and classify as

corresponding to one or more mutation operators.

The effectiveness rate of our technique is calculated in terms of the number of mutants for

which we can infer at least one mutation operator divided by the total number of valid mutants.

Overall, we were able to infer 78% of all the considered mutants. This percentage is not consistent

throughout all of the programs. However, there is not a single program for which we could not

detect the presence of a mutation operator. The class with the least amount of inferred mutation

operators was VCardBean, with 67% of its mutants classified. The XMLParser class is on the

opposite side with all of its mutants inferred and, therefore, a 100% effectiveness rate. Curiously,

the same mutation operator was applied in the same manner by all the players who had to attack

this class, i.e., create mutants. This particular mutation occurred in a method that replaces

occurrences of the character ”&lt” with the character ”<”. The arguments of the call to themethod

in question were passed as string literals. As such, every call to replaceAll("&lt;", "<")
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Table 3.3: Available mutants per valid program

Class
#Available

Mutants

#Inferred

Mutants
Effectiveness %

ByteArrayHashMap 126 108 86%

ByteVector 55 39 71%

ChunkedLongArray 95 68 72%

FontInfo 30 22 73%

FTPFile 34 24 71%

HierarchyPropertyParser 66 48 73%

HSLColor 50 42 84%

ImprovedStreamTokenizer 84 70 83%

ImprovedTokenizer 130 97 75%

Inflection 13 10 77%

IntHashMap 71 55 72%

ParameterParser 68 57 84%

Range 152 122 80%

RationalNumber 47 40 85%

SubjectParser 28 21 75%

TimeStamp 32 25 78%

VCardBean 173 116 67%

WeakHashtable 40 32 80%

XmlElement 175 136 78%

XMLParser 27 27 100%

Total 1496 1159 78%

was mutated to replaceAll("<", "<"). As string literals are considered constants, all these

mutations were inferred to be the ConstantReplacement operator.

We did not infer any mutation operators for 337 of the mutants — Table 3.4. Ideally, a mu-

tation is a slight syntactic modification that alters the program’s behavior. However, sometimes,

the generated mutants are not simple modifications because they consist of extensive edits to

the source code. These changes are challenging to infer as no mutation operator resembles it.

On the other hand, some of these mutants are still small. Nevertheless, they represent intricate

code modifications. The following example illustrates such a situation.

1 103c103
2 < set(index2, tmp);
3 ---
4 > set(index2, get(index2-1));

Here, a variable tmp got replaced by a method call with different arguments. Many changes

are co-occurring, making it difficult to discern the logic behind them.
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Table 3.4: Inferences per mutation operator

Mutation Operator #Occurrences

ConstantReplacement 273

RelationalOperatorReplacement 179

VarToVarReplacement 141

ArithmeticOperatorInsertion 105

StatementDeletion 104

NonVoidMethodDeletion 90

VarToConsReplacement 83

ReturnValue 54

UnaryOperatorInsertion 47

ConditionalOperatorReplacement 42

VoidMethodDeletion 40

ArithmeticOperatorReplacement 28

AccessorModifierChange 21

UnaryOperatorReplacement 20

RemoveConditional 20

ConditionalOperatorDeletion 18

ArithmeticOperatorDeletion 16

ConsToVarReplacement 13

MemberVariableAssignmentDeletion 10

ConditionalOperatorInsertion 9

ConstructorCallReplacementNull 7

AccessorMethodChange 6

UnaryOperatorDeletion 5

StaticModifierDeletion 4

ReferenceReplacementContent 4

TrueReturn 4

ArgumentNumberChange 4

BitshiftOperatorReplacement 4

FalseReturn 2

StaticModifierInsertion 2

ArgumentTypeChange 2

BitwiseOperatorReplacement 1

BitshiftOperatorDeletion 1

Negation 1

UNCLASSIFIED 337

To get an overview of the entire set of unclassified mutants, we compared every program

version for which Morpheus did not produce any inference against its original and verified that

the difference did not match the criteria of any mutation operator. Nevertheless, we still de-

tected some recurring patterns, shown in Table 3.5. The most frequently detected pattern is

adding an instance method call to a variable, which happened 51 times. Adding a statement
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was the second most spotted type of mutation with 45 occurrences. This is the least specific

type of transformation and one of the most difficult to incorporate in mutation testing, as deciding

which source code to add to a specific part of a program is not a straightforward task. The third

most common mutation pattern was replacing the kind of exception thrown, occurring 21 times.

Curiously, we can observe that some patterns displayed in Table 3.5 parallel with some of the

mutation operators covered by Morpheus. For instance, let us consider the fifth most common

one, Overwrite Default Initialization, which assigns a specific value to a variable, thus not allowing

the default ones to occur. This pattern can be seen as the transformation opposing the Mem-

berVariableAssignmentDeletion operator (Table 3.1), which eliminates specific assignments to

member variables. As another example, if we consider the expression x < 2 and then apply the

Negate Expression pattern, we would get !(x < 2). From another perspective, this is a particu-

lar case of rewriting this expression as x >= 2, which ends up being covered by the operator

RelationalOperatorReplacement. The detection of these new patterns has implications regard-

ing mutation-based repair techniques (Debroy and Wong, 2010; Martinez and Monperrus, 2016;

Durieux et al., 2019; Rothenberg and Grumberg, 2016; Debroy and Wong, 2014; Repinski et al.,

2012). The candidate fixes for a faulty program are produced by applying mutation operators to

suspicious parts of the source code. As such, a repair technique of that kind would not generate

an appropriate patch for the cases from which we extracted the patterns reported in Table 3.1.

This is because these particular faults originated from applying changes that are not covered by

any mutation operator in the literature to the best of our knowledge. Even though the patterns

we found in the unclassified cases are used to introduce faults, instead of producing fixes, it is

still essential that repair tools incorporate these new operators. As we stated before, some of

them revert the effects of already documented operators (Overwrite Default Initialization reverts

MemberVariableAssignmentDeletion). Moreover, the most challenging patches to create are the

ones that require adding code (Debroy and Wong, 2010), which patterns like Instance Method

Call Addition and Add String Concat aim to achieve.

As discussed in Section 3.3.1, sometimes, a mutant can consist of several mutation opera-

tors, also called higher-order mutants (Jia and Harman, 2009), and Morpheus can detect these

occurrences. Table 3.6 shows the frequency of the number of mutation operators for each pro-

gram alternative. As we can see by the table, the most common mutants are the ones that get

only one mutation operator inferred, totaling 1004 mutants. The program versions with more
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Table 3.5: Manual inspection — detected patterns in the 337 program versions with no

reported inferences

Pattern Example #Occurrences

Instance method call addition var → var.method() 51

Add statement 45

Throw exception replacement throw new��A() B() 21

Replace with new instance x =��var new Var() 20

Overwrite default initialization int x; → int x = 4; 20

Replace Method Call var.foo(); → var.bar(); 15

Final keyword removal ���final int x; 14

If block deletion (((((((
if(cond) x = 2; 11

Return type change public��int long foo() 9

Delete statement 8

If check deletion ����if(cond) x = 2; 7

Add string concat str → str + ”word” 7

Continue/break replacement ����
continue break; 7

Swap lines 7

Primitive to wrapper ��int Integer x = 2; 7

Change thrown exception for return (((((((
throw new A() return -1 6

Instance change var1.foo() → var2.foo() 6

Negate expression if(expr) → if(!expr) 5

Delete case ((((((((((
case SOME_VALUE: 5

Change increment size i++ → i+=2 4

Change assigned x = 2 → y = 2 3

Delete string concat str�����
+ ”word” 2

Equivalent default initialization Obj x���= null; → Obj x; 2

While/If Replace while(cond) → if(cond) 1

Variable Type Change int var; → long var; 1

Delete Try/Catch 1

Change Constant Type Integer.MAX → Long.MAX 1

Add Else Block 1

Undefined 50

Table 3.6: Mutation operators per mutant

#Mutation Operators 1 2 3 4 5 16

#Files 1004 132 14 6 2 1

than one inferred mutation operator combine for 155, representing 10% of all the valid mutants

in the repository.
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3.6 Mutation-based Repair

We can devise a repair strategy that takes advantage of this new information by translating the

bug-inducing changes in terms of mutation operators. Our implementation6 of such a repair

strategy is divided into three parts:

• Extracting fault localization components: interprets the report produced by Morpheus and

creates components that connect the inferred mutations to their location in the source

code;

• Finding nodes in the AST: isolates tree nodes representing source code elements in specific

locations;

• Reverting mutations: applies the opposed mutation operator to produce patches.

Figure 3.9 shows how these parts connect.

Morpheus

Components

AST

Iterate Component

Tree

Traversal

location?

Nodes

Node finder

Iterate Node

Get

Opposite

Mutation

Operator

Get

Applicable

Mutation

Operators

Mutate

exists?

Reverser

Mutated

Node

Figure 3.9: Repair overview

3.6.1 Extracting mutation operators’ locations

We can create components that allow us to kickstart the repair process by associating each

inferred mutation to its location in the source code. Let us go back to the introductory example.

The corresponding component would convey the information in Table 3.7.

It shows that the argument number change mutation operator was inferred in line 133 and

spans columns 61 to 74. Furthermore, the transformation was detected in the 8th line of the

getEnumProperty method. These components can be extracted from the output provided by

Morpheus.

6https://github.com/FranciscoRibeiro/auto_repairer
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Table 3.7: Mutation’s location: introductory example

Mutation Operator ArgumentNumberChange
Callable getEnumProperty(Class,String)

Start-End Old Lines 132-132
Start-End Old Columns 40-61
Start-End New Lines 133-133

Start-End New Columns 61-74
Start-End Old Relative Lines 8-8
Start-End New Relative Lines 8-8

3.6.2 Finding AST nodes

Since these components can pinpoint specific places in the buggy source code, the repair strategy

can then analyze the program’s AST to find the corresponding nodes.

Method

Body

statements:...
Return

...

Invocation

propertytarget:

toUpperCaseexecutable:

FieldRead

arguments:

Locale

target ENGLISH

variable

Line 133 Column 61-74

Relative Line 8 Line 133

Callable getEnumProperty(Class,String)

Figure 3.10: Finding AST nodes: introductory example

Figure 3.10 illustrates four different criteria to find nodes in an AST:

1. matching both lines and columns;

2. matching only lines;

3. matching relative lines;

4. matching the callable;

As Figure 3.10 shows, a different number of nodes may be retrieved depending on the selected

criteria. As such, it is a matter of deciding on efficiency (1) vs. efficacy (2). To increase the

likelihood of generating a fix, we should seek to detect many nodes, albeit at the expense of

producing a large number of patches. On the other hand, we can limit the number of generated
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patches by only fetching nodes matching both the lines and columns reported by Morpheus.

However, the detected mutations are not always in the same file that we wish to repair. Such

would occur when Morpheus infers mutations in past file versions, but we wish to use that infor-

mation and repair a more recent version of a program. In these cases, the reported line numbers

may differ from the current location. Thus, it is helpful to use the reported information about the

relative line numbers (3) or the callable (4), representing efficiency and efficacy, respectively.

3.6.3 Reversing mutations

Following the previous step, the repair process iterates over the returned AST nodes and tries

to mutate each one — Algorithm 2. Every mutation operator that Morpheus can infer has an-

other one that performs the opposing transformation. As such, the opposing mutation operator

is considered for the inferred mutation in a component (line 2). Then, the strategy retrieves the

appropriate mutation operators regarding the node type in question (line 2). Finally, if the oppos-

ing transformation belongs to the group of applicable mutations (line 2), it applies it over the AST

node (line 2).

Data: The inferred mutation operator I MO; an AST node N that we wish to mutate; a mapping of

opposing mutation operators M apO; a mapping between types of AST nodes and their

applicable mutation operators M apN ; an empty list of mutated nodes Mut N
Result: The list of mutated nodes Mut N
opposite ← M apO[I MO]; // get opposite mutOp of I MO

mut_ops ← M apN [N ]; // get mutOps applicable to N

if opposite ∈ mut_ops then

Mut N ← repair(opposite, N ); // apply opposite to node N

end

Algorithm 2: Algorithm for reversing mutation operators

3.7 Case Studies with Real Bugs

The main idea we want to deliver is that the semantics behind a bug can guide the repair process

of a program. To show this, we used Morpheus to analyze Bugswarm and Defects4J, extracting

several case studies from real-world programs. Furthermore, we also implemented an automated

repair process that successfully fixed all the studied programs. These experiments are available
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for replication7,8.

Bugswarm We selected case studies from this repository for which a simple fix, susceptible

of being represented by a mutation, makes the program pass every test. We looked back through

the commit history of each selected case study and searched for the most recent commit that

began failing these tests. There, we detected mutations opposing the bug-fixing modification,

likely responsible for introducing the bug.

Fix

Simple mutation

fixes the bug

Failing N ... Failing 1

One of the changes

is a mutation opposing

the fix

Passing

Figure 3.11: Selection criteria for the case studies - Bugswarm

Defects4J In this repository, the fixes for the selected case studies can also be obtained

by performing a simple mutation. In Defects4J, however, the commit in which we detect the

opposing transformation does not necessarily cause the software to fail its tests. Moreover, the

file that makes the tests fail may have changed multiple times since introducing the original

reason for the bug.

Fix

Simple mutation

fixes the bug

Buggy N ...

Other mutations

may occur

Commit B

One of the changes

is a mutation opposing

the fix

Commit A

Figure 3.12: Selection criteria for the case studies - Defects4J

Besides repairing all analyzed programs, when guiding the repair process, our approach has

four key advantages over spectrum-based fault localization (SFL) reports:

7https://github.com/FranciscoRibeiro/bugswarm-case-studies
8https://github.com/FranciscoRibeiro/d4j-case-studies
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1. Efficiency: Morpheus detects fewer mutants when compared against the many lines SFL

reports. Moreover, SFL sometimes misses to rank the faulty line in which Morpheus can

spot a mutant;

2. Compilation: buggy programs may fail to compile as Morpheus does not need the pro-

gram’s execution trace, whereas SFL would not generate a report;

3. Reachability: mutations can be detected in any commit of a program’s history, regard-

less of whether there are failing tests or not;

4. Granularity: inferred mutants have more granularity than the line number provided by

SFL, allowing program repair to use different criteria (recall Figure 3.10).

The interested reader can find a detailed explanation of the case studies on the page:

github.com/FranciscoRibeiro/qrs21-case-studies-report

3.8 Threats to Validity

Our work has two main objectives. Firstly, to assess whether we can translate the evolution

of a program in terms of mutation operators. More precisely, are the changes applied to a

program equivalent to the application of well-known mutation operators? Secondly, to check if

the information about inferred mutations can benefit automated program repair. That is, can

programs be fixed more efficiently by using this new knowledge over regular SFL reports?

As we have shown, the answer to the previous questions is yes. There are, however, several

aspects that may affect the validity of our work.

Internal Validity There is no guarantee that the analyzed programs compare equally in terms

of susceptibility to mutations. Mutations are slight syntactic modifications that alter the program’s

semantics, and, as such, the examined mutants may consist of more complex changes which

do not correspond to any documented mutation operators. Furthermore, the mutants from Cod-

eDefenders were created by people learning about the topic in question. Although some mutants

may not convey the desired simple nature, we think our results show that a considerable part of

them do hold to this standard.
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External Validity The mutants from the CodeDefenders repository were created with the ex-

plicit goal of producing faults. Nonetheless, we showed that our work generalizes to a real-world

context by using the inferred information to repair open-source projects from the Bugswarm and

the Defects4J repositories in which faults were unintentionally introduced. Quoting DeMillo et al.

(1978) on a quality about programmers: ”they create programs that are close to being correct!”.

Construct Validity The CodeDefenders mutants were produced by subjects who were aware

that they were to be used in research. We do not believe this to have compromised our measures

because the origin of the repository is independent of our study, and the intentions of inferring

mutation operators were never communicated. Moreover, our analysis of real-world faults fur-

ther strengthens this point as programs were developed in a completely disconnected context

disassociated from any research intentions.

Conclusion Validity The idea transmitted to CodeDefenders players was they should repli-

cate the behavior of mutation operators. Still, some mutants did not obey this practice. We

conclude that real-world program changes can be described in terms of mutation operators, as

demonstrated by the reported real-world case studies. Furthermore, previous studies have al-

ready shown associations between real faults and mutation operators.

3.9 Related Work

Jia and Harman (2009) present the concept of higher-order mutation testing, in which mutants

are not individual faults but are composed of several faults. They emphasize subsuming higher-

order mutants, which are notably hard to kill. The program versions for which Morpheus infers

two or more mutation operators are instances of higher-order mutants.

Debugging is one of the most expensive actions in the development cycle (Vessey, 1985) and

a considerable effort is put into fault localization (Parnin and Orso, 2011; Ang et al., 2017). MUSE

(Moon et al., 2014) applies mutations to both faulty and correct statements to rank the most

suspicious lines, improving over previous state of the art. The reasoning is that tests that pass in

the original program are more likely to fail when correct statements are mutated and less likely

to do so when faulty lines are mutated. Mutation-based fault localization has also been applied
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to projects written in multiple programming languages, reporting high accuracy and proposing

new mutation operators (Hong et al., 2015). Other approaches (Papadakis and Le Traon, 2012,

2015) detect suspicious statements by calculating similarities between mutants. Zhang et al.

(2013) describe a technique in which artificially produced mutants are mapped to higher-level

programming edits. Instead, we provide more granularity by interpreting structural changes to

infer what mutation operator is being applied. Fault localization lacks the semantics behind the

faults it spots. Morpheus can provide this as it computes the context of the modifications it

detects.

Mutation-based program repair (Debroy and Wong, 2010; Martinez and Monperrus, 2016;

Durieux et al., 2019; Rothenberg and Grumberg, 2016; Debroy and Wong, 2014; Repinski et al.,

2012) uses fault localization to mutate the most suspicious lines. A mutant is considered as

a potential fix if it passes all the test cases. If effectiveness is the focus, a large set of muta-

tion operators should be considered to cover the largest number of faults. On the other hand,

techniques aiming for efficiency should only apply a small set of mutation operators to minimize

overhead, sacrificing the ability to fix some types of faults. Morpheus infers mutation operators

and repair strategies can take advantage of this semantics to apply modifications that revert the

faulty effects. Tan and Roychoudhury (2015) aim to repair regression errors by manually ex-

tracting fix patterns from a project’s history and applying them to suspicious statements. Our

approach differs, as the inference process of our tool automatically detects the application of

mutation operators. Moreover, we aim to infer operators used by mutation testing tools, instead

of high-level transformations such as ”Revert to previous statement”. The automatic detection of

bug fixes (Madeiral et al., 2018) is also based on an established taxonomy, with changes being

analyzed at the AST level. However, the list of considered bug fixes — 25 patches — is more

generic and not as extensive as ours — 34 mutations.

Generating test cases through mutations (Fraser and Zeller, 2010) has been applied in web

page testing (Almeida et al., 2019), and tools like Sapienz (Mao et al., 2016) are already following

this approach and successfully detecting bugs in mobile applications used by millions of people.

Tree differencing has been applied to build files (Macho et al., 2017). Hence it is well suited

to address a project’s configuration. Our work focuses on a much broader aspect, requiring the

ASTs of source code to reason about the issues.

Some approaches (Hanam et al., 2016) mine project repositories to find frequent bug pat-
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terns for languages that research has yet to report mutation operators. Our work differs, as we

present a tool that automatically detects the application of well-documented mutation operators

to a correct program.

3.10 Summary

We presented an inference technique that defines the context behind source code changes by as-

sociating them with well-known mutation operators. We implemented it as the Morpheus tool and

analyzed several manually modified programs. Our results show that this is a sound approach,

as we were able to infer mutation operators for 78% of the 1496 valid mutants in CodeDefend-

ers and that 10% of these are higher-order mutants (Jia and Harman, 2009). Furthermore, we

have also analyzed several case studies extracted from real-world projects in Bugswarm and De-

fects4J, showing the benefits of our approach regarding automated program repair. We fixed

these programs by implementing a repair tool that reverts bug-introducing changes based on

Morpheus’ information by applying the opposing mutation. The concept of higher-order mutants

was essential, as highlighted by the case studies. The repair strategy focused on fixing the effect

of a single atomic mutation to create a patch for a program that was modified in separate places

by different mutation operators.

Replication Package

The necessary resources to replicate this study and the full set of results, are publicly available:

• Mutant repository: study.code-defenders.org

• Morpheus: github.com/FranciscoRibeiro/morpheus

• Repair tool: github.com/FranciscoRibeiro/auto_repairer

• Dataset: doi.org/10.6084/m9.figshare.15173934

• Case studies:

– Bugswarm: github.com/FranciscoRibeiro/bugswarm-case-studies

– D4J: github.com/FranciscoRibeiro/d4j-case-studies

– Report: github.com/FranciscoRibeiro/qrs21-case-studies-report
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Abstract Many techniques have contributed to the advancement of automated pro-

gram repair, such as: generate and validate approaches, constraint-based solvers and

even neural machine translation. Simultaneously, artificial intelligence has allowed the

creation of general-purpose pre-trained models that support several downstream tasks.

In this chapter, we describe a technique that takes advantage of a generative model —

CodeGPT — to automatically repair buggy programs by making use of its code comple-

tion capabilities. We also elaborate on where to perform code completion in a buggy

line and how we circumvent the open-ended nature of code generation to appropriately

fit the new code in the original program. Furthermore, we validate our approach on

the ManySStuBs4J dataset containing real-world open-source projects and show that

our tool is able to fix 1739 programs out of 6415 — a 27% repair rate. The repaired

programs range from single-line changes to multiple line modifications. In fact, our

technique is able to fix programs which were missing relatively complex expressions

prior to being analyzed. In the end, we present case studies that showcase different

scenarios our technique was able to handle.

4.1 Introduction

Automated Program Repair (APR) is a prominent field of software engineering. The continuing

increase in complexity and size of software systems urges the community to invest its efforts on

developing techniques that automatically identify patches that are able to fix faults arising from
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the implementation of new functionalities and code maintenance (Goues et al., 2019). These

patches are generated based on the original buggy program and take advantage of the fact that

the developers’ efforts result in almost accurate programs or, as DeMillo et al. (1978) put it:

”they create programs that are close to being correct!”. Many approaches have been developed

that successfully achieve this repair task. Early works (Le Goues et al., 2012b; Arcuri, 2011)

utilize genetic programming by considering a buggy program as seed which is then continuously

evolved at each generation by producing different programs through mutation and crossover.

Other approaches (Nguyen et al., 2013; Xuan et al., 2017; Durieux and Monperrus, 2016) are

constraint-based and analyze information from test executions to create constraints which are

then fed to a solver to generate a patch.

More recently, APR techniques have taken advantage of machine learning advancements to

build deep learning models. Some of these techniques (Chen et al., 2021; Ding et al., 2021; Li

et al., 2020; Lutellier et al., 2020) employ Neural Machine Translation (NMT) to translate buggy

code into fixed code. Likewise, general-purpose tools and models (Svyatkovskiy et al., 2020;

Feng et al., 2020; Lu et al., 2021) supporting code understanding and code generation tasks

have been developed.

We argue that the code generation capabilities of pre-trained models like CodeGPT can be

leveraged to specifically target program repair, effectively treating it as a code completion task.

Let us consider an example from a real-world open-source software project.

1 171c171
2 < ... keyValueSequence = new ArrayList<Data>(

∣∣);
3 ---
4 > ... keyValueSequence = new ArrayList<Data>(

∣∣entries.size());
5 271c271
6 < ... int mapLoadChunkSize =

∣∣nodeEngine.getGroupProperties().
MAP_LOAD_CHUNK_SIZE.getInteger();

7 ---
8 > ... int mapLoadChunkSize =

∣∣getLoadBatchSize();

The previous code shows two buggy lines and their corresponding fixes underlined. The

expressions that repair this program — entries.size() and getLoadBatchSize() — are

not trivial to figure out, even if we know that lines 171 and 271 are responsible for this bug. More

precisely, repairing this bug implies the developer not only determines the incorrect expressions

but also how to expand them. However, the complexity of this task can be reduced to simply

performing code completion on the spot highlighted by the vertical bar to replace the leading
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code. We assume faulty line numbers are identified beforehand by well-established and accurate

fault localization techniques (Jones et al., 2002; Pearson et al., 2017; Campos et al., 2012; Perez

and Abreu, 2018; Wong et al., 2016).

We present a repair technique that, given a file and buggy line numbers, seeks to fix a program

by computing the most appropriate columns to perform code completion and incorporating the

generated code in the original program.

The contributions are:

1. a technique that repairs buggy programs based on code completion;

2. a publicly available implementation of such technique;

3. a validation on a dataset of real-world projects with results showing our technique is able

to fix 1739 programs out of 6415, representing a 27% repair rate;

4. a case study investigation highlighting some capabilities of our work.

The original aim of code completion is to assist the developer while writing code. Throughout

the report, we use annotations like the vertical bar representing the cursor position in a text editor

and color highlights showing intended or generated completions. However, these serve to better

visualize our approach’s behavior. The primary goal of this work is to develop a technique and

tool that uses code completion to produce patches without developer intervention.

4.2 Background

Research in Natural Language Processing (NLP) focuses on how natural language can be pro-

cessed, analyzed and manipulated by computers. Although its roots are based on symbolic rules

and statistical modeling, the more recent adoption of machine learning models has allowed this

field to flourish as one of the most prevalent areas of study in computer science. The contin-

ued work by the community has led to the specialization of certain subtasks within NLP into

well-defined processes. Natural Language Understanding (NLU) analyzes natural text and appro-

priately encodes it into more low-level representations, while Natural Language Generation (NLG)

transforms these machine representations into natural language text. NLP has benefited im-

mensely from the application of neural networks, which allowed for the development of complex

but highly effective models like BERT (Devlin et al., 2019) and GPT (Radford et al., 2019) that
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have achieved tremendous success in language understanding and language generation tasks,

respectively. These state-of-the-art models are based on the Transformer (Vaswani et al., 2017)

neural architecture, which has shown to be more advantageous than previously used RNN-based

architectures for analyzing longer and deeply-rooted dependencies. This is, in most part, thanks

to a self-attention mechanism which allows the model to create connections between every to-

ken in a sequence no matter the distance between them. As a consequence, the representation

of each token will be affected by its relationship with other ones, creating a more meaningful

aggregate representation.

More recently, inspired by the significant advances in this area, the community has also di-

rected its focus to the application of NLP principles regarding programing languages. In fact,

software developers have been incorporating these tools into their workflow as they find them

to have a positive effect in their productivity. One of the most sought-after capabilities in these

systems is code completion (Bruch et al., 2009) and every IDE or code editor supports this key

feature. However, many of them provide this at a basic level, such as API call and parame-

ter completion, limiting their usage to scenarios in which a developer needs to have a specific

idea already typed in. Because of the success of pre-trained models like BERT and GPT, the

architectures behind them have been used to create corresponding adaptations directly suited

for programming languages. Thus, code understanding and code generation have allowed for

advancements regarding the previous limitations through models such as IntelliCode Compose

(Svyatkovskiy et al., 2020), CodeBERT (Feng et al., 2020) and CodeGPT (Lu et al., 2021).

CodeGPT is able to generate long and complex code sequences that are computed based

on the context provided to the model. This input context consists of code preceding the point

from which we wish the model to start generating more code. Essentially, the produced code

sequence acts as a continuation of the original code piece. This way, CodeGPT can be used to

perform code completion. In this work, we do not use this capability to help developers fill in the

most suitable names for method calls or variable identifiers. Instead, we leverage it to inject new

segments of code into existing buggy programs and modify their behavior. As a result, we show

that we can take advantage of a code completion mechanism to conduct an entirely different task

— automated program repair.
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4.3 Repair Technique

Our approach can be divided in four components, as shown in Figure 4.1:

1. Cutting: the two inputs are the buggy file and the buggy line number. After the buggy file is

parsed into its abstract syntax tree, we extract the nodes located at the buggy line number.

As we mentioned, we assume the faulty line is already provided by some fault localization

technique. Then, based on the criteria implemented in Algorithm 3 (described in Section 4.4),

we compute the column numbers representing the places for which code completion is to

be performed. Lastly, we truncate the buggy file at those columns, creating a file for each

alternative;

2. Code Generation: we perform code completion for each truncated file by providing an

array of tokens as context to CodeGPT. Through random sampling, the model generates sev-

eral token sequences, thus producing alternative ways of continuing the input code. These

sequences are decoded and output as strings.

3. Bounding: the code completion step is open-ended. That is, the model generates code

without necessarily stopping at some suitable character regarding the language’s syntax. As

such, it is very likely that the last generated token does not terminate a well-formed expression

or statement, as the output will finish once the maximum context size is reached. Likewise,

the essence of the generated code may be sound except for the initial tokens. For this reason,

we limit the generated code sequences based on relevant characters regarding the language’s

syntax to extract valid completions.

4. Character Synchronization: the final step is to attach the generated completions to the

original buggy code. This is done by using characters that allow each completion to fall into

place in the original buggy line, combining both pieces of code to produce a potential patch.
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Figure 4.1: The four components of the system’s architecture

4.4 Truncation Algorithm

As we have discussed before, in this work we leverage code generation by using the CodeGPT

model to produce potential patches. We can interpret this code generation step as code comple-

tion being performed at a specific column in a line of code — similar to what is normally seen in

text editors and IDEs.

Let us consider the the introductory example again. Listing 4.1 represents the desired fixed

lines.

1 > ... keyValueSequence = new ArrayList<Data>(
∣∣entries.size());

2 > ... int mapLoadChunkSize =
∣∣getLoadBatchSize();

Listing 4.1: Introductory example — desired completion

For this case, code completion would happen at the illustrated cursor position and the code to

be generated is highlighted in grey. Therefore, we need to compute the places in that line for which

we want to perform code completion. As such, we devised an algorithm that aims to compute

suitable column numbers for the purpose of generating code sequences. We implemented it as

a tool and make it available1.

We targeted two scenarios when designing the algorithm. Code completion is frequently

useful when developers want to predict:

• Code to continue specific language constructs (e.g. methods to invoke after ”.”);

1https://github.com/FranciscoRibeiro/code-truncater
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• Candidate names for partially written identifiers (e.g. writing a variable’s name halfway

through).

As such, our algorithm computes column numbers based on:

• Textual boundaries of language constructs represented by AST nodes;

• Camel-case and underscore separation of words according to Java naming conventions.

Data: An AST T 1
Result: The list of computed column numbers Col N r s
ColNrs ← [];

foreach node ∈ T 1 do
start ← node.firstColNr; end ← node.lastColNr;

add(start, ColNrs);

add(end, ColNrs);

if node is Identifier then

name ← node.name;

for i ← 1,size(name) do
if (i 6= size(name) and

namei is lowerCase and namei+1 is upperCase)

then

add(start+i+1, ColNrs);

else if namei == ’_’ then

add(start+i, ColNrs); add(start+i+1, ColNrs);

end

end

end

end

Algorithm 3: Algorithm for computing column numbers

This means that our algorithm would truncate Listing 4.1 at the following columns:

1 > ... key
∣∣Value

∣∣Sequence
∣∣ =

∣∣new
∣∣Array

∣∣List
∣∣<∣∣Data

∣∣>∣∣()
∣∣;∣∣

2 > ... int
∣∣ ∣∣map

∣∣Load
∣∣Chunk

∣∣Size =
∣∣node

∣∣Engine
∣∣.∣∣get

∣∣Group
∣∣Properties()

∣∣.∣∣
MAP

∣∣_∣∣LOAD
∣∣_∣∣CHUNK

∣∣_∣∣SIZE
∣∣.∣∣get

∣∣Integer()
∣∣;∣∣

Code generation would then be performed at each computed column. As executing the CodeGPT

model is a time consuming task, the aim of our algorithm is to minimize the amount of requested

predictions. A brute-force alternative would truncate the source code lines at every column (i.e.

every character). However, such an approach would incur in a lot of computational effort as the

number of columns to perform code completion on would increase considerably. As mentioned,

the purpose of the truncation algorithm is to save time and effort on the code generation step

by reducing the number of code sequences provided to the model, albeit with the drawback that

some columns will be missed. In the provided example, the computed columns do not include

the ideal one, as Listing 4.1 highlights. However, we shall see ahead that these occurrences are

not necessarily a problem and that this program can still be fixed.
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4.5 Code Generation

We use the CodeGPT-adapted model to perform open-ended code generation. CodeGPT-adapted

inherits the same model architecture of GPT-2, which is a natural language model conceived

to perform multiple tasks such as text translation, question answering and text summarization.

These tasks imply text generation, which makes GPT-2 a generative model. CodeGPT-adapted

is based on GPT-2 as a starting point and is trained on code samples, making it a language

model pre-trained for programming language (PL). Two separate versions of CodeGPT-adapted

are provided for Python and Java, with the latter being the focus of this work. These models are

made available through HuggingFace’s Transformers library which provides a Python API.

One of the motivations of this work is to assess how program repair can be seen as a code

generation task, more specifically code completion. As such, to perform code completion on

buggy programs, we first need to provide a sequence of input tokens to the model. This will be

the context to consider to continuously generate new sequences of tokens. After establishing the

column to perform code completion on (as per the previous section), we retrieve the previous

1000 tokens and feed them to the model in order to generate the sequence to follow2. However,

we do not want to limit ourselves to a single prediction and wish to explore several completion

possibilities. Greedy search generates a sequence of tokens by following the path with the highest

probability and beam search allows us to explore different hypothesis each time by keeping track

of multiple high probability paths. Although beam search avoids restricting ourselves to only one

completion, it is still based on the tokens with highest probability, making the different generations

similar to each other (Holtzman et al., 2020). To circumvent this, we use an indeterministic

scenario to produce several completion possibilities. Instead of deciding the next token based on

the highest probability, we ask the model to make this selection based on a conditional probability

distribution through sampling. This way, we introduce randomness in the generation task and

have more diversification.

For each column, we consider a sequence of 20 newly generated tokens and repeat this step

10 times in order to produce different code completions for the same input — Algorithm 4.

2CodeGPT’s context size limit is 1024 tokens, so we need to leave some space for the output tokens. Still, the

number of input and output tokens is easily parameterizable in our tool and different values can be explored.
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Data: A truncated program T P , a code generation model CodeGPT
Result: The list of code completions Compl eti ons
Compl eti ons ← [];

tokens ← lastTokens(T P , 1000);
foreach i ∈ 1..10 do

completion ← complete(CodeGPT , tokens, length=20, sampling=true);

add(Compl eti ons, completion);
end

Algorithm 4: Algorithm for generating code sequences

4.6 Bounding Code Generation

Code completion is done by using CodeGPT to perform code generation. As this process is

open-ended, we need to focus on portions of the generated sequences before inserting them in

the buggy code. To do this, we defined criteria that bound code sequences at various places,

generating different sub-sequences of interest. The boundaries are specified by combinations of

characters that are relevant regarding code syntax. Sometimes, the context provided to the code

generation model may produce slightly off but almost correct results. As such, it is crucial that

we discard elements in the beginning and in the end of token sequences to remove such noise

from the nearly accurate predictions.

Skip. In order to reject incorrect tokens from the start of the generated code sequences, we

skip those characters. The code in Listing 4.2 denotes an example in which the sub-token EXT

should be removed in order to fix the bug.

1 150c150
2 < GL.glGenTextures

∣∣EXT(n, textures, Memory.getPosition(textures));
3 ---
4 > GL.glGenTextures(n, textures, Memory.getPosition(textures));

Listing 4.2: Change method call — sub-token EXT removal

Asking CodeGPT for 10 different code completions on the cursor position outputs the following

predictions.

1 EXT(n, textures, Memory.getPosition(textures));}void glUniform3
2 EXT(n, textures);} public void glTexParameterf (int index, float fval
3 EXT(n, textures, Memory.getPosition(textures));} public void glSten
4 EXT(n, textures, memory.getPosition(textures));} public void glFramebuffer
5 EXT(n, textures, Memory.getPosition(textures));} @Override public void flush
6 EXT(n, textures, Memory.getPosition(textures));} public void glVertex
7 EXT(n, textures, Memory.getPosition(new Integer(n)));}public void
8 EXT(n, textures, Memory.getPosition(textures));} public int nGLObject
9 EXT(n, textures, Memory.getPosition(textures));}void glGetA0
10 EXT(n, textures);}} public void glVertexBegin (int x, int y

Listing 4.3: Generated completions for Listing 4.2
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Every alternative begins with the undesired EXT word. However, the subsequent generated

tokens of some completions are able to build the expected code until the character ending the

statement: ’;’ (semi-colon). The character ’(’ (left parenthesis) has special significance in the

language — in this case, establishing the beginning of the parameters. As such, we can use this

knowledge and skip the starting tokens in the predictions until we find the left parenthesis.

Stop. As generated sequences can be potentially unlimited, there is still the problem of de-

termining at what point we stop considering the output tokens. Similarly to the previous situation,

code generation is performed without considering any syntactic aspects. As such, we again resort

to specific characters in order to decide the locations after which we stop incorporating tokens

for patch production.

The completions in Listing 4.3 have multiple characters that can be considered for the stop-

ping criteria and that will lead to the creation of successful fixes. Taking the first completion

line from Listing 4.3, considering the left parenthesis as a skip criteria and comma, space, left

parenthesis and semi-colon as stop criteria would trim the sequence and produce the following

possibilities:

1 EXT(n, textures, Memory.getPosition(textures));}void glUniform3
2 EXT(n,␣textures, Memory.getPosition(textures));}void glUniform3
3 EXT(n, textures, Memory.getPosition(textures));}void glUniform3
4 EXT(n, textures, Memory.getPosition(textures));}void glUniform3

Listing 4.4: Trimmed sequences from the previous completions

Although it may seem the first three alternatives stop earlier than intended, there is still a step

to perform in order to fit the trimmed sequences in the buggy code. This last synchronization

step will ensure these slices are applied correctly to the buggy code.

4.7 Character Synchronization

The last step to produce a candidate patch consists of fitting the trimmed completions in the buggy

code. As explained, completions were altered regarding different criteria to produce adequate

alternatives. The final step to correctly incorporate these pieces of code is to synchronize the

sequences with the line of code from the original program. Similary to the previous section, this

synchronization process is also achieved by coordinating the occurrence of relevant characters

of the language’s syntax.
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Considering the example in the previous section, the first trimmed completion from Listing

4.4 (second line in Listing 4.5) can be incorporated in the buggy program (first line in Listing

4.5) by synchronizing both code sequences on the first occurrence of the comma character, thus

producing the desired fix (third line in Listing 4.5).

1 bug: GL.glGenTextures
∣∣EXT(n, textures, Memory.getPosition(textures));

2 completion:
∣∣EXT(n, textures, Memory.getPosition(textures));}...

3 patch: GL.glGenTextures(n, textures, Memory.getPosition(textures));

Listing 4.5: Produced fix for Listing 4.2

As we can see, the completion is successfully integrated in the original program and we are

able to maintain the rest of the code accordingly.

4.8 Experiments

To validate our approach we used the ManySStuBs4J dataset (Karampatsis and Sutton, 2020)

to conduct a large scale experiment 3. The dataset version mined from 100 open source Java

projects, containing 11624 bugs, was filtered and bugs that did not fit the following criteria were

removed:

• line numbers reported in the dataset match the ones obtained through our automated analysis;

• the bug can be repaired only through line changes, i.e. line additions and deletions are not

necessary;

• fixes are not produced by changing string literals;

• our truncation algorithm computes at least one column number.

After this filtering step, 6415 bugs remained. For all these bugs, we applied a similar pro-

cedure to what was described in Section 5.3. However, there is a difference in the way column

numbers were computed. Although our algorithm computes less column numbers than a brute-

force approach, applying it to a dataset with such an amount of bugs would make the experiments

impractical by taking considerable time to execute. Instead, for each line, we compared the buggy

and the fixed version and used the first differing character (column) as the place to truncate the

program. Considering Listing 4.2, the cursor position denotes the column used in that case, as

that is where characters start differing.

3https://gitlab.com/FranciscoRibeiro/manysstubs4j-experiments
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Out of the 6415 bugs, our technique was able to fix 1739 programs, representing a 27%

effectiveness rate. Even though random sampling introduces indeterminism during code com-

pletions done by CodeGPT, the implementation of our work allows for reproducibility as we fix the

seeds for random number generation. This implies that if one of the column numbers computed

by the truncation algorithm matches the first differing character, our approach will be able to fix it

as the sequence of generated tokens will be the same and the rest of the pipeline is deterministic.

The truncation algorithm is able to successfully compute the column numbers used in these ex-

periments for 5674 bugs, which means the algorithm can infer the closest place to the bug 88%

of times. Although this step fails to calculate the nearest column number for some cases, it does

not mean that our technique is not able to repair them. In fact, performing code completion at

different column numbers may still produce a fix. From the 1739 fixed programs, the truncation

algorithm did not compute the nearest column for 97 of them. Nonetheless, our technique was

still able to fix these programs.

Figure 4.2: Bugs per range of computed column numbers

Even though code completion was not performed on every plausible column, we still applied

the algorithm to compute such column numbers to all the bugs in the study. Figure 4.2 shows the

number of bugs per ranges of computed columns — size 10 buckets. The algorithm computes

between 10 and 20 column numbers for 2417 bugs, representing 38% of the analyzed programs,

and we are able to fix 777 of them, which results in a 32% repair rate.
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Figure 4.3: Bugs per lines to modify

Figure 4.3 shows the amount of bugs per number of lines. The vast majority of the studied

programs — 4610 — are single-line bugs, which consists of 72% of the total amount. Multi-line

bugs range from 2 to 231 lines with 1037 and 2 programs respectively. As single-line bugs are

the most predominant, it is relevant to focus on this sizable segment of programs to understand

how values are distributed.

Figure 4.4: Single line bugs per computed column numbers — top 20

Figure 4.4 shows the top 20 computed column numbers for single-line bugs. This data

does not present a discrepancy when compared to the distribution illustrated in Figure 4.2 for

all the bugs, as the most frequent number of columns are contained within the top-3 buckets.

Furthermore, our approach is able to fix 1502 of these programs, resulting in a repair rate of 33%
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for this set of bugs. The fact that this segment represents a significant portion of the dataset is

also reflected in the number of repaired programs, with 86% of all 1739 fixed programs being

part of this group of bugs.

Figure 4.5: Bugs per computed column numbers — top 20

The largest cluster of bugs in the dataset — single-line — has its top-20 most frequent numbers

of computed columns in line with the global top-20 — Figure 4.5 — with only the last two places,

23 and 5, missing from it.

4.9 Case Studies

In this Section we present specific examples of programs to explore relevant scenarios that show-

case the advantages of our approach.

Case Study 1 Listing 4.6 shows a bug and its corresponding fix.

1 404c404
2 < } else if (itemActionLayout >

∣∣= 0) {
3 ---
4 > } else if (itemActionLayout > 0) {

Listing 4.6: Case study 1 — bug and fix
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In the buggy line, we can see the column for which code completion should be performed.

However, the algorithm defined in this work does not compute that column number because

splitting a binary operator does not fit the defined criteria, as Listing 4.7 shows.

1 } else if (
∣∣item

∣∣Action
∣∣Layout

∣∣ >=
∣∣0∣∣) {

Listing 4.7: Case study 1 — computed columns

Nonetheless, we are still able to produce a fix in this situation by making use of a completion

after itemActionLayout.

1 bug: } else if (itemActionLayout
∣∣ >= 0) {

2 completion:
∣∣!= null) {if (itemShowAsAction > 0) {...

3 patch: } else if (itemActionLayout> 0) {

Listing 4.8: Case study 1 — produced fix

Even though CodeGPT does not complete the condition with the intended binary operator (>)

and operand (0) straightaway, as a result of outlining the generated sequence (Section 4.6), we

are able to skip (highlighted in grey) undesired tokens and make use of a subsequent comparison

from the initial completion. By then stopping at the closing parenthesis and discarding tokens

coming afterwards, we can synchronize (Section 4.7) the extracted portion of the completion

(highlighted in green) with the buggy line and produce the patch shown in Listing 4.8.

Case Study 2 Listing 4.9 shows a scenario for which our technique expanded an existing

condition.

1 78c78
2 < return mModelClasses

∣∣.size() > 0;
3 ---
4 > return mModelClasses != null && mModelClasses.size() > 0;

Listing 4.9: Case study 2 — bug and fix

As we can see from Listing 4.10, the truncation algorithm computes the closest column to

the bug. Therefore, our approach is able to successfully produce a repair for this program.

1

∣∣return
∣∣m∣∣Model

∣∣Classes
∣∣.∣∣size

∣∣()
∣∣ >

∣∣0∣∣;∣∣
Listing 4.10: Case study 2 — computed columns

As results are replicable, we can safely infer CodeGPT would generate the same code se-

quences for that column without incurring in the overhead of applying our approach to every

computed column.
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1 bug: return mModelClasses
∣∣.size() > 0;

2 completion:
∣∣!=null && mModelClasses.size()>0;}...

3 patch: return mModelClasses!=null && mModelClasses.size()>0;

Listing 4.11: Case study 2 — produced fix

For this example, code completion was able to generate useful tokens right from the begin-

ning. As a consequence of using variable mModelClasses to produce the first comparison

(mModelClasses!=null), the original expression, which constitutes the second part of the

condition, is lost. Nonetheless, the continuation of the token sequence generates the desired

code (mModelClasses.size()>0), eliminating the problem. After discarding tokens to the

right of the semi-colon (grey) and using the same character to synchronize the resulting sequence

with the buggy code, we produce a patch that fixes this program as shown in Listing 4.11.

Case Study 3 The example in Listing 4.12 illustrates a multi-line bug that we are able to fix

by performing the procedure on three separate lines.

1 176c176
2 < if(request.get

∣∣TaskDefinitionKey() != null) {
3 ---
4 > if(request.getDueDate() != null) {
5 179c179
6 < if(request.get

∣∣TaskDefinitionKey() != null) {
7 ---
8 > if(request.getDueBefore() != null) {
9 182c182

10 < if(request.get
∣∣TaskDefinitionKey() != null) {

11 ---
12 > if(request.getDueAfter() != null) {

Listing 4.12: Case study 3 — bug and fix

For each buggy line, the column closest to the bug is computed — Listing 4.13.

1 if(
∣∣request

∣∣.∣∣get
∣∣Task

∣∣Definition
∣∣Key

∣∣()
∣∣ !=

∣∣null
∣∣) {

Listing 4.13: Case study 3 — computed columns

Similarly to the previous case study, as the experiments are reproducible, our pipeline will

always produce the same results for this column, which assures us this bug is fixable.

1 bug: if(request.get
∣∣TaskDefinitionKey() != null) {

2 completion:
∣∣DueDate()!= null) {taskQuery.dueDate(...

3 patch: if(request.getDueDate()!= null) {
4

5 bug: if(request.get
∣∣TaskDefinitionKey() != null) {

6 completion:
∣∣DueBefore()!= null) {taskQuery.dueBefore(...

7 patch: if(request.getDueBefore()!= null) {
8

9 bug: if(request.get
∣∣TaskDefinitionKey() != null) {

10 completion:
∣∣DueAfter()!= null) {taskQuery.dueAfter(...

11 patch: if(request.getDueAfter()!= null) {

Listing 4.14: Case study 3 — produced fix
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All three lines are fixed in a similar way. However, the method names that need to be

generated are different from each other. Code completion is able to produce the necessary

tokens from the start and we only need to stop considering the sequence after the first opening

parenthesis. Both the buggy line and the code sequence are synchronized also using the opening

parenthesis, thus creating the patches seen in Listing 4.14. On the other hand, some of the

discarded tokens (!= null){) could also be utilized for patch production as they would correctly

complete the buggy code. As such, this program could be fixed by using different characters for

bounding the generated code sequence, like the closing parenthesis or the opening curly bracket.

Case Study 4 Listing 4.15 shows a bug that is fixed by replacing a method call with a constant.

1 272c272
2 < buf.get(bulk,

∣∣buf.position(), len);
3 ---
4 > buf.get(bulk, 0, len);

Listing 4.15: Case study 4 — bug and fix

Again, the truncation algorithm computes the column nearest to the bug — Listing 4.16.

1

∣∣buf
∣∣.∣∣get

∣∣(∣∣bulk
∣∣, ∣∣buf

∣∣.∣∣position
∣∣()

∣∣, ∣∣len
∣∣)∣∣;∣∣

Listing 4.16: Case study 4 — computed columns

As a result of reproducibility, the circumstances certify this bug is fixable under our approach.

1 bug: buf.get(bulk,
∣∣buf.position(), len);

2 completion:
∣∣0, len); os.write(bulk); } dos.write(buf...

3 patch: buf.get(bulk, 0, len);

Listing 4.17: Case study 4 — produced fix

Listing 4.17 shows the produced fix. In this case, the line is truncated at the beginning

of the expression that needs to be replaced. However, the necessary expression (0) is much

different from the original one (buf.position()). Nevertheless, the code completion step is

able to infer the next tokens correctly from the provided context and the relevant part is extracted

accordingly. There is no need to skip any unnecessary tokens. Additionally, we can simply

stop considering the generated token sequence after the comma character and also use it to

synchronize with the original code. As in the previous case study, this bug may be fixed in different

ways. The remainder of the code sequence (len);) can be safely inserted in the original program

as it corresponds to an already correct part. For this to happen, the closing parenthesis or the

semi-colon need to be used for limiting token generation and synchronization.
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4.10 Threats to Validity

Our main goal is to explore if program repair can be treated as a code completion task. More

precisely, can we use code generated by DL models such as CodeGPT to evolve faulty programs

in order to correct their behavior? We believe our work shows the answer to this question to be

yes, though we acknowledge potential challenges to our rationale.

Internal Validity: Some programs need larger and more complex changes in order to be re-

paired. That is, not all pairs of bugs and corresponding fixes are equivalent in kind. Essentially,

this means that different programs need to meet different demands to be classified as correct.

However, we consider that the results show our approach was successfully applied to programs

of different kinds going from needing small adjustments to multiple intricate changes.

External Validity: The reported results are obtained by analyzing programs from a dataset

aiming to provide a collection of single statement bugs. As such, these simple bugs may not

be representative of the real-world complexity of software and its needed changes. However,

the dataset used in our work was created by extracting actual occurrences from real-world open-

source projects, showing that such instances typically arise. In addition, some multi-line changes

may be seen as aggregates of multiple single-line modifications. Aside from that, our work targets

Java programs and, thus, does not encompass a lot of other languages. Nonetheless, many of

the language’s features and constructs are common to other languages and Java is one of the

most used by developers.

Construct Validity: Some typical NLP practices were put into place in our work. For text

generation, maximizing the probability of the decoded segments leads to poor quality outputs,

contrasting with the training objective used to build such models. Higher quality text can be

obtained by employing a decoding strategy that uses sampling (Holtzman et al., 2020). Even

though these sampling techniques have their roots in NLP, we are convinced we successfully

applied them to a PL setting as we were able to fix more programs by not only producing multiple

alternatives but also making them more reliable.
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4.11 Related Work

Barr et al. (2015) introduce a software transplantation technique transferring behavior from a

donor to a host program. The focused part in the donor is termed the organ. The aim is to

recreate its feature in an unrelated target program. This approach finds applications in software

development, illustrated by transferring a video encoding implementation from the x264 utility to

the VLC media player.

Similarly, Shariffdeen et al. (2021) use an equivalent reasoning but focus on transfering

patches from a donor to a host. The authors highlight the technique’s usefulness for scenarios

in which differing implementations may benefit from patch adaptation.

Transplantation considers a host benefits from having a donor’s feature transferred to it.

Likewise, the training process in code generation models like CodeGPT enhances output quality,

showing the utility of learning from other programs. Thus, we consider other works’ (Barr et al.,

2015; Shariffdeen et al., 2021) analogous methods as a validation of our solution.

APR techniques based on neural networks are a clear advance in software reliability. How-

ever, some of these (Li et al., 2020; Lutellier et al., 2020; Chen et al., 2021; Ding et al., 2021)

focus on partial code snippets and do not acknowledge the entire source code, therefore missing

the entire perspective and making learning the code syntax restrictive. Jiang et al. (2021) point

these limitations out and build a pre-trained model from a large code repository before perfoming

any APR task. By using CodeGPT, our work shares the same logic as we leverage the capabilities

of a pre-trained model that first understands the language it is trained on without influence from

a specific task beforehand.

Ribeiro et al. (2021) perform fault localization by identifying the semantics behind faults. This

is done by translating the AST difference between two program versions — before and after the

bug — into mutation operators. The authors are able to infer mutations 78% of times. They

demonstrate how real-world programs can be automatically repaired by applying mutation opera-

tors that revert the faulty modifications at the inferred places while leaving new but unrelated code

unchanged. Likewise, we compute column numbers and consider them the most appropriate

spots to generate new code and integrate it.

Pre-trained models like CodeBERT have been fine-tuned on the ManySStuBs4J dataset in
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order to automatically repair programs and shown to be able to produce patches of variable length

and complexity while reporting accuracies between 19% and 72% (Mashhadi and Hemmati,

2021).

4.12 Summary

This work presents an automated repair technique that, given a buggy file and line number, pro-

duces candidate patch lines in an attempt to fix the program. We devised a truncation algorithm

that computes column numbers for which we use CodeGPT to perform code completion on. After

that, we explained our implementation to limit the generated code sequences and how we fit the

resulting string based on the language’s syntax. Our approach was validated by analyzing the

ManySStuBs4J dataset. The results show that 1739 programs were fixed out of 6415, which

reflects a 27% repair rate and corroborates our work’s soundness.

Replication Package

The necessary resources to replicate this study are publicly available:

• Truncation tool: github.com/FranciscoRibeiro/code-truncater

• Large scale experiments: gitlab.com/FranciscoRibeiro/manysstubs4j-

experiments
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Abstract Type systems are responsible for assigning types to terms in programs.

That way, they enforce the actions that can be taken and can, consequently, detect

type errors during compilation. However, while they are able to flag the existence of an

error, they often fail to pinpoint its cause or provide a helpful error message. Thus, with-

out adequate support, debugging this kind of errors can take a considerable amount of

effort. Recently, neural network models have been developed that are able to under-

stand programming languages and perform several downstream tasks. We argue that

type error debugging can be enhanced by taking advantage of this deeper understand-

ing of the language’s structure. In this chapter, we present a technique that leverages

GPT-3’s capabilities to automatically fix type errors in OCaml programs. We perform

multiple source code analysis tasks to produce useful prompts that are then provided to

GPT-3 to generate potential patches. Our publicly available tool, Mentat, supports mul-

tiple modes and was validated on an existing public dataset with thousands of OCaml

programs. We automatically validate successful repairs by using Quickcheck to verify

which generated patches produce the same output as the user-intended fixed version,

achieving a 39% repair rate. In a comparative study, Mentat outperformed two other

techniques in automatically fixing ill-typed OCaml programs.
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CHAPTER 5 LLMS FOR TYPE ERROR DEBUGGING

5.1 Introduction

Programming languages usually have an associated type system responsible for determining

whether some operation can be applied to some program term. This system ensures a program’s

correctness in terms of type safety. That is, if a program does not typecheck, it signals a logical

error related to the inherent type constraints. However, even after knowing there is some type

inconsistency, we still need to understand where and why that error occurred. In other words, a

type system may be unable to provide the location of the error and the explanation as to why the

error arose.

Undeniably, programmers are not completely left in the dark in this regard. Several program-

ming languages provide type inference systems, which compute the expected type of expressions

in the code. Despite considerable effort (Lee and Yi, 1998; Chitil, 2001; Stuckey et al., 2003;

Tsushima and Asai, 2013, 2014; Heeren et al., 2003) to provide helpful information for type

error detection, compilers often fail to pinpoint the true cause of an error. Consider the following

ill-typed OCaml program:

1 let rec add_list lst = match lst with
2 | [] -> []
3 | fst :: rest -> fst + (add_list rest)

Listing 5.1: Ill-typed function: patterns differ on returned types

Program 5.1 consists of a recursive function add_list that takes a list of integers and

should calculate the sum of all numbers. ocamlc would yield the following message1:

1 3 | | fst :: rest -> fst + (add_list rest)
2 ^^^^^^^^^^^^^^^
3 Error: This expression has type 'a list but an expression was

expected of type int

The type system successfully detects a type error in the program and the compiler provides

a message reporting the problem. If we replace the use of the plus operator (+) in line 3 by

the cons operator (::), the whole program is well-typed. However, the expression highlighted

as being problematic by the compiler is not the true origin of the error. As a consequence, the

information about the mismatch of the expected type (int) and the inferred type ('a list) does

not provide meaningful advice into how to approach the problem. Another way to fix this program,

which corresponds to the programmer’s intended fix, is to have it return zero (0) instead of the

1In OCaml, polymorphic type names are prefixed with a backquote.
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empty list ([]) in line 2. Hence, it often happens that the user’s intended modification differs

from what the compiler points out. That is because reporting type inconsistencies is influenced by

the order in which expressions in a program show up. As long as no inconsistencies are detected,

the inferred type for an expression is considered to be correct. As a result, the type system will

have a left-to-right bias and errors tend to show up towards the end of a program (Heeren et al.,

2002). Now consider that we swap the two patterns:

1 let rec add_list lst = match lst with
2 | fst :: rest -> fst + (add_list rest)
3 | [] -> []

This time, we get a different error message:

1 3 | | [] -> []
2 ^^
3 Error: This expression has type 'a list but an

expression was expected of type int

This means that the type error we are dealing with can have multiple causes. Depending on

the order of the patterns, the cause that is reported changes.

However, even after recognizing the inherent limitations of type systems in accurately locating

and explaining type inconsistencies, we are still left with fixing them. Automated program repair

(APR) aims to generate patches for incorrect programs (either syntactically or semantically) with

minimal human intervention (Goues et al., 2019). Many approaches have emerged based on the

competent programmer hypothesis or, put in other words, programmers ”create programs that

are close to being correct!” (DeMillo et al., 1978). We argue that automatically finding repairs

that eliminate type inconsistencies is one effective way of locating and understanding the root of

a type error.

In this chapter, we present an approach that leverages the code understanding and genera-

tion capabilities of models based on GPT-3 to automatically fix type errors in OCaml programs.

We focus on analyzing the source code of ill-typed programs and generating prompts that are

then provided to the model. By doing this, we aim to produce programs free from type errors

and, thus, can be used to find and understand what was causing them. Our contributions are:

1. a source code analysis and manipulation technique that produces different kinds of prompts

intended for GPT-3-based models (Section 5.3);

2. a publicly available tool, named Mentat, implementing this technique (Section 5.4);
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3. an initial validation on a small set of programs, followed by a large-scale evaluation on an

independent repository, with an analysis of the results obtained (Section 5.5);

4. a comparative study between our tool, Mentat, and two other techniques, namely Rite (Sakkas

et al., 2020) and Seminal (Lerner et al., 2007) on a common dataset, alongside the obtained

insights.

Even though this work is concerned with type error debugging, it differs from previous approaches,

which aim to improve the quality of type error messages (Damas and Milner, 1982; Wand, 1986;

Lee and Yi, 1998), provide interactive type debugging (Chitil, 2001; Tsushima and Asai, 2013;

Chen and Erwig, 2014a,b), and narrow down the area for type error debugging (Haack and Wells,

2004; Rahli et al., 2017; Stuckey et al., 2003, 2004; Schilling, 2012). Instead, our work focuses

on the automatic repair of type errors. We achieve this by analyzing and transforming source code

and outputting it in a form that can be understood and processed by GPT-3, a large language

model trained by OpenAI.

For the initial validation, we find that our tool presents at least one valid solution for each

test program, with the Fill operation mode obtaining success rates varying from 53% to 60%

for simple programs and from 83% to 100% for implementations of the shortest path algorithm

— also referred to as the Dijkstra algorithm from here on out (Dijkstra, 1959; Frana and Misa,

2010). Regarding the large scale evaluation, we analyzed 1,318 buggy programs and were

able to fix 516 of them, reaching a 39% repair rate. To automate this process we used two

key features of property-based testing (Claessen and Hughes, 2000): firstly, we automatically

generate a very large number of random inputs, and secondly we define a property that tests

whether the user-fixed program outputs the same result as the automatically repaired one. The

program-specific property is also automatically generated, thus having a fully automated large

scale validation process without relying on human intervention to inspect the generated patches.

Also, we showed the potential for partial fixes by considering the results for programs that do not

pass 100% of test cases. While the other operation modes perform worse overall when compared

to Fill, they are still capable of generating successful results and, in some cases, succeed where

Fill fails. Moreover, we performed a comparative study of our technique with two type repairing

approaches, namely Rite (Sakkas et al., 2020) and Seminal (Lerner et al., 2007). Our first results

show that Mentat gives the best program repair results with a 37.5% repair rate versus 33.4%

from Rite and 7.8% from Seminal.
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5.2 Background

A type system is a set of rules governing how data is represented and used in a program (Pierce,

2002). It is lightweight and does not require special knowledge from the user. Type inference is

a static algorithm to find the type of each part of a program without the programmer’s annotation.

The advantages of type systems include not only type-safety of programs but also efficient compu-

tation by enabling the generation of optimized code. For this reason, Ruby, a dynamically typed

language, has recently introduced type inference, and Python has also introduced type-related

features.

Originally, research in natural language processing (NLP) focused on ways of processing,

analyzing, and manipulating natural language through statistical and rule-based modeling. More

recently, the use of artificial intelligence has allowed the development of techniques that make

NLP one of the most prominent fields in computer science. Simply put, NLP is responsible for

encoding text into more appropriate machine level representations and also for processing and

transforming these lower level descriptions into other forms of text. More specifically, neural net-

works have been very impactful in the development of NLP models. Some of the most important

ones are BERT (Devlin et al., 2019) and GPT (Radford et al., 2019) which have seen their utility

displayed in an overwhelming amount of more specific downstream tasks. Encouraged by the

achievements conducted in this area, the software engineering community has successfully ap-

plied some of NLP’s fundamentals to build tools that improve software development workflow.

Code completion is one of the most popular features and many code editors implement it one

way or another. With the intent of going beyond basic level completions like more pertinent sug-

gestions for API calls for a given context, the research community has also directed its efforts

into developing versions of the BERT and GPT models that are specifically tailored towards pro-

gramming languages. New models, such as CodeBERT (Feng et al., 2020) and CodeGPT (Lu

et al., 2021), were created based on the original architectures. GPT-based code models are able

to generate long and relatively complex code sequences by analyzing and inferring the context

of the source code provided as input. One of the most recent iterations of such models is GPT-

3 (Brown et al., 2020), which presents a high degree of success when employed in different

scenarios such as cloze and completion tasks.
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5.3 Technique

With our contribution, we intend to, for a given faulty OCaml program, extract as much information

from it as possible, and then format it in a way that GPT-3 can understand and process it. For this,

we first check for type inconsistencies. If they are present, we employ three different tasks: type

error location, inlining, and type unification, with each being described in detail in the following

sections. Figure 5.1 illustrates how the tasks generally interconnect and highlights them with

the corresponding label. Nodes with dashed borders represent steps in which we make use of

existing components and are not directly part of our contribution. Grey nodes and white nodes

represent elements and actions, respectively. Depending on the way we wish to interact with

GPT-3, the tasks may be combined in slightly different ways.

Program Parser AST Typechecker Ill-typed Program typecast
Typecasted

Programs

Type Error Location (5.3.1)

Inline
Inlined

Programs

Inlining (5.3.1)

Insert Hole

Programs

With Holes

Generate

Completions
Completions Unify

Unified

Completions

Find Typecasted

Expressions

Typecasted

Expressions
Unify

Minimal

Substitution

Type Unification (5.3.1)

Figure 5.1: Interconnection of source code manipulation tasks

5.3.1 Source Code Analysis

Type Error Location

The compilers of strongly typed programming languages tend to check for source code errors

in two separate steps when building an executable file: parsing and type checking. The parser

checks whether the input is syntactically correct and if so it produces an AST (Abstract Syntax

Tree). The type checker traverses such a tree to check whether the underlying program obeys

the type rules. If it does parse but it does not typecheck, then there is a type error, which is the
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focus of this work. If it does both parse and typecheck then, for our purposes, the program is

considered correct.

Some programming languages offer us type conversion and manipulation tools; we focus on

type conversion tools from strongly typed languages. Let us consider a function from now on

referred to as typecast, which forcefully converts a value of any type into a value of any type.

Of course, such function will not be able to actually do these conversions during a program’s

runtime, but it will be able to trick the compiler into interpreting an expression of one type as

if it had a different type. As such, the typecast function will only be used when typechecking a

program. In OCaml, this operation can be performed by using Obj.magic2, which we will use

in our tool. Any program referred to as typecasted from here onwards is a program in which part

of it was transformed with the typecast function.

Recall the introductory example in Program 5.1. Because any type can be converted into any

type with this function, we can, for example, apply typecast to the empty list ( [] ) to transform it

into a different type ’b, which the typechecker will deduce to be int. We could also apply typecast

to the plus operator ( + ) thus transforming it into a function of type ’b which the typechecker

will deduce to be ’a → ’a list → ’a list. Finally, we can also typecast the expression on the right-

hand side and have the typechecker infer the type ’a list. After parsing the OCaml program, we

create multiple program variants, each with the typecast function applied to a single expression,

and then type check each application. Every variation of the original program that typechecks

correctly is stored; if changing the type of one value / expression with typecast fixes the program

type-wise, then we consider that the replaced value can be the error that needs to be fixed. Finally,

we replace the usage of this function with a mask, signaling a hole in the program that needs

to be filled. The following tasks will focus on analysing and transforming the program variations

(which we call the typecasted programs) produced in this task.

In this work, the focus is on type errors with a single location. Nonetheless, our approach is

still flexible to some instances of errors with multiple locations if all of them are contained within

a single function call expression.

2Obj.magic has the type ’a → ’b
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Inlining

We make use of inlining not for the usual purposes of compiler optimisations, but to be able to

make information available from some parts of the program in other places. That is, the inlining

step we describe here is done on the actual source code to improve its analysis further ahead,

and not to produce more efficient machine code. This step is particularly useful as it allows us to

extract better results from later type unification and type inference tasks. Consider the following

typecasted program:

1 let f x = (Obj.magic (&&)) x (x + x)

Listing 5.2: Obj.magic hides the error from the type system

If we ask for the type of the Obj.magic (&&) expression, the type system will infer it to be

int → int → ’a. However, let us now extend the program with a test case:

1 let f x = (Obj.magic (&&)) x (x + x)
2 let t = (f 1) = 3

The second line specifies the usage of function f. By inlining function f, we associate it to a

context in which the type system can take advantage of the extra information provided by the int

parameter. As a result, the inferred type of the typecasted expression would be int → int → int.

To accomplish this inlining step, an environment is maintained throughout the underlying

AST traversal. When a new definition is found, its identifier is stored and associated to the

corresponding expression. As such, when the usage of an element stored in the environment

is detected, the usage of the identifier is replaced by the expression’s body, effectively inlining

that piece of code. Special care needs to be taken for two scenarios: recursion and function

arguments. For the first one, we need to avoid repeatedly inlining the same element as that could

potentially lead to a non-terminating procedure. Nonetheless, there is still interest in performing

this step once for recursive definitions. Thus, we allow inlining to happen exactly once in such

cases. For the second scenario, most programming languages allow re-definition of variables

in different scope levels and OCaml is no exception. It is possible to have a variable x already

defined, and still define a new x in an inner scope. When inlining, in this case, we take care to

inline the correct definition for the correct x variable. The inlined source code is only stored in

memory and the original program is not modified, with GPT-3 never seeing the inlined version.
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Type Unification

We make use of type unification to filter elements from a list of completion suggestions. Almost

every code editor provides the ability to have completion suggestions on request from the user

by specifying a place in the source code. Prior to requesting a list of completion suggestions, we

replace typecasted expressions (obtained as described in Section 5.3.1) with typed holes. Then,

we make use of an OCaml language server (LSP)3 to automatically locate the introduced typed

hole and to obtain a list of suggestions containing code elements that may fit. Let us consider

Program 5.2 and its equivalent version with a typed hole represented by the underscore:

1 let f = fun x -> _ x (x + x)

Having introduced the typed hole, we can request a list of suggestions for the typed hole’s

location from the OCaml LSP and obtain 318 candidates. This list is not curated according to

the type context and, as such, the suggested completions may present a type mismatch. In

order to filter the list accordingly, type unification is performed between each element and the

expression that was flagged as problematic according to the application of typecast. If unification

succeeds, the suggestion will take part in the resulting list which, in this situation, will consist of

23 candidates.

5.3.2 Strategies

We make use of the available GPT-3 operation modes to implement three of the four repair

strategies supported by our tool. Depending on which strategy we intend to use, we have to

prepare and format the data accordingly.

Fill

GPT-3 provides an operation mode named Insert, in which, given some input text from the user

which contains a hole denoted by the [insert] tag, a generation is produced by the model

and placed where the tag was located. Thus, this operation mode is perfect for our use case, by

filling programs in which a part is missing. There are several models available for this operation

mode, notably text-davinci-003 and code-davinci-002, the former being a general

3https://github.com/ocaml/ocaml-lsp
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model and the latter being optimized for handling code. Next, we show an example of an input

prompt for this operation mode:

1 let rec add_list lst = match lst with
2 | [] -> [insert]
3 | fst :: rest -> fst + (add_list rest)

For this prompt, using the web interface and with the default model parameters, both text-

davinci-003 and code-davinci-002 models will output the following:

1 let rec add_list lst = match lst with
2 | [] -> 0
3 | fst :: rest -> fst + (add_list rest)

For this program, we obtain the correct patch. Of course, to do so we need to first locate

the error and replace it with the [insert] tag. We do this through the technique described in

Subsection 5.3.1, by replacing the code that did not typecheck without the usage of the typecast

function with said tag. This is the strategy in which we provide the least information to the GPT-3

model.

Choose

GPT-3 provides an operation mode named Complete, in which, after being fed input text from

the user, it will attempt to generate more text based on it, that is, complete it. It can be used for

non-code tasks such as writing stories or classifying tweets, as well as code tasks like translating

plain text to an SQL query. We experimented with several approaches for usage of the Complete

mode, because, unlike with the other operation modes, there is no intuitive way to use this

mode to correct programs. Failed approaches include asking the model to rewrite the entire

program replacing the missing hole (similar to the [insert] tag mentioned in Subsection 5.3.2)

with the correct solution, or asking the model to just give us the code expected in that hole.

Variations of this approach, by providing more clues, such as the expected type of the result, or

by providing possible solutions to consider, were also unsuccessful. Ultimately, we were able to

obtain favourable results by formatting the input as an exercise, similar to what would be found in a

student exam. To do this, we present the source code with a missing hole denoted by the <mask>

identifier, and a list of possible solutions. This list is produced as described in Subsection 5.3.1

and presented as numbered options, and the model is asked to select the most appropriate.

We guide the model into selecting one option through prompt engineering. Specifically, every
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produced prompt is preceded with two example exercises that share this template but have the

correct option selected (omitted in listings for brevity). The following program is an example of a

prompt formatted for the Complete operation mode, as described.

1 Consider the following OCaml program:
2

3 let rec add_list lst = match lst with
4 | [] -> <mask>
5 | fst :: rest -> fst + (add_list rest)
6

7 Which of the following options should replace <mask>?
8 1) ( __LINE__ )
9 2) ( max_int )
10 3) ( min_int )
11

12 Correct option:

Notice that all presented options are incorrect - this is a limitation from using this kind of

prompt. Because we are using the OCaml LSP to generate suggestions to be then presented

here, we are limited in which suggestions can be included. In fact, the OCaml LSP will not

generate common constant values such as 0, which is the correct response here. All the listed

suggestions are integer constants suggested by the OCaml LSP, where __LINE__ is a compiler

macro representing the code line number where it is written, and max_int and min_int are

constants representing the maximum and minimum values possible to represent as integers

in OCaml. The following is another prompt (re-formatted for brevity) we produce for the same

program, but assuming an error in a different place.

1 Consider the following OCaml program:
2

3 let rec add_list lst = match lst with
4 | [] -> []
5 | fst::rest -> <mask> fst (add_list rest)
6

7 Which of the following options should replace <mask >?
8 1) ( fst ) 8) ( raise_notrace )
9 2) ( ! ) 9) ( snd )
10 3) ( exit ) 10) ( @@ )
11 4) ( failwith ) 11) ( max )
12 5) ( input_value ) 12) ( min )
13 6) ( invalid_arg ) 13) ( List.cons )
14 7) ( raise ) 14) ( @ )
15

16 Correct option:

Notice that the list of suggestions grew — some of them, such as exit and raise, will match

a lot of types, due to the polymorphic nature of these suggestions. However, some interesting

suggestions are now listed, and in this case, the model suggests option 14 - the @ operator. This
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operator concatenates two lists, and placing it into the hole in the source code will transform this

function into a correct implementation of the List.concat function for joining a list of lists of

values into a single list of values. It is, however, not what we tend to expect out of a function

named add_list.

Communication with GPT-3 for this operation mode is fairly similar to other modes, but we

have to limit the number of generated tokens, as the model tends to try to generate an explanation

for its answer. It is also possible to specify a stop sequence, which is a sequence of tokens that,

when generated by GPT-3, stops the whole generation process.

Instruct

Another way of interacting with GPT-3 is through its Edit mode which expects two inputs: a

prompt and instructions describing how to edit the prompt. Similarly to the other modes, there

is a more general textual model and a code specific variant. However, for this mode, there

are specialized versions to handle text editing, namely text-davinci-edit-001 and code-

davinci-edit-001. Our approach uses a simplified form of the Instruct mode, which is

applied when the step in Section 5.3.1 fails to produce a program that typechecks. In that case,

the prompt consists of the original program, and the instruction will hold the message ”Fix the

bug”. Alternatively, in case the previous step is able to produce a well-typed program4, our

approach performs inlining and type unification on the typecasted program in order to compute

the minimal substitution holding the expected type with as much information as possible from

the whole program. If we consider Program 5.1, the inputs sent to GPT-3 would be:

1 Prompt:
2 let rec add_list lst = match lst with
3 | [] -> _
4 | fst::rest -> fst + (add_list rest)
5 Instruction:
6 Replace the underscore with something of type int

The hole represented by the underscore is the place we wish to see filled in. Although the

underscore character can appear in an OCaml program, we did not notice any interference in

the ability of GPT-3 to apply the transformation in the intended place. The template we use

for the edit instructions is ”Replace the underscore with something of type <inferred>”. For

4Recall that whenever bypassing the type system by using the typecast function eliminates the type error, we

explore that program variant.
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this program, GPT-3 responds with 0, which is the desired fix. Indeed, it may look like GPT-3

simply understands the program in question is missing the most adequate stop criteria and just

answers with a corrected version, perhaps disregarding our instructions. However, the unification

and inference step we perform in order to complete the message template with the expected type

plays a crucial role. For the same example, fabricating messages referring illogical types such

as string or (’a → ’b) → ’a list → ’b list would see GPT-3 answer with the empty string and

List.map respectively.

Because our approach explores every application of typecast that typechecks a program, we

also produce another alternative:

1 Prompt:
2 let rec add_list lst = match lst with
3 | [] -> []
4 | fst::rest -> _ fst (add_list rest)
5 Instruction:
6 Replace the underscore with something of type 'a -> 'b list -> '

b list

Even though this alternative prompt will not generate the intended fixed program, it shows

that the creation of adequate prompts is essential for GPT-3 to perform well. In this case, GPT-3

will respond with (fun x y → x::y). Surely, integrating that piece of code into the original

program produces a correct one from a typechecking perspective, although it does not fulfill the

programmer’s intention.

Without GPT-3

One interesting outcome from the implementation of the Choose strategy described in Section

5.3.2 is that we can make use of the work done to construct the prompt and skip the interac-

tion with GPT-3. Thus, we provide a way to work completely offline. After coming up with an

alternative program that typechecks and a list of suggestions (according to sections 5.3.1 and

5.3.1, respectively), we integrate each one into the original program. If no test cases have been

provided, the tool simply displays which options fit the expected type. If there are test cases, the

tool tests each suggestion and displays the resulting programs according to whether they satisfy

the tests or not. Consider the following ill-typed program and the associated test case:

1 let f = fun x -> x && (x + x)
2 Test case: f 3 = 9
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According to the test case, the intended fix consists of replacing the logical-and (&&) with the

plus operator (+). For this case, our tool is able to filter 15 suggestions out of the 318 provided by

the OCaml LSP, with one of them being the desired one. Each of the 15 suggestions is checked

against the test case and the tool outputs the only program that satisfies the criteria:

1 let f = fun x -> (+) x (x + x)

Note that the type unification step requires the use of functions. In that sense, we convert

the usage of operators such as ’&&’ to their equivalent prefix notation functions ’(&&)’, resulting

in the generated patches also being written in this form, demonstrated by the use of the function

’(+)’.

Indeed, the focus of our work is to evaluate GPT-3’s performance regarding the automatic

repair of type errors, and presenting a method in which the usage of the model is non-existing

may seem counter-intuitive. However, we find this to be a validation of our approach, showing

that the effort to assemble the prompt can guide the whole process towards the intended result

as the correct patch may be found by further checking each plausible option.

5.3.3 Model Bias

We now experiment with providing more information, trying to guide the models into more relevant

results. We do this by using the bias parameter which lets us guide the model’s output by

specifying the importance of certain tokens5 through weights. A token represents a unit of text,

like a character or a word. We use a tokenizer tool for this purpose.

We create a database of the most common tokens in the top 10 OCaml repositories on

GitHub programmatically. To achieve this, we utilize GPT-3’s tokenizer, which converts text into

numerical sequences that the model processes. We analyze the tokens in source code files from

these repositories and collect frequency data to construct a database of commonly used tokens

in real-world programs.

We create a list of suggestions as per Section 5.3.1, convert them into token sequences, and

assign positive weightings to these tokens. Then, we use the bias parameter in GPT-3 to guide

the model toward these suggestions. The weightings are determined based on a database of

token frequencies from real-world programs. We heuristically set minimum and maximum bias

5Tokenizer available at https://beta.openai.com/tokenizer
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values at 1 and 3, respectively, to ensure effective guidance without extreme behavior. Figure 5.2

provides an overview of this process with sample values.

( List.cons
)

[7, 7343, 13,
5693, 1267]

7 → 24966

7343 → 10538

7 → 3.000

7343 → 1.904Token Frequency Database

tokenize

compute

frequency

normalize

& scale

Figure 5.2: Bias computation for one OCaml LSP suggestion.

We experiment with bias values by comparing the Choose strategy with and without bias.

In the Choose strategy with bias, we exclude suggestions from the textual prompt since their

influence is already provided through bias values, as we show in the following example:

1 Consider the following OCaml program:
2

3 let rec add_list lst = match lst with
4 | [] -> <mask>
5 | fst :: rest -> fst + (add_list rest)
6

7 What should replace <mask>?
8

9 Answer:

5.3.4 Test Cases

Mentat allows including test cases when repairing a program. This additional information en-

hances the system’s performance by narrowing the error search space and tightening the type

constraints for the function under examination. To illustrate, recall Program 5.1, which contains

two potential errors. Now, let’s add a test case into this program.
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1 let rec add_list lst = match lst with
2 | [] -> []
3 | fst :: rest -> fst + (add_list rest)
4

5 Test case: add_list [1;2;3] = 6

The newly added test case locks function add_list to specifically receive a list of integers

and output a single integer. Because of this, the function now only has one possible source of

error, which is the empty list ( [] ) in line 2. Previously, it was also considered that the plus

operator ( + ) could be a source of error, but with the additional restrictions imposed by the test

case, this is no longer possible.

Adding at least one test case to the framework also helps classify GPT-3’s generations. After

repairing a program, we can use the test case to check for type consistency and verify if it now

passes the tests. For instance, in the case of this program, the correct fix would be to replace

the empty list (‘[]‘) with the number 0, but substituting it with any other integer would still pass

the type-check, although it might produce incorrect results during testing.

5.4 Tool

To validate our approach, we implemented it as a publicly available tool called Mentat 6. This

tool, written in OCaml, can analyze OCaml programs and is accessible via the command line.

Users can specify:

• the file containing the OCaml program to analyze;

• the repair strategy by issuing the corresponding flag;

• optionally, one or more test cases that should be satisfied.

Depending on the repair strategy selected by the user, Mentat interacts with GPT-3 by call-

ing the relevant function and setting appropriate parameters. Interaction with OpenAI’s GPT-3

like models requires an internet connection to use the API. Mentat handles these requests and

processes the responses to generate potential fixes for type errors. The resulting programs are

saved for further offline analysis, including whether they compile successfully and pass provided

test cases if available. Installation and usage instructions are provided in the tool’s repository.

6https://gitlab.com/FranciscoRibeiro/mentat
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5.5 Experiments

We benchmark the effectiveness of our tool by running it against several OCaml programs contain-

ing type errors. For this, we run each strategy 3 times for each program, and record the results.

All the examples and necessary resources to replicate the experiments are publicly available6.

5.5.1 Simple Programs

This set includes 15 ill-typed programs sourced from an introductory OCaml class at a Japanese

University and the type-error slicer Skalpel (Rahli et al., 2017), and previously used in a type-error

debugger (Tsushima et al., 2019). These programs are simple, with issues like returning empty

lists instead of sums, confusion between Float and Int, and using values when singleton lists

were expected. They range from 29 to 117 tokens and consist of 2 to 8 lines of code. One could

argue that simple programs are easier to fix because they are simple, or harder to fix due to the

limited contextual information available.

For the text and code models used in the experiments, we use the default parameters

(temperature of 0.7 for text and 0 for code, and top_p value of 1 for both). These settings

were found to be the most suitable through extensive testing.

We present the experiment results in Table 5.1. Each test program was processed 3 times

to measure successful patch generation, ensuring it passed at least one test case. We employed

different repair strategies with models optimized for text (T columns) and code (C columns). The

C + Bias column includes additional experiments detailed in Section 5.3.3. The rightmost column

represents results without language models, measuring how many suggestions enabled program

compilation and passed a test case. For example, program S2 was exclusively repaired by the

code variant of the Fill strategy, with 10 successful repair suggestions that passed the test case.

Further refinement may be possible by using different or additional test cases. In each column,

we calculate two success rates: %Repair, indicating partial success (yellow or green), and %Test,

indicating total success (treating yellow results as failures).

Each cell of the table is coloured red, yellow, or green. Red cells denote a total failure

of patch generation, green cells denote the generation of the correct patch, and yellow cells

denote partial success. Examples of patches that are categorized yellow include generating the
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Table 5.1: Automatic repair results for 15 simple test programs.

Fill Choose Instruct
Test

Prog. T C T C
C +

Bias
T C

No

GPT-3

S1 3 3 3 3 3 3 3 3

S2 0 3 0 0 0 0 0 10

S3 3 3 0 0 3 3 3 3

S4 3 3 0 0 0 2 3 0

S5 3 3 0 0 3 3 3 2

S6 3 3 3 3 0 3 3 3

S7 3 3 0 3 3 0 0 0

S8 3 0 3 3 3 3 3 1

S9 3 3 3 3 0 0 0 1

S10 3 0 3 3 0 0 0 1

S11 3 3 0 0 3 3 3 0

S12 0 3 3 0 3 2 3 0

S13 3 3 3 3 3 0 0 1

S14 3 3 3 3 3 0 0 2

S15 3 3 3 3 3 3 3 1

%Repair 87% 87% 60% 60% 66% 56% 60% –

%Test 53% 60% 47% 47% 40% 49% 53% –
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incorrect arithmetic operator (such as generating a minus sign when a plus sign is expected, or

not generating the correct constant value when one is expected) - in some cases, for example

when a constant value is expected, it might be completely impossible to reasonably deduce which

value the developer expects. Such results can be adjusted by using different test cases which

favourably guide the GPT-3 model - for example, if, for a given test case, using a plus sign yields

the same result as using a minus sign, perhaps changing the test case will make the usage of a

different operator yield a different result. Nevertheless, we decided to not fine-tune the test cases

to maximize result quality, as that is not always realistic.

The results showcased in Table 5.1 point towards the Fill strategy being the most efficient

for automatic generation of patches. Most notably, all modes have a %Repair success rate above

50% and a %Test success rate above 40%, and all test programs were successfully repaired

by at least one of the repair strategies. This fact points towards the combination of strategies

being a robust approach to leverage the strengths of each other. We also denote that most cells

contain the values 3 or 0, with rare occurrences of 2, which implies that the model tends towards

the same results in different iterations. For this, we have experimented with different values of

the parameters we supply to the model, focusing mainly on the temperature as it should change

its randomness. Nevertheless, the results were not noticeably better, generally leading to lower

overall success rate.

We observe that the usage of bias with the Choose operation mode yields relatively similar

results in terms of success rates for these problems. The main difference when using bias lies

in the fact that some programs that were not repaired with the previous approach are now able

to be repaired and vice-versa. For this set of programs, we conclude that the usage of bias does

not improve the results significantly, but it is capable of generating solutions complementary to

the ones generated by the original Choose repair strategy.

5.5.2 Dijkstra Algorithm

In this set, we have longer and more complex programs for the Dijkstra algorithm (shortest path

algorithm), each with around 2,300 tokens and 170 lines of code. Deliberate errors were added

to make the repairs more challenging. We followed the same methodology as in Section 5.5.1

for the results.
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Table 5.2: Automatic repair results for 10 Dijkstra programs.

Fill Choose Instruct
Test

Prog. T C T C
C +

Bias
T C

No

GPT-3

D1 3 3 0 3 3 0 0 0

D2 1 3 0 0 0 0 0 0

D3 1 3 0 0 2 2 3 0

D4 3 3 3 3 0 1 3 1

D5 2 3 0 3 3 2 3 1

D6 3 3 0 0 0 0 0 0

D7 3 3 3 1 3 3 3 1

D8 3 3 0 0 3 3 3 0

D9 3 3 3 3 0 3 3 0

D10 3 3 0 0 3 0 0 0

%Repair 83% 100% 30% 43% 57% 47% 60% –

%Test 83% 100% 20% 23% 20% 47% 60% –

Table 5.2 summarizes the results for this program set. Like in the previous set (5.5.1), Fill

remains the most effective strategy with an 83% repair rate for the text model and 100% for the

code model. Despite the increased program complexity, Fill performed better, with a higher rate

of programs passing the provided test cases. Conversely, the other strategies, Choose, Instruct,

and No GPT-3, were less effective with this program set. Indeed, depending on the considered

repair strategy, the discrepancies across the different sets of programs move in opposite ways.

Increased program complexity may have improved Fill’s performance by providing more context

for the model, while negatively affecting the other strategies, which seem more suited for shorter

and simpler repairs.

Compared to the simpler programs in the previous section, the type errors in this set usually

need more elaborate repairs. As an example, consider the ill-typed excerpt from a program

contained in these experiments and its intended repair:

1 let rec search tree k = match tree with
2 Empty -> raise Not_found
3 | Node (left, key, value, right) ->
4 if k = key then value
5 else if k < key then left (* intended: search left k *)
6 else search right k

Instead of left, the intended expression is search left k. These repairs need an aggre-

gation of several terms, which is impossible to obtain with suggestions from the language server.
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Essentially, this severely hinders the Choose and No GPT-3 modes, as they heavily rely on that

list of code completions. The Instruct mode correctly infers the corresponding hole’s type to be

(string * float) list7 but is unable to generate the call search left k and produces the empty

list instead, which, nonetheless, produces a correctly typed program. From these experiments,

we take that Fill works best for longer programs, as the pure context of the code seems to be

enough and better allows GPT-3 to understand and reason about the program at hand. Extra

analysis of the source code prior to providing the programs to GPT-3 is more helpful for smaller

programs, in which naturally occurring context lacks. This is evidenced by programs S4, S5,

S8, S9, S10 and S13, for which Fill presented incorrect or only partially correct results, while

Choose, Instruct or No GPT-3 were able to generate intended outcomes. This did not occur for

the Dijkstra programs, as Fill showed that it could match the effectiveness of the other strategies

for each case.

5.5.3 Large Scale Evaluation

We also conducted a large-scale evaluation of our approach. We analyzed a repository of 4,500

OCaml programs, which had already been created as part of Rite (Sakkas et al., 2020). We

provide detailed analysis of the results obtained from this evaluation, such as the total repair

rate, the number of partially fixed programs and the distribution of effectiveness of the three repair

strategies. Through this evaluation, we aim to demonstrate our tool’s applicability in real-world

scenarios and potential to improve the quality and reliability of large-scale software systems.

Pre-Processing the Data

To ensure a comprehensive and accurate evaluation of our tool, we applied a filtering process to

the original dataset obtained from the Rite project. Specifically, we filtered out bugs that required

modifications in multiple and disjointed places in the code, as the current version of our tool

considers single expression bugs, only. Furthermore, we only considered bugs for which the

original fixed version could properly execute for all test cases generated by the OCaml property-

based testing tool Quickcheck (Claessen and Hughes, 2000). Proper execution was defined as

the absence of errors or timeouts for any given input. This was necessary to ensure that the bugs

7Actually, the function is polymorphic, but the test case requires a more specialized type, which is what we get

thanks to inlining.
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were genuine and that any improvements observed in our evaluation were a result of our tool’s

impact, rather than external factors such as faulty test cases or unreliable program behavior.

After applying these filters, we evaluated a set of 1,318 bugs.

Validating the Generated Patches

To validate the effectiveness of our tool in repairing bugs, we used Quickcheck to generate a

random, large number of test cases. Moreover, we define properties to assert that the human-

fixed program is ”equivalent” to the repaired one. Thus, for each bug, we generated a set of

patches and automatically instantiated a corresponding Quickcheck property. This is expressed

according to the following template:

1 let%test_unit "testName" =
2 Quickcheck.test
3 [%quickcheck.generator: <input_signature>]
4 ~f:(fun args ->
5 [%test_eq: <output_signature>]
6 (Fix.functionToTest args) (Gen.functionToTest args))

To generate a property for the faulty program being repaired, we consider the faulty function’s

signature. The input part of the signature (line 3) is used to implement a generator for the input

values that will be tested. The output part (line 5) is used to tell Quickcheck the type of the

output values to compare. Line 6 represents the property that should be verified and means that

the result of the original fixed program should be equal to the result of the patch being tested.

The number of arguments needs to be adjusted according to the function being tested and, as

such, args is modified to reflect that. By default, the generator produces 10,000 inputs. If the

property holds, the patch is considered equivalent to the fixed version.

A bug is considered to be repaired if at least one of the generated patches produced the

same output as the original fixed version for all input combinations generated by Quickcheck.

By automating the instantiation of this property for every considered bug, we were able to ac-

curately validate the effectiveness of our tool in repairing bugs. This approach also allowed us

to provide quantitative metrics on the performance of our tool, such as the percentage of bugs

repaired and the degree to which some bugs are partially fixed — Figures 5.3 and 5.4. This au-

tomated validation process is crucial given the amount of data at this stage. Furthermore, it also

provides some insight into how it could be incorporated in real-world use cases. To the best of
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Figure 5.3: #Programs that pass at least a given percentage of tests. For example, 629

programs pass at least 50% of tests.

our knowledge, it is uncommon to provide a fully automatic validation process to verify whether

generated patches successfully fix buggy programs. Our approach has the flexibility of allowing

patches equivalent to the intended fix, without relying on human intervention to manually inspect

the generated patches.

Results and Discussion

Our approach successfully repaired a substantial portion of the dataset. Among the 1,318 bugs

evaluated, our tool repaired 516 of them, achieving a repair rate of 39.2%. We found that 441

of the programs were partially fixed, indicating that the generated patches were able to address

some but not all of the identified issues in the program, representing a 33.5% partial repair rate.

The consideration of partial fixes provides a more nuanced understanding of the capabilities of

our technique. Rather than simply categorizing a program as either fixed or not fixed, partial fixes

enable us to explore the ground that separates a completely fixed program from a program that

remains broken. Thus, we can form an idea of how the partial fixes are distributed along that

spectrum. Out of the 361 programs that remained unfixed, we found that 247 of them produced

some error during testing and the testing process did not finish. Additionally, 73 of the unfixed

programs were due to our technique being unable to generate any patch for the identified bugs.

Interestingly, we also found that 41 of the unfixed programs actually failed every test produced by

Quickcheck, indicating that the bugs in these programs were particularly challenging to address.

Different tool modes exhibit varying degrees of repair effectiveness, as shown in Figure 5.5.

The Fill strategy is themost effective, being responsible for fixing 394 out of the total 516 programs

(76.4%). The Instruct strategy was also found to be effective, repairing 224 programs (43.4%).

On the other hand, the Choose strategy is the least effective, with 108 fixed programs (20.9%).
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Figure 5.4: Distribution of test passing rate of programs. For example, 208 programs pass

between 25% and 50% of tests.

Figure 5.5: How many programs each mode successfully repairs. Intersections mean that a

program is repaired correctly by both modes. There are 34 programs that can be repaired by

both the Choose mode or the Fill mode.
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It is worth noting that some programs were repaired by multiple strategies, and in some cases,

the same program was repaired by all three strategies. Specifically, there were 108 (20.9%)

programs that were fixed by both Fill and Instruct, while 34 (6.6%) programs were fixed by both

Fill and Choose, and 20 (3.9%) programs were fixed by both Choose and Instruct. Additionally,

there were 24 (4.7%) programs that were repaired by all three strategies.

Limitations

Our automated validation strategy excludes functions relying on user-defined data types, as it

needs manually defined specific generators. This limitation reduces the number of programs we

analyze, as discussed in Section 5.5.3. Moreover, we assume total functions, meaning that we

consider every possible input for a given type, resulting in a more pessimistic repair validation.

For instance, if a function has an integer as argument and is designed to work only with positive

numbers, our fully automated approach will still test it with negative numbers (as produced by

the predefined generator of integer numbers) reporting it as a non repaired function.8

Let us consider the OCaml implementation for factorial:

1 (* int -> int *)
2 let rec factorial n =
3 if n = 0 then 1
4 else n * factorial (n - 1)

The provided implementation is the usual recursive definition for factorial. Note this is a

partial function as it is only defined for positive values of the input n. If n is a negative number,

factorial will indefinitely call itself causing a stack overflow error. Now, let us consider that this

implementation of factorial results from a repair process, either generated by Mentat or another

tool. When we validate such repair with our automated validation approach, we use Quickcheck

to automatically generate inputs for this function. In this case, the predefined generator for int

will produce both positive and negative values. Although the repaired factorial function is correct,

our validation will fail due to timeout as soon as it is called with a negative number.

8Generators for positive integers and user-defined types can be implemented. However, this would break our

goal of a fully automated process.
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5.5.4 Comparative Study

We performed a comparative study of our technique for automated program repair of ill-typed

OCaml programs. We utilized the results provided in Rite’s (Sakkas et al., 2020) repository for

both their tool and Seminal to validate the efficacy of our fully automated validation strategy. In

section 5.5.3, we acknowledge the demanding and pessimistic nature of our testing strategy by

highlighting its consideration of total functions, encompassing every possible input for any given

type. This ignores any restriction on the set of valid inputs. A manual validation process, similar

to that employed by Rite, has the potential to increase the success rate for both our approach and

the others. This kind of manual validation allows for a more sensitive consideration of program

characteristics that may be overlooked by a more automated validation method. That is, some

expected usage patterns may be better captured by a human evaluator with a more subjective

evaluation criteria. An example is judging a function’s implementation and considering it has

been designed to only work with positive numbers, even though the type system may only reflect

the function operates on type int. However, such manual validation would imply extensive manual

effort and is infeasible for the size of this dataset.

We compare our approach with two other tools, namely Rite and Seminal, in terms of their

repair capabilities on a common dataset. Although the three tools used a common dataset as an

underlying basis, each work applied its own pre-processing criteria to prepare the dataset. As a

consequence, in this comparative study, our original dataset of 1,318 bugs was filtered down to

591 bugs, which were common to all three approaches. Figure 5.6 shows the distribution of the

bugs and how they intersect among Mentat, Rite and Seminal.

Our technique achieved a repair rate of 37.6% (222 out of 591 programs). It employs a fully

automated analysis that considers a program fixed only if it becomes well-typed and passes all

test cases. Our repair process leverages GPT-3, a powerful large language model, to generate

patches for identified type errors. This eliminates the need for a comprehensive system and

language-specific components due to GPT-3’s extensive training on multiple languages.

Originally, Rite conducted a manual validation through a user study with 29 programmers in

which a set of 21 buggy programs was selected and each participant was shown 10 randomly

selected buggy programs alongside two candidate repairs, one generated by Rite and one by

Seminal. A full validation of the entire dataset was not reported. To achieve this, we used our
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Figure 5.6: #Programs used in each repair technique and intersections.

Figure 5.7: Number of programs that pass at least a given percentage of tests - comparative

study.

automated validation framework to verify which Rite and Seminal generated patches were able

to pass all test cases produced by Quickcheck.

This way, we were able to evaluate the performance of Rite and Seminal on the same dataset.

Rite repaired 198 programs out of 591 (33.5% repair rate), while Seminal repaired only 46

programs (7.8% repair rate). These results highlight the superior effectiveness of our technique

over the existing state-of-the-art tools for automated program repair in the context of type errors

in OCaml programs. Figure 5.7 shows the repair effectiveness of the three tools.

One noteworthy advantage of our approach is its language-agnostic nature. Our technique

can be easily adapted to repair programs in other languages, as long as it is possible to statically

determine the types of terms either through inference or annotations, and the ability to bypass

the type system exists (e.g., Obj.magic for OCaml or undefined for Haskell). Furthermore,

the reliance on LLM’s, such as GPT-3, for generating patches liberates us from building language-
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specific generation systems for each case. By leveraging these prerequisites, our approach can

be successfully applied to a wide range of programming languages.

We conclude that Mentat outperforms both Rite and Seminal in repairing type errors on a

common dataset of OCaml programs. Our fully automated approach eliminates the need for

user studies to validate patch relevance and ensures that the resulting programs are not only

well-typed but also pass all the provided test cases.

Our results provide the following four insights: First, Mentat surpasses both Rite and Seminal

in terms of effective program repair, i.e. patches are well-typed and are equivalent to the intended

fixed version; Second, we thoroughly validated Rite’s repairs, whereas their paper only validates

21 repairs with user involvement; Third, although Rite reports over 80% success in type repair,

we show that the percentage of repairs passing the tests is 33.5%, which is significantly lower and

highlights the potential for misleading results9; Fourth, our fully automated validation approach

enabled us to validate other works that previously relied on manual analysis of a very limited

subset of programs.

5.6 Related Work

Type error debugging research has a rich history spanning over 30 years, evolving from enhancing

error messages (Damas and Milner, 1982; Wand, 1986; Lee and Yi, 1998) to interactive debug-

ging tools (Chitil, 2001; Tsushima and Asai, 2013; Chen and Erwig, 2014a,b), and automated

approaches that narrow down error causes (Haack and Wells, 2004; Rahli et al., 2017; Stuckey

et al., 2003, 2004; Schilling, 2012). These methods aim to pinpoint errors and require user

intervention for correction. On the other hand, automatic correction of type errors is a nascent

field; Seminal (Lerner et al., 2007) is, to our knowledge, the first system for automatic correction

of type errors in functional programming languages. It removes parts of the ill-typed program

and attempts to make syntactic changes. This corresponds to Fill in our study: they used a

syntactic modification to fill, and we used GPT-3. Rite (Sakkas et al., 2020) aims for program

repair of ill-typed programs too. From a corpus of 4,500 ill-typed OCaml programs, it uses ap-

proximately half of the dataset to build a neural network that learns what modifications have been

made to, ultimately, synthesize solutions for given ill-typed programs. Our tool, Mentat performs

9This also contradicts the (informal) usual saying in functional programming: if it type checks, then it is correct.
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source code analysis to produce useful prompts that leverage GPT-3’s language understanding

and generation capabilities to generate potential patches. While Mentat, Rite and Seminal share

a common objective of fixing ill-typed OCaml programs, they diverge in their validation method-

ologies. Rite relies on a manual analysis of 21 randomly selected programs from the repository

by a limited number of programmers, whereas our technique employs a fully automated process

to validate the generated repairs. This distinction allows our technique to perform validation on a

larger scale, effectively addressing the challenges associated with manual validation processes.

The definition of a fixed program in Rite is based on the ability of the generated program to type-

check correctly. In contrast, our work validates both typechecking and semantical equivalence

of the generated repairs. To achieve this, our technique employs a methodology that generates

and executes test cases for both the correct program and the generated repairs. It considers a

program to be fully repaired only if the correct program and the repaired version produce identical

outputs for all test cases. This crucial difference allowed us to verify that a pure type repair can

fall short of being an effective repair. We demonstrated that Rite’s reported +80% type repair

rate is comparatively lower in terms of actual program repair, i.e. the generated repair satisfies

the test cases 33.5% of times. As we mentioned in Section 5.5.3, this is based on a pessimistic

view that a patch must pass all test cases. Indeed, a manual analysis may reveal that more of

the generated patches are semantically equivalent to the intended program, potentially improving

our results as well as those of Rite and Seminal.

DeepTyper (Hellendoorn et al., 2018) enhances type information for compilation using deep

learning in Python and JavaScript. However, it lacks program repair capabilities. Our work utilizes

OCaml’s type inference for source code analysis and prompt preparation. DeepTyper could be

beneficial when extending our approach to other programming languages.

Fault localization (Ang et al., 2017; Pearson et al., 2017) is an initial debugging step (Parnin

and Orso, 2011). Various methods, including execution trace analysis (Campos et al., 2012),

mutation testing (Moon et al., 2014), qualitative reasoning (Perez and Abreu, 2018), and seman-

tic fault identification (Ribeiro et al., 2021), help narrow down suspicious code elements. Models

like code2vec (Alon et al., 2019) have been trained to specifically detect security vulnerabilities

(Coimbra et al., 2021). Our work concentrates on type errors and uses OCaml’s type inference

to identify potentially responsible expressions by transforming them into different types.

APR is a prominent research field. Early approaches use genetic programming (Arcuri, 2011;
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Le Goues et al., 2012b), while others employ constraint-based methods (Durieux and Monperrus,

2016; Nguyen et al., 2013; Xuan et al., 2017). Recent advancements incorporate machine

learning and neural machine translation techniques (Chen et al., 2021; Li et al., 2020; Lutellier

et al., 2020). However, translating buggy code to fixed code has limitations (Ding et al., 2021) and

general-purpose models supporting code understanding and generation tasks (Feng et al., 2020;

Lu et al., 2021; Svyatkovskiy et al., 2020; Alon et al., 2019) started being considered. GPT-2’s

code completion effectively fixes Java bugs (Ribeiro et al., 2022), and Codex has repaired Python

and Java programs (Prenner et al., 2022). Our work stands out for targeting type errors in OCaml,

which prevent program compilation, unlike other research focused on functional bugs.

5.7 Summary

This chapter introduced a method to automatically fix type errors in OCaml programs using GPT-

3. We achieve this by analyzing and modifying the faulty source code to create prompts for

GPT-3-based models.

We developed the Mentat tool, initially validating it with simple programs and variations of

the Dijkstra algorithm. In large-scale experiments involving 1,318 buggy programs, we achieved

a 39% repair rate using a novel automated patch validation approach. In comparison with two

other OCaml program repair tools, Mentat outperformed them, achieving a 37.6% repair rate

on a shared dataset of 591 programs, while the other tools achieved rates of 33.5% and 7.8%,

respectively.

Replication Package

The necessary resources to replicate this study are publicly available:

• Tool: gitlab.com/FranciscoRibeiro/mentat

• Artifact (Ribeiro et al., 2023b): doi.org/10.6084/m9.figshare.23646903.v2
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6Conclusions

Throughout this thesis, we have examined how the absence of integrated context in fault localiza-

tion (FL) and automated program repair (APR) techniques hinders them, thus limiting their full ef-

fectiveness. Our discussions illuminated shortcomings within existing approaches and proposed

techniques to address these issues. At the core of our efforts was the aspiration to incorporate

context into these domains and create a synergy with LLMs. Ultimately, we were motivated to

answer the question (cf. Section 1.5):

Main Question

How can we incorporate LLMs into APR by combining context from source code and FL?

This question prompted us to break down our efforts into four peripheral questions — out-

lined in Section 1.5. Each of these focused on different aspects, making the exploration of the

overarching problem more approachable, understandable, and effective. As we conclude, we will

summarize the work done in each peripheral question’s corresponding chapters, highlight the

key contributions of this thesis, and suggest future research directions.

6.1 Peripheral Questions

Research Question 1

Can we describe a program’s evolution using mutation operators? (Chapter 3)

At its core, this question delves into an exploration in which we aim to provide insights into

the reasons behind program faults, transitioning the emphasis from ”where” to ”why.” This shift

was prompted as a step towards a more comprehensive understanding of a program’s evolution.

Leveraging the concept of mutation operators from mutation testing, we apply them differently by

exploring the inference of these operators from AST transformations. This addresses limitations
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posed by textual diffs. The AST highlights a program’s structure and content, and enables a

detailed understanding of changes through additions, deletions, updates, or node movements.

This provides valuable information related to the source code’s context. In contrast, detecting

textual-level changes during a file’s evolution primarily considers insertions and deletions.

Thus, we developed Morpheus, a tool linking source code changes to mutation operators. Our

algorithm, involving partitioning and matching, infers mutation operators from AST transforma-

tions. This process is comparable to type inference systems, where transformations (expressions)

seek association with mutation operators (types), relying on detected properties (type rules). Our

results show that this is a sound approach, as we were able to infer mutation operators for 78%

of the 1496 valid mutants in CodeDefenders and that 10% of these are higher-order mutants (Jia

and Harman, 2009).

Research Question 2

Does the information about inferred mutations benefit APR? (Chapter 3)

For this question, our primary concern centered around utilizing the semantics of a bug

to guide the repair process. The previous question paved the way to translating bug-inducing

changes into mutation operators. We now wish to inform a repair strategy about this. The

implementation of this repair strategy comprises three key steps. First, interpreting the report by

Morpheus to create components linking inferred mutations to their location in the source code.

Second, isolating tree nodes representing source code elements in specific locations. Third,

applying the opposed mutation operator to generate patches.

Naturally, we implemented a repair tool based on those steps. Additionally, we conducted

an in-depth examination of various case studies drawn from real-world projects in Bugswarm

and Defects4J. This analysis highlighted the advantages of our approach in the context of APR.

Namely, it outperforms SFL by detecting mutants more efficiently and more effectively, especially

in pinpointing faults inside a faulty line. As it does not rely on program execution traces, it can

analyze a wider range of programs. Also, it ensures reachability across a program’s history as it

does not need failing tests. Finally, it provides finer granularity than typical SFL components.

Research Question 3

Can LLM-generated code evolve and fix faulty programs? (Chapter 4)
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This question emerged from recent advancements in the development of DL-based pre-

trained language models designed for code understanding and code generation. These mod-

els are typically created without a specific downstream task in mind. Our proposal is based on

harnessing these models’ capabilities and use them for APR. A key insight was recognizing the

complexity in generating fixed versions, irrespective of bug location awareness. These intricacies

often demand prior knowledge, challenging traditional APR techniques relying on rigid patterns.

LLMs, with their extensive code learning, offer more adaptability and understanding, capturing

diverse coding styles and contextual cues. Our inspiration stems from the core concept of code

completion, crafted to support developers during code development. In this context, developers

place the cursor where they seek relevant completions. Hence, we approached the repair task as

a code completion challenge, employing the assistance of CodeGPT, a code generation model.

To address this problem, we presented an automated repair technique that, given a buggy

file and line number, generates candidate patch lines using a truncation algorithm. We devised

a truncation algorithm that computes appropriate column numbers based on textual boundaries

of language constructs and naming conventions. Additionally, we leverage CodeGPT for code

completion in a multi-step process involving cutting, code generation, bounding, and character

synchronization. This involves parsing the buggy code, generating multiple token sequences,

constraining based on relevant syntax characters, and aligning characters for potential patches.

Our approach, validated on the ManySStuBs4J dataset, achieved a 27% repair rate, fixing 1739

out of 6415 programs, which we consider affirms the efficacy and robustness of our methodology.

Research Question 4

Can integrating type system information into LLM interaction fix type errors? (Chapter 5)

Let us first make an observation: current type systems, despite identifying type inconsisten-

cies, often struggle to pinpoint the exact location and reasons behind these errors. This limitation

fuels our motivation to explore a less conventional approach: seeking automated repairs as a

means to not only fix type inconsistencies but also uncover and comprehend the underlying type

errors. With this in mind, our OCaml program repair approach utilizes GPT-3 to address type

inconsistencies. Leveraging a function we call typecast, we identify expressions causing type

errors in a three-step process: Type Error Location, Inlining, and Type Unification. The foun-

dation of our strategy lies in a specialized function, typecast, which manipulates the compiler’s
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interpretation of expressions. This enables us to bypass the type system, a critical aspect of

our approach. Type error location marks problematic expressions, inlining associates function

usage with context for the type system, and type unification filters completion suggestions for

typed holes, unifying them with flagged expressions. Additionally, we automatically confirm the

success of repairs by employing Quickcheck to validate that the generated patches yield identical

output to the user-intended fixed version.

Our approach achieved a commendable 39.2% repair rate across 1,318 evaluated bugs. Out

of the repaired programs, 516 were fully fixed, and 441 received partial fixes, providing insights

into our technique’s effectiveness. Analyzing programs for which some degree of repairability

was achieved, but not full, enables a spectrum of insights, along with a more comprehensive

understanding of the repair process beyond a binary categorization of fixed or unfixed. Moreover,

among the 361 unfixed programs, 247 encountered errors during testing, 73 remained unfixed

due to patch generation challenges, and 41 presented notably challenging issues, failing every

test from Quickcheck.

In a comparative analysis with Rite and Seminal on a shared dataset, our approach achieved

a superior repair rate of 37.6% (222 out of 591 programs), outperforming Rite (33.5%) and Sem-

inal (7.8%). Notably, our method excelled in effective program repair, ensuring well-typed and

equivalent patches. Additionally, we conducted thorough validations of Rite’s repairs, revealing

discrepancies in their reported success rates and emphasizing the potential for misleading out-

comes. Our fully automated validation approach allowed us to scrutinize a broader range of

programs compared to previous works reliant on manual analysis of limited subsets.

6.2 Summary of Contributions

The main contributions of this thesis are the following:

• An inference technique that translates source code changes to mutation operators. The

approach, implemented as the Morpheus tool, demonstrates soundness by successfully

inferring mutation operators for a significant portion of valid mutants. Additionally, the

analysis extends to real-world projects, showcasing the benefits of our approach regarding

APR.

• A program repair technique, treating the repair task as code completion. For a specified file
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and line, it computes adequate column numbers and then uses CodeGPT to generate code.

Effort is placed on restricting generated code sequences to maintain syntactic harmony

with the original program, ensuring seamless integration. The validation phase on real-

world open-source projects demonstrated the technique’s effectiveness.

• A method, Mentat, utilizing GPT-3 to address OCaml type inconsistencies. A specialized

function enables us to bypass the type system, with a multi-step process identifying, as-

sociating, and unifying ill-typed expressions. We use Quickcheck for fully automatic patch

validation. Validation revealed the technique is effective and outperforms existing state of

the art approaches.

6.3 Recommendations for Future Research

Building on the insights shared in this thesis, we consider there are several interesting questions

that can be explored. These inquiries not only address existing limitations but also chart a course

for continuing investigations. As such, we suggest some ideas for future research:

In Chapter 3, the objective was to diverge from SFL’s emphasis on ”where” faults occur,

aiming instead to offer contextual insights into the ”why” of fault occurrences. This shift provides

a more comprehensive understanding of fault origins and underscores the significant impact that

inferred information can have on the effectiveness of program repair. This path can be expanded

in several ways:

• Repair Granularity Firstly, the application of multiple mutations, either through their

compounding to construct more intricate expressions or their discrete application at sep-

arate locations to address independent modifications, presents a compelling direction.

Additionally, considering broader contextual information for repair, with the aim of imple-

menting different repair strategies, like those based on Q-SFL’s landmarks, holds potential

for more nuanced and effective patching.

• Context Customization Furthermore, delving into the inference of patterns beyond

documented ones, potentially reporting unnamed patterns when detected, could enrich

both the comprehensibility of fault localization and the repertoire of repair strategies.

Lastly, the parameterization of repair techniques to receive specific operators to apply,

opens up the possibility for more customizable and targeted repair approaches, which
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can unlock certain scenarios and broaden the approach’s impact.

Our primary focus in Chapter 4 was evaluating the effectiveness of directly applying LLMs for

APR, treating it as a code completion task. To achieve this, we developed a truncation algorithm

that calculates column numbers, leveraging CodeGPT to execute code completion.

• Precise and Efficient Patch Generation A pivotal aim is to enhance the precision

and efficiency of generated patches. To achieve this, focus should shift towards minimiz-

ing the number of syntactically incorrect patches through a meticulous consideration of

structural aspects within the program. Specifically, delving into the examination of AST

node types in the generated code becomes imperative, ensuring seamless integration of

expressions into the original program and thereby filtering out erroneous patches.

• Sampling Impact Additionally, an exploration into the impact of different sampling tech-

niques on code generation, such as top-k and nucleus sampling, is warranted. Given the

observed disparities in probability distributions between decoded text and human-written

text, as highlighted by (Holtzman et al., 2020), investigating the generalizability of these

findings to programming languages emerges as an intriguing avenue for further explo-

ration.

The work in Chapter 5 introduced an approach that leverages the capabilities of GPT-3 models

to automatically address type errors in OCaml programs. The method synergistically analyzed

source code and harnessed the power of type systems to generate targeted prompts, contributing

to automated resolutions of OCaml type errors.

• Authentic Scenario Coverage Our evaluation primarily focused on the analysis of

real-world programs created by students for a functional programming course. However,

we acknowledge that, despite being representative of a real-world scenario—learning the

language, going through the course exercises — effectively capturing the reported difficul-

ties students face when dealing with type errors, these programs may not entirely encom-

pass the complexity of production-ready applications. As such, a pragmatic expansion of

our approach involves the application of our type error repair methodology to real-world

open-source projects in OCaml. Given the intricate nature of collecting and setting up

these projects, which demands significant time and resources, addressing this practical

challenge could bolster the applicability of APR methodologies in authentic development

scenarios.
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• Reproducibility At the time of the work in Chapter 5, achieving fully reproducible results

was challenging due to the inherent non-deterministic nature of completions through Ope-

nAI’s API. This resulted in potential variations in model outputs from request to request.

Despite these challenges, we meticulously addressed all available concerns, ensuring con-

sistency in parameters such as prompt, top-p, and temperature across requests. Notably,

OpenAI has since introduced enhanced control over deterministic outputs by providing

access to the seed parameter and the system_fingerprint response field.

• Multiple Models Additionally, considering local, open-source models would also offer

more control over experiments while allowing for extensive comparisons between LLMs.

Certainly, conducting this form of experimentation demands powerful computing resources,

which were not readily available to us at the time. However, overcoming these challenges

opens the door to harnessing the numerous models that have been recently released and

continue to emerge in the field. Furthermore, beyond generative models, there are sev-

eral alternatives worth exploring, such as infilling models like CodeBERT and InCoder,

instruction-following models like Alpaca and the more recent mixture of experts Mixtral

8X7B.

• Dynamically-Typed Languages The challenge posed by addressing type errors in

dynamically-typed languages, like Python, is rooted in their flexible nature. Unlike statically-

typed languages, where variable types are explicitly declared, dynamically-typed languages

allow variables to change types during runtime. This flexibility enhances expressiveness

but introduces ambiguity when errors arise, making it more intricate to pinpoint and re-

solve. Additionally, Python’s reliance on runtime checks and the absence of a strict type-

enforcement mechanism can complicate the identification and correction of type-related

issues, adding another layer of complexity to the debugging process. Therefore, exploring

effective strategies for handling the dynamic context of languages like Python becomes

imperative for robust program repair.

• Multi-Error Type Issues Type systems exhibit limitations in addressing complex sce-

narios where multiple errors contribute to type-related issues. In some cases, a single

type error may have a cascading effect, triggering subsequent errors or inconsistencies

in different parts of the code. Consequently, resolving one type error might not be suffi-

cient to fully rectify the program, as other related errors persist, leaving the overall system

still ill-typed. This arises due to the interconnected nature of type dependencies within a
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program. Fixing one type error might reveal latent errors elsewhere, requiring a holistic

approach to navigate and resolve the web of dependencies. The inherent challenge lies

in the fact that type systems often operate on a per-error basis, potentially overlooking the

broader context of interconnected errors that collectively contribute to the ill-typed nature

of the program. Therefore, addressing multiple fixes in the context of type errors demands

a nuanced exploration that goes beyond isolated solutions.

• Context Specific Moreover, the fine-tuning of models for specific repair contexts, such

as type errors, arithmetic operations, or even for specific languages like OCaml, presents a

tailored and potentially more effective approach. However, this specialization may come at

the cost of losing some level of generalizability. Therefore, the justification for such targeted

measures must be thoroughly assessed, ensuring that the nature of the repair scenarios

warrants the trade-off between specificity and broader applicability. Examples would be

domain-specific application with unique coding patterns or constraints or language-specific

nuances with certain languages possessing distinctive nuances in expressivity, which may

give rise to unique error patterns and idiosyncrasies. Lastly, it is crucial to note that the

pursuit for such highly effective systems may inadvertently lead to the common pitfall of

overfitting, which besides compromising adaptability also results in zero effectiveness.
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