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Abstract

Kochen and Specker developed in the 1960s an alternative to Birkhoff and von Neumann'’s quantum logic
based on partial Boolean algebras, called partial classical propositional logic, which has been recently
revisited in studies of contextuality. Unlike more common quantum logics, in the language of the logic
studied here, a new symbol is added to express a relation of commeasurability or compatibility. Seman-
tically, the binary connectives are partial functions, with the logical value of a connective defined only for
compatible propositions.

This dissertation explores partial algebras, partial Boolean algebras and the concept of validity that
they originate, comparing the notions of validity in this logic with those in classical propositional logic. The
logical calculus of Kochen and Specker, which axiomatizes validity in partial classical propositional logic,
is also studied. The theorems of soundness and completeness are proven, establishing an equivalence

between both ways of characterizing the validity of this logic.

Keywords partial classical propositional logic, partial algebras, partial Boolean algebras, quantum logic



Resumo

Kochen e Specker desenvolveram nos anos 60 uma alternativa a légica quantica de Birkhoff e von Neu-
mann baseada em algebras Booleanas parciais, a logica classica proposicional parcial, recentemente re-
visitada em estudos de contextualidade. Contrariamente as logicas quanticas mais comuns, a linguagem
da logica aqui estudada adiciona-se um novo simbolo, para exprimir uma relacéo de comensurabilidade
ou compatibilidade. A nivel semantico, os conetivos binarios sao funcoes parciais, estando o valor légico
de um conetivo definido apenas para proposicées compativeis.

Nesta dissertacdo estudam-se as algebras parciais, as algebras Booleanas parciais e a nocao de vali-
dade que originam e comparam-se as nocoes de validade desta légica com a nocgao de validade da légica
classica proposicional. Estuda-se também o calculo loégico de Kochen e Specker que axiomatiza a validade
na légica classica proposicional parcial. Demonstram-se os teoremas da correcao e da completude, o que

estabelece uma equivaléncia entre ambas as formas de caracterizar a validade desta logica.

Palavras-chave |ogica classica proposicional parcial, algebras parciais, algebras Booleanas parciais,

l6gica quantica
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Chapter 1

Introduction

The term “quantum logic” first appeared in the book “Mathematische Grundlagen der Quantenmechanik”
(Mathematical Foundations of Quantum Mechanics), released in 1932 by John von Neumann, but only in
1936, in a paper published by Garret Birkhoff and von Neumann, this ideia was fully established, where
a systematic attempt is made to propose a propositional calculus for quantum logic [5]. Approximately a
decade passed before mathematicians and philosophers began showing interest in quantum logic, as this
concept was very difficult to understand solely based on the 1936 Birkhoff and von Neumann paper [5].

There are multiple “quantum logics” that have been studied, with some of the most well known ones
being the orthologic and the orthomodular quantum logic. The algebraic semantics of the orthologic
is based on ortholattices and of the orthomodular quantum logic on orthomodular lattices [4]. For the
purpose of this dissertation, both of these quantum logics will consist of a set of atomic formulas and
of two primitive connectives: — (not) and V (or). The notion of formula of the language is defined in
the expected way (which will be formally defined in the preliminaries) and the connective conjunction is
supposed defined via de Morgan’s law: o A 3 = —(—a VvV —3) [4].!

During the 1960s, Kochen and Specker [9, 8] developed alternatives to the quantum logic proposed
by Birkhoff and von Neumann [3, 4] based on partial Boolean algebras. So, in a general overview, this
dissertation will focus on a specific type of quantum logic, named partial classical propositional logic, be-
cause it operates with a relation of compatibility of sentences. This means that the operations involved
may not always be defined for all formulas, leading to situations where sentence meanings are not nec-
essarily always defined. This logic is termed partial classical propositional logic due to the existence of
certain sentence (from propositional calculus) groupings with defined meanings (compatibilities) exhibiting
classical behavior (this concept will be further explained in the second and third chapters). Consequently,
some classical laws, such as distributivity, violated in more common quantum logics, become logical truths

within this context [4]. This new quantum logic is distinct from the most common ones as those logics pos-

Linthe cited book, the two primitive connectives used were — (not) and A (conjunction). Therefore, via de Morgan's law, we have: aV 3 = =(—aA—f).



sess a language that is closed under logical connectives, ensuring every sentence holds meaning within
the algebraic semantics. The used connectives and the way formulas are constructed is similar to the
ones of orthologic and orthomodular quantum logic. However, in order to construct them, compatibilities
are essential to ensure the meaningfulness of the formulas.

Partial Boolean algebras have been recently revisited in the context of studying contextuality [1], which
is an ingredient associated to the advantages of quantum computing [7]. Their appearance is related to
the need of modelling situations in which the traditional laws of Boolean algebras don't fully apply, that is,
they were developed to handle cases where the principles of classical Boolean algebra are not true. This
new approach generalizes the classical Boolean algebra to include partial information.

In order to fully understand the previous concepts, it is crucial to know the most basic structures
from which these originated. So, it is essential to study partial algebras, which are amongst the primary
mathematical structures implemented, for instance, on computers [2]. Partial functions are being used in
mathematics for a long time, such as partial subtraction for natural numbers, partial division for integers,
partial multiplicative inversion in arbitrary fields, partial recursive functions in computability theory, etc [2].

The impulse to investigate partial algebras was strengthened within the context of the software crisis
in computer science [2]. Simultaneously, computer scientists began to recognize the potency of universal
algebra as a good language and theoretical framework in computer science for dealing, for example,
with abstract data types and with programming languages and their semantics [2]. It was also noted that
numerous structures, perhaps even the majority, in the scope of computer science, are partial. Specifically,
due to the fact that computers are only capable of realizing and processing information of finite parts of
structures (which are usually infinite), almost every implementation of a computer program represents a
partial algebraic structure [2].

So, the research undertaken in this thesis centered on the exploration of partial algebras as well as
partial Boolean algebras and the notion of validity they originate. Additionally, it was investigated the logical
calculus of Kochen and Specker that axiomatizes this notion of validity [4].

This dissertation has the following structure:

The second chapter, titled “Preliminaries”, will present fundamental definitions and theorems which
are going to be useful to demonstrate important results in subsequent chapters.

The third chapter, “Partial algebras”, will elaborate on the nature of partial algebras. Within this con-
text, we will introduce the concept of identity, illustrating certain identities holding in all partial algebras
and contrasting them with those that do not. Introducing the concept of “commeasurability” (or compati-

bility), we will understand its significance as it is crucial to enable operations on the elements in the partial



algebras through specific functions. We will also explore the meaning of polynomials and their domain
within this context.

In the fourth chapter, titled “Partial Boolean algebras”, we will present two ways of approaching partial
Boolean algebras. One of them involves the use of partial algebras and the other one is independently of
them. Within this context, we will explore the meaning of Boolean polynomials and their respective domain,
and understand the relation between the polynomials (of a partial algebra) and the Boolean polynomials
(of a partial Boolean algebra).

In the fifth chapter, “Partial classical propositional logic”, we are going to start by explaining the
meaning of ()-valid formulas and present some examples and counterexamples, and demonstrate a result
involving ()-valid and C-valid formulas. Additionally, through the introduction of a new syntactic system
as well as new definitions in order to understand the concept of a ()-proof of a formula, we will be able to
state and prove the soundness and completeness theorems.

Finally, in the last chapter, we will draw some conclusions of these investigations and outline future

research that could be undertaken in order to complement the existing studies.



Chapter 2

Preliminaries

The following section will be essential to demonstrate and/or understand the theory presented in the next
chapters. Therefore, this chapter will involve classical logic and algebraic concepts and basic results as

well as graph theory.

2.1 Algebra over a field and its properties

For the subsequent definitions, we will be following the book [11].

Definition 2.1.1. Let K be a field and V' be a nonempty set equipped with two binary functions:

+: VXV —V o KxV —V
(r,y) — x+y (a,y) —>aey
We will call the first function addition and the second one scalar multiplication. In order to simplify the
notation, we will denote a e y as ay.
We say that V', along with the two previous operations, is a vector space over the field K if the following

properties are satisfied:
I Forallz,y € V,x +y =y + x (Commutativity of vector addition )
2. Forallz,y,z €V, (z+vy)+ 2z =x+ (y + 2) (Associativity of vector addition)

3. There exists 0 € V such that, forallx € V, 0+ x = x + 0 = x (Identity element of vector
addition)

4. Forallx € V, there exists —x € V such that x + (—x) = —x + x = 0 (Symmetric elements

of vector addition)



5. Foralla,b € K and forallx € V, (a + b)x = ax + bx (Distributivity of scalar multiplication
with respect to field addition)

6. Foralla € K and forall x,y € V, a(x + y) = ax + ay (Distributivity of scalar multiplication

with respect to vector addition)

7. Foralla,b € Kandforallz € V, (a x b)x = a(bx), where the operation X is defined in the

field K (Compatibility of scalar multiplication with field multiplication)

8. Forallx € V, lx = x, where 1 is the multiplicative identity element of the field K (Identity

element of scalar multiplication)
We will denote vectores as x, y and z. Some direct consequences from the previous properties are:
e Forallz € V,0x =0, where0 €c Kand0 € V
e Foralla € K, a0 =0, where 0 € VV/
e Forallz € V, (—1)xr = —z, where —1 € K
e Foralae Kandforallz € V,ifaxr =0,thena =00orxz =0, where 0 e Kand0 € V

Definition 2.1.2. Let V' be a vector space over a field K equipped with an additional operation - defined

fromV x V to V.V is an algebra over K if it is a vector space that satisfies:
L Forallz,y,z€V,(x-y) -z=uaz-(y-z) (Associativity)
2. Forallz,y,z €V, (x+vy)-z=ux-z+y- z (Right distributivity)
3. Forallz,y,z€V,z - (x+y) =2+ z-y (Left distributivity)

4. Forallx,y € V and forall a,b € K, (ax) - (by) = (a x b)(x - y), where x is defined in the
field K (Compatibility with scalars)

A binary operation is bilinear if it satisfies the last three properties.

Observation: Some authors do not consider the associativity property as being part of the definition of

an algebra over a field.

Definition 2.1.3. Lef K be a field. V' is a commutative algebra over K if V' is an algebra over K and

the operation - is commutative, that is,
Forallz,y e V,z-y=1y-x.

5



2.2 Lattices and their properties

Definition 2.2.1. A lattice is a structure (B, V, \) where B is a nonempty set and the operations \/

and N\ are defined from B x B to B and the following properties are satisfied: For all a, b, c € B,
(i) aVa=aAa= a (ldempotency)
(i) aVb=bVaandaNb=>bA a (Commutativity)
(i) (aNb)ANc=aN(bAc)and(aVb)Vec=aV (bVc) (Associativity)
(iv) a A (aVb)=aV (aAb) = a (Absorption)
We call V as supremum and A as infimum.

Definition 2.2.2. [et A be a set and < a binary relation in A. One says that < is a partial order relation

in A if the following properties are satisfied: For all a,b, c € A,
(i) a < a (Reflexivity)
(i) (@ <bandb < a)= a = b (Antisymmetry)
(ii) (@ <bandb < c)= a < c (Transitivity)
We call the pair (A, <) a partially ordered set (poset).

Definition 2.2.3. A lattice (B, V, A\) is distributive iff one of the following properties hold:
Foralla,b,c € B

(i) aN(DVe)=(aAb)V(aAc)
(i) aV (bAc)=(aVb)A(aNec)
Observations: Let us consider a lattice (B, V, A). Forall a,b € B, we have the following statements:
(i) aNb=aiffavVb=0b
(i) The relation < is defined suchthata < biffa Ab=a
(i) <'is a partial order relation and, consequently, we have that (B, <) is a poset

(iv) Let us consider a poset (B, <) such that, for all a,b € B, there exists \/{a, b} and A{a, b},
where \/{a, b} denotes the supremum of {a, b} and A{a,b} denotes the infimum of {a, b}.
Then, (B, <) is a lattice, where \/{a,b} = a vV band A{a,b} = a Ab.

6



2.3 Classical Logic

2.3.1 Boolean algebra and its properties

Definition 2.3.1. A Boolean algebra is a structure B = (B, V,\,—,1,0), where \/ and A are two

binary operations on B, — is a unary operation on B, 1 € B and 0 € B, such that:
(i) (B,V,N\) is a distributive lattice

(i) anO=0andaV1=1,foralla € B (whichis equivalenttoavV 0 = aanda N1 = a,

respectively)
(il aN—-a=0andaV —-a=1,foralla € B
We call the operation — complement and for a € B we say that —a is the complement of a.

Lemma 2.3.2. Let B = (B, V,A,—,1,0) be a Boolean algebra. Then, we have the following proper-
ties: Foralla,b € B,

I =—a=a
2. -0=1and-1=0
3. =(aVb)=-aA-band—(aAb)=-aV -b

It is convenient to rephrase the usual truth-table semantics of classical propositional formulas, defined
so that each connective is seen as an operation acting on the set {0, 1} [13], as a semantics based on

the following specific Boolean algebra:

Definition 2.3.3. Let B = ({0,1},V,A,—,1,0) be a Boolean algebra, where the operations are
defined in the usual way by the truth tables. One calls B the Boolean algebra of truth values. [12]

2.3.2 Propositional Logic

Definition 2.3.4. Letn € N. X, is the set of formulas of the propositional calculus in the variables

x1,- -+, X, and the connectives \VV and —, defined inductively by:
L z;€X%,, forie{l,--- ,n}

2. Ifa € S, then (—a) € Sy,



3 Ifa,p €%, then (aV ) € X,

We will call X to the set of all propositional variables x;, that is, X = {x;: i € N},

The set of all formulas of propositional calculus is > = | 3,..
neN
Observations:

* |n general, parentheses will be omitted in a formula when it does not cause ambiguity.

* The lower case letters of the Greek alphabet «, 3, v and 6 will be used to denote formulas of the

propositional calculus.

Definition 2.3.5. A valuation in a Boolean algebra B = (B, V, A, —, 1,0) is any map v from the set
of propositional variables X to B.

The value of a formula o« € %5, with respect to a valuation v, a(v), is defined by recursion:
(i) T;(v) = v(xy), foralli € N

(i) =a(v) = —a(v), foralla € 3,
(i) oV B(v) =a(v)V B(v), foralla, B € X,

One writes:

* B,v = awhena(v) = 1 in the Boolean algebra B;

* B |= awhen B,v [= a, for all v valuation in the Boolean algebra B.

Definition 2.3.6 (C-validity). LetB be the Boolean algebra of truth values. A propositional formula o

is a tautology in classical logic if B |= .

Theorem 2.3.7. A propositional formula o is C-valid iff B |= «, for all Boolean algebras 15.

Proof. See [6, 12]. O
Notation: Let 5 € X,,. We write 5(ay, - -+ , ;) to denote the simultaneous substitution in 3 of each
formula ; for the corresponding variable x;, for i € {1,--- ,n}.

Theorem 2.3.8 (Principle of substitution for tautologies). Let vy, g, - - -, v, be n formulas of propo-
sitional logic in the variables x1,--- ,x,, n € N, and [ a tautology (in the same n variables). Then,
Blay, g, -+ ay,) is also a tautology in the same n variables.

8



2.4 Graphs and equivalence relations

Definition 2.4.1. A graph G is a structure (G, R), where G is a nonempty set whose elements are
called vertices and R C G? is a binary symmetric and irreflexive relation on G. We are going to read

R(a,b) as “a and b are connected”, for all a,b € G.

Observation: We will use both the notations R(a,b) and (a,b) € R to represent that the element

(a, b) is in the relation R.

Definition 2.4.2. (et A be a set and R be a binary relation on A. R is an equivalence relation if:
1. R is reflexive, i.e, foralla € A, (a,a) € R
2. R is symmetric, i.e., foralla,b € A, if(a,b) € R, then (b,a) € R
3. R is transitive, i.e., forall a,b,c € A, if(a,b) € R and (b,c) € R, then (a,c) € R

Definition 2.4.3. Let A be a set and R be a binary equivalence relation on A. The equivalence class
ofa € A is defined as the set [a]r = {x € A : (a,z) € R}, which represents the elements that are
related to a under the relation R. The quotient set is represented by A/R = {[a]r : a € A}, which

contains all the equivalence classes of the elements in A.



Chapter 3

Partial algebras

In this chapter, we will introduce partial algebras along with associated definitions and propositions. Poly-
nomials within the context of partial algebras, including their domain and associated mappings, will be
discussed. The concept of identities in partial algebras will also be introduced, with examples illustrating
both identities holding in all partial algebras and others that do not. Considerable space will be dedicated
to one example of the latter kind, involving the construction of a partial algebra of functions associated

with special graphs.

3.1 Partial algebra and its properties

Definition 3.1.1. A partial algebra A = (A, },+,-,0,1) is defined by a nonempty set A, a binary
relation | on A, called compatibility or commeasurability, two partial binary operations on A, + and -,
called sum and product, respectively, a function o defined from R x A to A and the identity element for

the operation product of A, called 1, with the following properties:

~

. The relation | is reflexive and symmetric
2. Forallq € A, ql1 (ie., 1 is compatible with all elements in A)
3. The partial binary functions are defined exactly for those pairs (q1, q2) € A x A for which q1 g2

4. If any two of q1, o and q3 are commeasurable (i.e., for all i, j € {1,2,3},q;1q;), then (1 +

q2)dqs, (1 - q2)bqs and (a o ¢1) g2 (a is a real number)

5. If any two of q1, g2 and q3 are commeasurable, then the algebra of the polynomials in q,, g2 and

qs3 (defined in the observation below) is a commutative algebra over the field of real numbers

Following the article [9], we call the elements of A observables.

10



Observations:

¢ |tis important to note that the concept “partial algebra” is an abbreviation of “partial commutative
algebra over the field of real numbers”, and the latter generalizes the concept of “commutative

algebra over the field of real numbers”, as introduced in the previous definition.

* Let us assume (A, },+,-,0,1) defined as in the previous definition. If ¢1, g, and g3 are
pairwise commeasurable, then the algebra of the polynomials in ¢y, g2 and g3 is the structure
(A, 4,0, 1), where:

e A’ C Aisinductively defined:

L g1, ¢, g5 € A
2.1c A

3. fx,ye Aandzly thenx +y,x-ye A

4. Ifr € A'anda € R, thenaoz € A

e The operations +',-" and o’ are a restriction of the original ones +, - and o, respectively,

that is:

+ = +|axa, = |axa, O = o|rxa

Now, we will verify that the previous structure (A’, +', -/, o', 1) constitutes an algebraic structure, that

is, the operations +’, -’ and o’ are total functions and that A’ is closed under these operations.
Lemma 3.1.2. Any two elements of A’ are compatible.

Proof. Let us suppose that x € A’, g1 g2, ¢1 g3 and g2} g3. Let us consider P(x) the property: for all

z € A, x| z. The proof follows by induction on = € A’

1. We want to show P(q;), thatis, forall z € A’, g1 2. Let 2 € A" and let us consider the following
property: forally € A’, Q(y) iff ylq1.
(i) Q(q1) iff g1lqr. Since | is reflexive, then g1 4 ¢; holds.
(i) Q(g2) iff q1 L g2, which is true based on the hypothesis.
(i) Q(gs) iff ¢1 L g3, which is also true based on the hypothesis.

(iv) Q(1)iff 1Lqy. Since g1 € A’, 1 is commeasurable with all elements of A and A" C A,
then 1/ ¢;.

11



(v) Letussuppose Q(z), Q(y)and xly, z,y € A’. We wantto show Q(z+y) and Q(x-y),
thatis, (z + y)bq1 and (= - y)Lq1, respectively. Since z{q1, y5qi and zly, i.e., any two
of x,y, g1 are commeasurable then, by definition 3.1.1, (z + y);q, and (z - y) ¢

(vi) Letus suppose Q(x), x € A’. We want to show Q(a o x), a € R. Since, by Q(z), ¢
then, by definition 3.1.1, (a o ) q1, a € R.

The proofs of P(g2) and P(g3) are analogous.

2. We want to show P(1), thatis, forall z € A’, 1) 2. Let z € A’. Since 1 is compatible with all
the observables in A and A’ C A, then 1] 2.

3. Letus suppose P(z), P(y) and zly, for x,y € A’. We want to show P(z + y) and P(x - y),
thatis, for all z € A, (x + y)lz and (z - y) |2, respectively. Let z € A’. By the hypothesis
P(x) and P(y), we have, respectively, that | z and y} z, and by the fact that =: | y, we have that

any two of , y, z are commeasurable. So, by definition 3.1.1, (z + y)}z and (x - y)} 2.

4. Let us suppose P(x), for x € A’. We want to show P(a o x), thatis, forall z € A’, (ao )/ 2.
Let = € A’. By the hypothesis P(x), 2} z. So, by definition 3.1.1, (a o z)/ 2, for all a € R.

So P(x), forallz € A’ O

Proposition 3.1.3. The operations +',-' and o’ are total functions and A’ is closed under these oper-

ations.

Proof. Let us consider z,y € A’. We want to show that z +'y € A", 'y € A'anda o' z € A’ for
alla € R. By lemma 3.1.2, 2/ y. Consequently, the elements = + v, x - y and a o y belong to A’ (due to
the statements 3 and 4 of the definition of A’). By definition of restriction of a function, the value of = +'y

isx +y, thevalue of x -’ yis x - y and the value of a o’ yisa o y. So, x +' y,x ' y,aod’ x € A’". [

Observation: Sometimes, in order to clarify certain results, it can be useful to write (¢;, ¢;) € | instead

of ¢l g;.

Proposition 3.1.4. We can generalize the statement 5 of the definition of partial algebra (3.1.1) to any
number of observables, that is, if any two of ¢4, - - - , q,, are commeasurable, n € N, then the algebra of

the polynomials in q1, - - - , q, IS a commutative algebra over the field of real numbers.

12



3.2 Polynomials in the context of partial algebras
Definition 3.2.1. Letn € N. Let P,, the set of polynomials in x+, - - - , x,,, be defined as:
() 1 €P,
(i) x; € Py, foralll1 <i<mn
(i) Ifo € P,, thena oy € P,, foralla € R
(iv) If p,1p € P, thenp+1¢ € P,andp -y € P,
The set of all polynomials is UN PB,.
ne
Observations:
* The polynomials of P, are expressions over the alphabet {z1, - ,z,} U{l,0,+,-} UR.

* The lower case letters of the Greek alphabet ¢, 1) and x will be used to denote polynomials.

Definition 3.2.2. Let A = (A, |, +,-,0,1) be a partial algebra and P, be the set of polynomials
previously defined. We define recursively on a polynomial ¢ € P, the set D, C A" and the map

©* : Dy, — A as follows:
1L Ifo=1,thenD,, = A" and p*({) =1
2. Ifp=mx;,1<i<n,thenD,, = A" and o*(]) = ¢*((q1, - 1 qw)) = G
3. Ifo=ao, then Dy, = Dy, and ¢*(q) = a o ¢¥*(q)

4. Ifo =y@x, where® € {+,-},thenD,,,, = {§ € A" : ¢ € Dy ,,ND,,, and*(q) x*(9)}
and ¢*(q) = ¥*(q) ® x*(q)

D, ,, and ¢*(q) are, respectively, the domain and the map associated to the polynomial ¢ relative to A.

Lin order to simplify the notation, we will write ¢ to denote (g1, - , gn).
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3.3 A partial algebra in a graph context

Definition 3.3.1. A graph G = (G, R) satisfies condition C if it satisfies the following two properties:

L Foralla,b € G, if R(a,b) then there exists exactly one ¢ € G such that R(a,c) and R(b, ¢),

that is, any two connected vertices belong to exactly one triangle.
2. G contains, at least, one pair of connected vertices.

The following graph satisfies the condition C: G = (G, R), where G = {ay, a2, az} and R(a, b) iff
a # b, foralla,b € G. Infact, G is a triangle of the type:

()
@) (=)

Definition 3.3.2. F' is a class of functions associated with a graph G satisfying the condition C when

any f € F'is a function whose values are real numbers and the domain, domy, is a set of three vertices

of G any two of which are connected.

Definition 3.3.3. Let I’ be a class of functions associated with a graph G. E' is the binary relation

defined on F' such that E(f, g) holds iff one of the following conditions is satisfied:
L f=g

2. The sets domy and dom,, have one element in common, say dom; = {a,b,c}, dom, =

{a, V', ¢} and f(a) = g(a) and f(b) = f(c) = g(V') = g(c)

3. fla) =g(b) =r,r € R, foralla € domys,b € domy (f and g are both constant functions

with the same constant value)

Observation: From now on, when we refer to relation £, we assume that a graph G = (G, R) that

satisfies the condition C and a class of functions, F, associated with the graph G, are implicitly understood.
Lemma 3.3.4. E is an equivalence relation.

Proof. To prove that E'is an equivalence relation we need to show that:
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(i) E'is reflexive:

Let f € F. By the first statement of the definition 3.3.3, E(f, f) holds.

(i) E is symmetric:

Let f,g € F suchthat E(f, g). We want to prove E(g, f). Then, we have one of three cases:

1. Case f = g: Then, by hypothesis, we have that E(f, f) holds.

2. Case domy = {a,b,c}, domy, = {a,b',c'}, f(a) = g(a) and f(b) = f(c) = g(V) =
g(c') (domy and dom, only have the element @ in common). Since the relation = is
symmetric, then g(a) = f(a) and g(V') = g(¢') = f(b) = f(c), thatis, E(g, f).

3. Case f(a) = g(b), foralla € domys and b € dom,,. Since the relation = is symmetric,

then g(b) = f(a), forall b € domy and a € domy, thatis, E(g, f).
(i) E is transitive:
Let f,g,h € F such that E(f,g) and E(g, h) hold. We want to prove E(f, h).

1. Case f = gor g = h: Then, E(f, h) holds from one of the hypothesis.
2. Case E(f,g) and E(g, h) come from the second statement of the definition 3.3.3:

* Case domy and dom,, have one elementin common, say dom; = {a, b, c}, dom, =
{a,V', '} and f(a) = g(a), f(b) = f(c) = g(b') = g(¢), and dom,, and domy,
have also one element in common but it is different from the common element of dom ¢
and domyg, say dom;, = {a”,V/,"} and g(V') = h(V'), g(a) = g(c') = h(a") =
h(c"). Then, we have that for all x € domy, y € domyg, z € domy, f(x) = g(y) =
h(z). Since f(z) = h(z) forallx € domy, z € domy,, E(f, h) holds.

» Case domy, domg and dom;, have the same element in common (and the only one),
say domy = {a,b,c},dom, = {a, b, '}, domy, = {a,b",c"} and f(a) = g(a),
f(b) = f(c) = g(t/) = g(c) (this comes from E(f, g)) and g(a) = h(a), g(t/) =

g(c) = h(b") = h(c") (this comes from E(g, h)). Then, f(a) = h(a) and f(b) =

f(e) = h(") = h(c"), thatis, E(f, h) holds.

3. Case E(f, g) comes from the second statement of the definition 3.3.3, that is, dom and
domy have one element in common, say dom¢ = {a, b, c},dom, = {a, V', '}, f(a) =
g(a)and f(b) = f(c) = g(t/) = g(¢), and E(g, h) comes from the third statement of

the same definition, i.e., g(x) = h(y), for all z € dom, and y € domy,. Then, g and
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h are constant functions and, therefore, f(a) = f(b) = f(c) = g(z) = h(y), for all
x € domgy,y € domy,. So, f(z) = h(y), forall z € domy,y € domy, thatis, E(f,h)
holds.

4. Case both E(f, g) and E(g, h) come from the third statement of the definition 3.3.3, that
is, for all @ € domy,b € domy f(a) = g(b) = r,r € R, and for all z € dom,,y €
domy, g(x) = h(y) = p, p € R . Then, this is just possible if p = r, that is, for all
a € domy,y € domy, f(a) = h(y) =r. So, E(f,h).

Observations:

* The equivalence classes of £, denoted as [f|g = {g € I : E(f,g)}forany f € F, are referred

to as “observables”.
* We will denote the set of all equivalence classes (the quotient set F'/E) as Q.

Definition 3.3.5. Given q;,q2 € Q, they are said to be commeasurable (one writes q,} qz) if there
exist functions f; € q;,1 € {1,2}, such that dom;, = domy,. Sum and product of commeasurable
observables are defined as follows: g1 + q- is the equivalence class of the functions f1 + fa; q1 - q2 is the
equivalence class of the functions f1- fo, where f; € q; anddomy, = domy,. Letaoqg = {af : f € ¢}.
If q is an observable and a is a real number, then all the functions a f for f € q belong to the same

equivalence class which is, by definition, the class a o q. One can write a o q asa o [f|g, for f € q.

Proposition 3.3.6. Let us consider q,, g € () and two functions f, € qi, fo € g2 such thatdomy, =

domy,. We have the following statements:

1. If there exist functions f| € ¢ and f; € qo such that domy, = domy, and E(f7, fi) and

E(fs, f2), then E(f1+ fo, fi + f5) and E(f1 - f, fi - f3) hold (We will only prove that E( f1 +
fa, f1 + f5) holds, as the case of E(f1 - fa, f1 - f5) is analogous).

2. If there exists a function f| € q, such that E(f1, f]), then E(afy,af]) holds, for all a € R.
Therefore, the operations of sum, product and scalar multiplication on () are well defined.

Proof. Letqi,q2 € Q and fi € ¢, f2 € g2 such that domy, = domy,.

1. Let us consider that there exist functions fi € ¢ and f; € gy such that domy, = domy, and

E(f!, f1) and E(f}, f>) hold. We want to show that E(f1 + f, fi + f}) holds.
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(a) Case E(fi, f1)or E(f}, f2) come from the first statement of the definition 3.3.3:

Let us suppose that f] = fi (E(f, f1)). By hypothesis, domy, = domy, and dom, =

domy;. So, since f{ = f1, domy, = domy = domy, = domy;.

» Case E(f}, fo) comes from the first statement of the definition 3.3.3, thatis, f} = fo:
Then, E(f1 + fo, f1 + f5) = E(fi1 + f2, f1 + f2) and, due to the reflexive property
of the relation E, E(f1 + fo, f1 + f2) holds.

* The case in which E(f5, f2) comes from the second statement of the definition 3.3.3
is not possible because f, and f; have the same domain.

* Case E(f5, f2) comes from the third statement of the definition 3.3.3:

Then, f3(a) = fa(b) = r, v € R, forall a € domy, b € domy,. Since domy; =
domy,, f5 = fo and due to the reflexive property of E, E(f1 + fo, f1 + f3) =
E(f1+ fo, f1 + f2) holds.

(b) Case E(fi, f1) or E(f5, f2) come from the second statement of the definition 3.3.3:

Let us suppose that domy, = {a, b, c}, domy = {a, V', c'} (the only element in common
is a), fi(a) = fi(a) and f1(b) = fi(c) = fi(t') = fi(c). Since, by hypothesis,
domy, = domy, and domy; = domyy, then domy,,, = domy, and domy g =

domf{ have the element a in common.

o Letus consider that £/( f5, f2) comes from the second statement of the definition men-
tioned above, that is, fo(a) = fi(a) and fo(b) = fo(c) = fo(b)) = f5(). Then,
(fr + f2)(a) = fila) + faa) = fila) + f3(a) = (f1 + f3)(a) and for all
v e {bcty € {V,¢}, (A + f)(x) = file) + fal2) = fily) + fiy) =
(fi + f5)(y). Since domy,+y, and domy:, ; have only one element in common,
a, (fi + f2)(a) = (fi + f2)(a) and (f1 + fo)(x) = (fi + f2)(y), for all
x € domy, 45, \ {a},y € domyg,p \ {a}, we conclude that E(f1 + fa, fi + f5)
holds.

* Let us consider that F(f5, f2) comes from the third statement of the definition men-
tioned above, i.e., for all z € domy,,y € domy,, fa(x) = f5(y). Then, we have
(fi + f2)(a) = fila) + fala) = Fila) + fala) = (fL + f3)(a) and for all
a € {bcty € {V,d}, (i + fo)(@) = file) + folz) = fily) + faoly) =
(fi + f2)(y). Since domy, yy, and domy, s have only one element in common,

a, (fr + f2)(a) = (fi + f2)(a) and (f1r + f2)(x) = (/1 + f3)(y), for al
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x € domy, 5, \ {a},y € domy s \ {a}, we conclude that E(f1 + fo, f] + f5)
holds.

(c) Case both E(f1, f1) and E(f5, f2) come from the third statement of the definition 3.3.3:

Then, for all a € domy,,b € domy, fi(a) = fi(b) and for all @ € domy,,b €

domygy, fa(a) = f3(b). So, (fi + fo)(a) = fila) + fala) = fi(b) + f3(b) =
(fi + f2)(b), forall a € domy,s,,b € domy g Therefore, E(fi + f2, fi + f3)
holds.

Obs: domy, y, = domy, = domy, and domy: = domyr = domy;.

2. Let us consider that there exists a function f| € ¢; such that E'(f1, f;) holds. We want to show
that E(af1,af;) holds, forall a € R.

Trivially, the product of a function by a real constant will not change its domain. So, regardless of
the domain of f; and f7, the domain of the functions a f; and a f{ will remain the same as f; and

f1, respectively. Therefore, E(a f1,af]) holds, for all a € R.

Observation: We will define the element 1 as the set { f € F': forall a € domy, f(a) = 1}.
Let us consider a function f € F defined as follows:

f£:{0,1,2} 5 R

fla) =1
Then, [f]z = 1 and, consequently, 1 € Q.

Proof. We want to prove that [f]z = 1.

* [fle C1: Let f1 € [f]E, thatis, f1 € F and E(fi, f). We want to show that f; € 1.

Since E(f1, f) holds and f is a constant function which yields the real number 1, then f; = f or
foralla € domy, b € domy,, fi(a) = f(b) = 1. In both situations, f; always returns the value
1. So, due to the fact that f; € F and for all @ € domy,, f1(a) = 1, we conclude that f; € 1.

* 1C [f]g: Let fy € 1,thatis, f; € F and forall a € domy,, fi(a) = 1. We want to show that
fi € [fle
By definition, f; € F. It remains to show that £( f1, f) holds. Since for all a € domy,, fi(a) =

1 and for all b € domy, f(b) = 1, then E( f1, f) holds. Therefore, f; € [f]E.
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So, given that [f]g € 1 and 1 C [f]g, we conclude that [f]z = 1, and, consequently, 1 € Q. O

Theorem 3.3.7. The structure A = (Q, |, +, -, 0, 1) is a partial algebra, for Q, }, +, -, 0 and 1 given

as in the previous definition and observation.
Proof. Let us consider the structure A = (Q, L, +,-,0,1).

1. We want to show that the relation | is reflexive and symmetric. Let us consider an observable ¢;.
Trivially, there exists f1 € ¢, with domain dom ,. Since domy, = domy,, then g1 ¢, i.e., | is

reflexive.

Now, let us consider two observables ¢; and ¢, and two functions f; € ¢; and f5 € ¢ such that

domy, = domy,. Since domy, = domy,, then | is symmetric.

2. We want to prove that 1/q, for all ¢ € Q. Let us consider ¢ € @ and f; € ¢. We want
to show that there exists f € 1 such that dom; = domy,. By the observation above, 1 =
{f € F:forall a € domy, f(a) = 1}. Let us choose a function f € F' such that dom; =
domy, and for all a € domy, f(a) = 1. Clearly, f € 1. Therefore, since dom; = domy,,
1lq.

Moreover, since we already verified that 1 is commeasurable with all elements in (), we shall
now demonstrate its identity property with respect to the - operation for all elements in (). Let us
consider an observable ¢q. Our objective is to prove that ¢ - 1 = 1 - ¢ = q. Let f be an element
of ¢ and g be the function whose domain is the same as that of f and be defined such that for all

a € domg, g(a) = 1. Then, for all @ € domy,

(f-9)(a) = f(a) - g(a) = f(a) - 1 = [f(a)

and

(9- f)(a) =gla)- fla) =1 f(a) = f(a)
So, 1 is the identity element of () for the operation -.
3. By definition, sum and product are defined exactly for commeasurable observables.

4. Let us consider that any two of ¢y, ¢2, g3 € @) are commeasurable. We want to prove that (¢; +

@)z, (q1 - q2)bqs and (a0 q1))qo.

(a) Case (q1 + q2)lqs (The (q1 - g2) L g3 case is analogous):
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We want to show the existence of functions g € ¢; + g2 and f5 € g3 such that dom, =
dom,. Since any two of the observables ¢1, g2, g3 are commeasurable, meaning that there
are functions fi1 € qi, fa € o, f3 € g3 such that domy, = domy,, domy, = domy,
and domy, = domy,, we deduce that domy, = domy, = domy, = domy 1g,. By
definition, ¢ +q2 = [f1 + folg = {9 € F : E(f1+ f2,9)}. Letus consider the function
g = fi + fo. Since f1 + fo € ¢1 + @2, f3 € g3 and dom, = dom,, we conclude that
(@1 + @2)bas.

(b) Case (a o q1)lq2, where a is a real number.

We want to show the existence of functions g € a o ¢; and fo € g such that dom, =
domy,. Since the observables ¢; and g, are commeasurable, then there are functions
fi € @i, f2 € g such that domy, = domy,. By definition, a o ¢1 = {afi: f1 € ¢1}.
Let us consider g = afi. So, due to the fact that g € a o q;, domy = domy, and, by

hypothesis, dom ¢, = dom,, we conclude that (a o ¢1)§ go.

5. Letus consider that any two of ¢, g5 and g3 are commeasurable. We want to prove that the algebra

of the polynomials on ¢, g2, g3, thatis, A" = (Q', +', -/, o', 1), is a commutative algebra, where:
e ()) C ( isinductively defined:
@ q1,q,q € Q'
(b) 1€
) fz,y e Q@ andzly, thenx +y,z-y € Q'
(d fzxe@ anda € R, thenaoz €
* The operations +', -/ and o’ are defined as:
ot laxen - laxgn o o frxe
Observation: From the definition 3.1.1, we know that all the elements in Q" are compatible and
that (' is closed under the operations +’, - and o’. Now, we will prove that A" = (Q’, +', -, o', 1)

is a commutative algebra over the field of real numbers, that is, A’ is an algebra over the field of

real numbers and the operation -’ is commutative.

* First of all, in order to prove that A’ is an algebra over the field of real numbers, we need to
demonstrate that (), along with the operations +’ and o', is a vector space over the field of

real numbers.

20



(i) Letz,y € Q. We want to prove that  +' y = y +' x. Let us consider f € x and

(i1

(i)

g € y such that dom; = domg. Then, x +'y 8 [fle + [9le o [f +9le o

9+ fle L lgls + [fls Ly + o

(@) f and g are representatives of the classes x and y, respectively

(b) Definition of sum of commeasurable observables in A’

(c) Sum of functions is commutative

(d) Definition of sum of commeasurable observables in A’

(e) f and g are representatives of the classes x and v, respectively
Let x,y,2 € Q. We want to prove that (x +' y) +' 2 = = +' (y +' 2). Letus
consider f € x,9 € yand h € z such that dom; = dom, = dom;,. Then,
(x+'y)+ 2 2 (fle+ [9)p) + [Me 2 (f + gle) + [Ws 2 [(f +9) + hlp 2
[+ @+ 2 [fle+ lo+he L [fle+ (ge+ [He) Bz + (y+ 2)
(@) f, g and h are representatives of the classes x, y and z, respectively

(b) Definition of sum of commeasurable observables in A’

(c) Definition of sum of commeasurable observables in A’

(d) Sum of functions is associative

(e) Definition of sum of commeasurable observables in A’

(f) Definition of sum of commeasurable observables in A’

(g) f, g and h are representatives of the classes x, y and z, respectively

We want to prove that there exists an identity element for the sum operation, that is, that
there exists 0 € (' such that, forallz € Q', 0+ z =2 +'0 = z. Letx € " and
f € x. Let us consider 0 as the set {g € F : forall a € dom,, g(a) = 0} and the
function g € F such that dom, = dom and for all a € dom,, g(a) = 0. Clearly,

g € 0. Then, for all a € dom,,

(94 f)la) = g(a) + f(a) =0+ f(a) = f(a)
and
(f+9)(a) = f(a) + g(a) = fla) + 0 = f(a)

Observation: The proofthat Qisin () is similar to the proof that 1 is in (), as previously
showed. In fact, we just need to change the value that the function f yields to O (instead

of 1).
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(iv)

(v)

(vi)

We want to prove that there exists a symmetric element for all the observables in ¢/,
thatis, for all z € )/, there exists y € Q' suchthatz + vy = y +' 2 = 0, where 0 is
the identity element for the operation +’. Let us consider x € (' and f € x and the
function ¢ defined such that dom, = dom and for all a € dom,, g(a) = —f(a).

Then, for all @ € dom,,

(f +9)(a) = fa) + g(a) = f(a) — fa) =0
and

(9 + f)a) = g(a) + f(a) = = f(a) + f(a) = O
Since f +g,9+ f € Fandforalla € dompyy, = domgiy, (f + g)(a) =
(9+ f)(a) =0,then f+g,9+ f€0.S0, 2+ y=y+ = =0.
Leta,b € Randx € QQ'. Wewantto prove that (a+b)o’x = ao’x+'bo’z. Let f € x.
Then, (a+b) o' 2 2 (a+b) o [flg L [(a+b) x flg Llax f+bx flp 2
lax fle + [bx flg 8o [fle+ b9 [fle O 4o z+bo z, where + and x
are the sum and the product in the field of real numbers, respectively.
(a) fis a representative of the class x
(b) Definition of scalar product in A’

(c) Distributivity of + with respect to x, where 4+ and x are defined in the field of real
numbers
(d) Definition of sum of commeasurable observables
(e) Definition of scalar product in A’
(f) f is a representative of the class x
leta € Rand z,y € Q. We want to prove that a o’ (x +' y) = ao’ x + a o’ y. Let

f € xand g € ysuchthatdom; = domg. Then, ao’(z+'y) @ ao' ([f1e+'[9) k) o

0o [f+gleLlax(f+9))sLlaxf+axgleLlax fle+ [axglel

ad [flg+ ad [gle ® o x+ ad y, where + and x are the sum and the product
in the field of real numbers, respectively.

(@) f and g are representatives of the classes x and y, respectively

(b) Definition of sum of commeasurable observables

(c) Definition of scalar product in A’

(d) Distributivity of + with respect to x, where + and x are defined in the field of real

numbers
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(e) Definition of sum of commeasurable observables
(f) Definition of scalar product in A’
(g) f and g are representatives of the classes x and ¥, respectively
(vii) Leta,b € Rand x € @Q’. We want to prove that (a x b) o’ x = a o' (bo' x). Let
us consider f € x. Then, (a X b) o’ x 8 (a x b) o [flg b [(axb) x flg b
ax(bx NleLac bx fleLao (b [fle) Lad (bo z)
(a) fis a representative of the class x
(b) Definition of scalar product in A’
(c) The operation x, in the field of real numbers, is associative
(d) Definition of scalar product in A’
(e) Definition of scalar product in A’
(f) f is a representative of the class x
(viii) Let x € @Q'. We want to show that 1 o’ z = x, where 1 is the multiplicative identity

of the field of real numbers. Let us consider f € x. Then, 1 o' x @9 fle o

1% flg b [fle 9 2, where x is the product in the field of real numbers,
(a) fis a representative of the class x

(b) Definition of scalar product in A’

(c) The real number 1 is the identity of o in the field of real numbers

(d) f is a representative of the class x

So, (' is a vector space over the field of real numbers.

» Considering the previous fact, now we need to prove that the operation -’ satisfies the follow-
ing four properties: associativity, right distributivity, left distributivity and compatibility with
scalars. Once this is proved, A’ will be an algebra over the field of real numbers.

(i) Letz,y,z € Q. We want to prove that (x - y) - 2z = = - (y -’ 2). Let us consider
f €z, g€ yandh € zsuchthat dom; = dom, = domy,. Then, (z-'y) -/ 2z =
(/1 lgle) (e 2 [ x gle - [We 2 [(f x ) x Ble 2 [f x (g x D)]e
[fle '[9 x hlg o [fle " ([9]e " [hE) L (y ' z), where x is the product in the
field of real numbers.

(@) f, g and h are representatives of the classes z, y and z, respectively

(b) Definition of product of commeasurable observables in A’
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(c) Definition of product of commeasurable observables in A’

(d) The operation x, in the field of real numbers, is associative

(e) Definition of product of commeasurable observables in A’

(f) Definition of product of commeasurable observables in A’

(g) f, g and h are representatives of the classes x, y and z, respectively

(i) Letz,y,z € Q. We wantto prove that (z +'y) 'z = x ' z+"y ' z. Let us consider

fex, geyandh € zsuch that domy = dom, = domy,. Then, (z +'y) ' 2 @

([Ale+19p) ' e 2 1f +gle'he L 1(f +9) x bl L [f x h+g x hp &
(g)

F % hlp+ g x hlp 2 [flg 7 (he+ gl (he Loz 4y 7 2 where x is
the product in the field of real numbers.
(@) f, g and h are representatives of the classes x, y and z, respectively
(b) Definition of sum of commeasurable observables in A’
(c) Definition of product of commeasurable observables in A’
(d) Distributivity of x with respect to + in the field of real numbers
(e) Definition of sum of commeasurable observables in A’
(f) Definition of product of commeasurable observables in A’
(g) f, g and h are representatives of the classes z, y and z, respectively
(i) This case is analogous to the previous one.
(iv) Letz,y € Q" anda,b € R. We wantto prove that (ao’z)-" (bo'y) = (axb)o' (z-'y).

Let us consider f € x and g € y such that dom; = dom,,. Then, (a o' z) ' (b’
(d)

D)2 (@o [flg) ! (0 [gls) Llax fls bxgle L [(ax f)x (bxg)s2
[(axb) x (fxg)s2(axb) o [fxglpL(axb)o (fls- [glr) 2 (ax

b) o' (x " y), where x is the product in the field of real numbers.
(@) f and g are representatives of the classes x and y, respectively
(b) Definition of scalar product in A’
(c) Definition of product of commeasurable observables in A’
(d) The operation x, in the field of real numbers, is commutative and associative
(e) Definition of scalar product in A’
(f) Definition of product of commeasurable observables in A’

(g) f and g are representatives of the classes x and ¥, respectively
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So, since ()’ is a vector space over the field of real numbers and the -" operation satisfies

these four properties, then A’ is an algebra over the field of real numbers.

* |t remains to show that the operation " is commutative.

Let x,y € Q)'. We want to show that z:-" iy = " . Let us consider f € x and g € y such

that dom; = dom,. Then, z-'y & [£]'[g]e 2 [f x gl @ [g % fl& 2 [g]p[f]p &

yw
(@) f and g are representatives of the classes x and y, respectively
(b) Definition of product of commeasurable observables in A’
(c) The operation x, in the field of real numbers, is commutative
(d) Definition of product of commeasurable observables in A’

(e) f and g are representatives of the classes = and vy, respectively

So, since A’ is an algebra over the field of real numbers and the operation - is commutative, we

conclude that A" is a commutative algebra over the field of real numbers. O

3.4 Identities in a partial algebra

Definition 3.4.1. Let A be a partial algebra. One says “p is identically 1 on A" or, equivalently, “the
identity p = 1 holds in A”, ifforallqg € Dy, 0*(¢) = 1.

Observations: Let ¢ and 1) be two polynomials in 7 variables. Then, an identity o = 1) holding in A

can be interpreted in two ways:

* Ifg€ Dy, N Dy, then p*(§) = ¥*(G) (the identity o = ) holds strongly in .A)

e If§€ Dy, N Dy, and ¢*(§)L10*(q), then ¢*(q) = ¥*(§) (the identity = 1) holds weakly
in A)

The first statement implies the second one but the converse is not necessarily true. If ¢» = 1, then

both statements are equivalent.

Now, we will give some examples of identities holding in all partial algebras and others that do not,

which were taken from the article [9].

Example 1. Let us consider ¢ = x1 4+ x5 and ¥ = x5 + 1 two polynomials in 2 variables. The identity

© = 1 holds strongly (and, consequently, weakly) in all partial algebras.
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Proof. Let A = (A,l,+,-,0,1) be a partial algebra and ¢ = 1 + x5 and b = x5 + 1 be
two polynomials in 2 variables. We want to prove that the identity ¢ = ) holds in A, that is, for all

7€ DyoN Dy, " (q) = 0*(q).
Let ¢ = (q1,q2) € Dy N Dy 5. By definition,

Dyytano ={7€ A*: € Dy, 2N Dy, » and z1°(7) L 22"(q) }

=1{7¢ A% Mg}

- Dw2+:v172
So,

¥ (i (i) (i) 4
CD=q+@=et+a=10(9
(i) Definition of ¢*(q)
(i) Since ¢; and g2 are commeasurable ( by definition of D, ., o) the algebra of the polynomials in

g, and ¢o is a commutative algebra over the field of real numbers (by definition 3.1.1, statement

5). Therefore, we have commutativity for the operation +
(iii) Definition of 1)*(q)
]

Example 2. Let us consider ¢ = (z1 + 23) + 3 and ¢ = x1 + (22 + x3) two polynomials in 3

variables. The identity ¢ = ¢/ holds strongly (and, consequently, weakly) in all partial algebras.

Proof. Let A = (A, },+,-, 0,1)beapartial algebraand ¢ = (21 +x2)+x3and ¢ = x1+ (x2+x3)
be two polynomials in 3 variables. We want to prove that the identity ¢ = 4 holds in A, that is, for all

7€ Dy3N Dy 3, 0" (q) = ¥*()
Let ¢ = (q1, ¢, q3) € Dy3 N Dy 3. By definition,

D%3 = {JE A3 : (TE DI1+J32 N D$3 and (xl + x2>*(®$x3*(®}
={qe A®:§€ D,, N Dy, N D,, and 21*(q){22*(q) and (z1 + 22)"(Q) L 23" (§)}
={7e A’ 0" (Q)bwo"(q) and (w1 + 22)"(Ddas™ (D)}

={7e AP qibge and (g1 + ¢2)bgs}

and
Dy = 7€ A G€ Doy 1 Dy, and (@) (2 + 25)" (@)
={7€ A* . 7€ D,, N D,, N D,, and 2" (7)}23*(7) and z1*(q)} (z2 + x3)" ()}
= {7 A 2" (Q)bws™(q) and x1* ()} (22 + 23)" ()}

={7€ A% : qlqz and 1) (g2 + q3)}
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We have that ¢1 § g2, g24¢3 and ¢1 { (g2 + ¢3). Consequently, due to the fact that g2 [ g2 and g2 s,
we have ¢/ (g2 + ¢3). Therefore, any two of g1, g2 and go + g3 are commeasurable, which implies
that the algebra of the polynomials in ¢;, g2 and g2 + ¢q3 is a commutative algebra over the field of real
numbers.

Additionally, we also know (¢; + ¢2)l¢3. Analogously to what we have previously done, since gaf g2
and 20 q1, 424 (q1 4+ g2). Thus, any two of ¢; + g2, g2 and g3 are commeasurable and, consequently, the
algebra of the polynomials in ¢; + g2, g2 and g3 is a commutative algebra over the field of real numbers.

Then, we have:
* (i)
©*(q) = (1 +q2) + g3

= (1 +q2) +q3] +0

2 (g1 + q2) + q3] + (@2 — q2)

S+ ) +los+ (@2 — @)
2 (@1 +q) + (22— @) + ]
u (1 +q2) + [(—g2 + ¢2) + g3
& (@14 q2) + [—a2 + (g2 + 3)]

w (@1 + q2) — @2] + (q2 + q3)

B 1 + (2 — @2)] + (¢2 + q3)

= (1 + 0] + (g2 + g3)

X:i ¢ + (¢2 + g3)
=4

(i) Definition of ©*(q)

(ii) Since ¢1 + g2, g2 and g3 are all commeasurable, then there exists the identity element for the

operation +, which is represented by O
(iii) g1 + g2, g2 and g3 have a symmetric element. —¢- is the symmetric element of g
(iv) Since g1 + g2, g2 and g3 are all commeasurable, then we can apply the associative rule
(v) Commutativity (of the algebra of the polynomials in ¢; + g2, g2 and g¢s3)
(vi) Commutativity (of the algebra of the polynomials in ¢; + g2, g2 and g3)
(vii) Associativity (of the algebra of the polynomials in ¢; + ¢2, g2 and ¢3)
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(viii) Associativity (of the algebra of the polynomials in q1, g2 and ¢ + q3)
(ix) Associativity (of the algebra of the polynomials in g1, g2 and g2 + q3)
X ¢2—q2=0
(xi) O is the identity for the operation +
(xii) Definition of 1)*(q)
[

Example 3. Let us consider ¢ = (1 + x2) + (23 + x4) and ¥ = (21 + x4) + (z2 + x3) two
polynomials in 4 variables. The identity ¢ = 1/ does not weakly (and, consequently, strongly) hold in all

partial algebras.

Proof. We want to show that there exists a partial algebra such that for all ¢ = (q1,42,43,q1) €

D40 Dy g and o*(q)49°(9), ¢*() # ¢*(q), thatis, forall ¢ € Dy 4 N Dy,a and ©*(9)b¢*(q),
(1 + 22) + (23 + 14))"(7) # (71 + 24) + (22 + 23))" (), Which simplifies to (q1 + ¢2) + (g3 +
q1) # (q1 + qu) + (g2 + q3). Let us denote the following graph G, which satisfies the condition C' (note

that the vertices a, and ay appear twice in the graph):

m d @
o

Now, let us consider four functions fi, f2, f3 and fy such that domy, = {ai, a3, as}, domy, =

{a1,as3,a4}, domy, = {as,as,as} and domy, = {as,a9,as1}. We are going to define them as

follows:
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fiidomy — R fy:domy, =R fy3:domp, =R fq:domy — R
filar) =1 fala) =0 fslaz) =1 fa(a2) =0
filaz) =0 falas) =1 fsas) =0 fi(ag) =0
fi(ag) =0 fa(ag) =0 fs(as) =0 falan) =1

Observation: All the functions fi, f2, f3 and f4 belong to the class of functions F associated with
the graph G as they yield real numbers and their domain is a set of three vertices of G any two of which are
connected. So, henceforth, when introducing new functions and assuming they belong to F, it is implied

that their domain is one of the triangles of the graph G and they produce real values.

We are going to consider the previous four functions as the representatives of the observables ¢, ¢s, g3

and q4, i.e., 1 = [file, @2 = [fole, @3 = [fs]p and ¢4 = [fu] .

Then, we have:
* 1+ g2 = [f1 + fo] g and we obtain

f1—|—f2 : dO?”nf1 — R
(fi+ f2)la)=1+0=1
(Fit+ P =0+1=1

(i + f2)(a) = 04+0=0

* g3+qqisnotequalto[fs + fi] g because f3and f, have different domains and, therefore, they are
not commeasurable and the operation sum is not defined. So, we just need to consider, for instance,
a function g5 such that dom,, = domy, and g3 € [f5]g, thatis, g3 € F and E(fs, g3). Let
domg, = domy, and gs(a2) = f3(az2) = 1 and g3(ag) = gs(an) = fs(as) = f3(as) = 0.
Then, dom,, and dom , have one element in common and, by defining gs in this way, it satisfies
the second statement of the definition of the relation E (3.3.3). So, ¢35 + ¢4 = [g3 + f4] and we

obtain

g3 + fa:domg, — R
(g F){a) =140 =1
(93 + f1)(ag) =0+0=0

(95 + fa)(an) =0+1=1
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* In a similar manner to the previous case, the domains of f; and f, are not the same and, therefore,
it does not make sense to define ¢; + g4 as [f1 + f4] - So, let us choose two functions ¢; and g4
suchthat g1 € [fi]g, g4 € [f1]pand domy, = domyg,. We need to guarantee that E( f1, g1 ) and
E(f1, g4) hold. To address this, we are going to consider domgy, = {a1, a11,a10}, g1(a1) =1
and g1(a11) = g1(a10) = 0 as it is aligned with the second statement of the definition of the
relation £ (3.3.3). In an analogous way, let us consider dom,, = {a1,a11,a10}, ga(arr) = 1
and g1(a1) = gi(a) = 0.

(It should be noted that we could have chosen, for instance, a function g, € [f4]g such that
domg, = domy,. However, in this case, we are following the counterexample provided by the
authors of the article [9] and it is known that finding these counterexamples is not straightforward).

So, ¢1 + q4 = [g1 + g4] & and we obtain
g1+ ga : domg, — R
(91 +94)(a1) =1+0=1
(g1 + g4)(a1p) =0+0=0

(91 +9a)(a) =0+1=1

* Once again, since dom, and dom, are not the same, it does not make sense to define g2 + g3
as [fa + fs]m. So, we are going to find a function g, such that dom,, = domy, and E(fs, g2)
holds. Let us consider domgy, = domy,, ga(as) = fo(as) and ga(az) = ga(as) = fo(ar) =
fa(aq) = 0. Then E( f2, g2) holds, as we are under the second statement of the definition of the

relation E (3.3.3). So, ¢2 + q3 = [92 + f3] = and we obtain
g2 + f3 1 domg, — R
(g2 + Fi){a) =04 1= 1
(92 + f3)(az) =1+0=1

(92+ f3)(a5) = 0+0 =0

* We need the compatibility of g1 + g2 and g3 + q4. Therefore, the previous representatives of these
classes, f1+ f2 and g3+ f4, respectively, don’t work for these cases. We wantto find A1 € g1+ ¢o
and hy € g3 + q4 such that domy,, = domy, and E(hy, fi + f2) and E(hs, g3 + f4) hold.

Let us consider domy,, = {ay4, ar, ag} and h; defined as follows, for i € {1,2}:
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hi:domp, = R hg :domyp, — R

hl((l4) =0 hg(a4) =1
hl(CL7) =1 hg(a7) =1
hi(ag) =1 ha(ag) =0

hi € ¢1 + g because hy € F and E(hy, fi + f2) holds (it satisfies the second statement of
the definition of the relation E (3.3.3)) and hy € ¢3 + g4 because hy € F and E(hs, g3 + fi1)

holds (for the same reason).

So, (¢1 + q2) + (g3 + q4) = [h1 + ho] g and we obtain:

hl + hg : {CL4,CL7,(19} — R
(hl +h2)(&4) =0+1=1
(hl +h2)(a7) =1+1=2

(h1+h2>(a9) :1+0:1

Now, we need the compatibility of ¢; + g4 and ¢ + g3. Once again, the representatives of these
classes, g1 + g4 and g + f3, respectively, don't work for these cases. So, we are going to find
two functions hs € q1 + q4, ha € g2 + g3 such that domy, = domy,, hs,hy € F and
E(hs, g1 + g4) and E(hy, g2 + f3) hold. Let us consider domy, = domy,, = {as,as, a1}
and h; defined as follows, for i € {3, 4}:

hs : domp, — R hy : domp, — R

h3(a5) =1 h4(a5) =0
h3(a8) =1 h4(a8) =1
hg(alo) =0 h4(a10) =1

hs € q1 + q4 because hy € F and E(hs, g1 + g4) holds (it satisfies the second statement of
the definition of the relation E (3.3.3)) and hy € g2 + ¢3 because hy € F and E(hy, g2 + f3)

holds (for the same reason).
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So, (q1 + q4) + (g2 + g3) = [hs + ha] and we obtain:

hs + hy : {a5,a8,&10} — R
(h3+h4)((l5) = 1 +O = 1
(h3+h4)(a8) =14+1=2

<h3 + h4)(a10) =04+1=1

The final aim is to compare both the results of (g1 +¢2) + (¢3+q4) and (¢1 +q4) + (g2 +¢3). Since,
currently, they have different domains, we are going to try to find two functions k1 € (g1 +¢2) + (g3 +q4)
and ky € (q1+qq)+(q2+gs3) such that domy, = domy, and they yield different values (to prove, in fact,
that this identity does not hold in this partial algebra). Let us consider domy, = domy,, = {ag, ar,as}

and k; defined as follows, for i € {1,2}:

ky : domy, =+ R ko :domy, — R

kl((l(;) =1 k‘g(ag) =1
ki(a7) =2 ko(ar) =1
l{il(ag) =1 l{ig(ag) =2

k1 € (1 + q2) + (g3 + qu) because ki € F and E(k1, hy + hg) holds (it satisfies the second
statement of the definition of the relation E (3.3.3)) and k2 € (¢1 + q4) + (g2 + ¢3) because ky € F
and E(ks, h3 + hy) holds (for the same reason).

So, the observables (¢1 + ¢2) + (g3 + ¢4) and (¢1 + g4) + (g2 + g3) are commeasurable, as they
have the same domain, but they are different because they are represented by different functions.

Therefore, the identity ¢ = 1 does not hold in all partial algebras, as it does not hold in this one. [
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Chapter 4

Partial Boolean algebras

In this chapter, we will introduce partial Boolean algebras independently of partial algebras, along with
associated definitions and propositions, and induced by partial algebras. Boolean polynomials within the
context of partial Boolean algebras, including their domain and associated mappings, will be discussed.

It will also be proven, along with other results, that every Boolean algebra is a partial Boolean algebra.

4.1 Partial Boolean algebra and its properties

Definition 4.1.1. A partial Boolean algebra B = (B, |,V,—, 1,0) is defined by a nonempty set B,
a binary relation | on B, called compatibility or commeasurability, a partial binary function on B, V, a

unary function, =, and two elements of B, 0 and 1, with the following properties:

~

. The relation | is reflexive and symmetric

2. Forallq € B, ql0andql1

3. The partial binary function \/ is defined exactly for those pairs (qi1, q2) € B x B for which q; } g2
4. Ifany two of q1, g2 and q3 are commeasurable (q1, q2, q3 € B), then (q1 V q2) L q3 and (=q1) L 2

5. Ifany two of q1, g2 and q3 are commeasurable (q1, q2, q3 € B), then the algebra of the Boolean

polynomials in q1, q2 and q3 (defined in the observation below) is a Boolean algebra

Observation: Let us assume B = (B, },V,—,1,0) defined as in the previous definition. If any two
of g1, q2 and g3 are commeasurable, then the algebra of the Boolean polynomials in ¢, g2 and g3 is the

structure B’ = (B', V', N/, =/, 1,0), where:
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e B’ C B is inductively defined:

1 q1,q2,q3 € B
2.01€cp
3. fz,ye B andzly, thenzVy € B andz Ny € B’

4. Ifx € B', then ~z € B’

* The operations \V/, =" and A’ are defined as:

N = B’ x B' — B'suchthatforall a,b € B, with alb, a N'b=~'(-"a V' —'b)

Now, we will verify that the previous structure (B, V', A’, ', 1, 0) constitutes an algebraic structure,

that is, the operations V', A’ and — are total functions and that B’ is closed under these operations.
Lemma 4.1.2. Any two elements in B’ are compatible.

Proof. Let us suppose that x € B’, q14 o, ¢11q3 and q20 g3. Let us consider P(x) the property: for all

z € B, x} 2. The proof follows by induction on z € B’.

1. We want to show P(q;), thatis, for all z € B’, ¢1/z. Let 2 € B’ and let us consider, now, the

following property: for all y € B, Q(y) iff ylq1.
(i) Q(q1)iffyly. Since | is reflexive, then ¢, § ¢, holds.
(i) Q(g2) iff q1 L g2, which is true based on the hypothesis.
(i) Q(qs) iff q1 L g3, which is true based on the hypothesis.

(iv) Q(1)iff 1}q, and Q(0) iff 0/ q. Since ¢; € B’, 1 and 0 are commeasurable with all the
elements in B and B’ C B, then 1/¢; and 0/ q;.

(v) Let us suppose Q(z),Q(y) and xly, for x,y € B’. We want to show Q(x V y) and
Q(x N y), thatis, (z V y)lqr and (z N y) g1, respectively. Since x§q1, yLq: and 2]y,
then we have that any two of x, y, ¢; are commeasurable. On one hand, by definition 4.1.1,
(x Vy)bq. So, Q(x V y). On the other hand, we also have that —z, —y and ¢; are
all commeasurable. Therefore, by definition 4.1.1, (=(—z V —y))bq. Since =" and V’

are defined such that their domain is restricted to B’ and B’ x B’, respectively, we have,
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by definition of restriction of a function, that the value of —'(—='z V' ='y) is the same of

=(=x VvV —y). So, (—'(='z V' —'y)) ¢, thatis, (x A" y)lq1, and we conclude Q(z A\ y).

(vi) Let us suppose Q(z), for x € B’. We want to show Q(—z), that is, (—x)} ;. Since, by
Q(x), zfq then, by definition 4.1.1, (=) 1.

The proofs of P(gy) and P(q3) are analogous.

2. We want to show P(1) and P(0), thatis, forall z € B’, 1}z and 0} z, respectively. Since 1 and

0 are commeasurable with all the elements in B and B’ C B, then 1]z and 0] 2.

3. Letus suppose P(z), P(y) and z:)y, for z,y € B’. We want to show P(z V y) and P(z N y),
thatis, forall z € B’, (xVy)lzand (xA\'y)} z, respectively. Let = € B’. By the hypothesis P(x)
and P(y) we have, respectively, that =z} 2 and y/ z, and by the fact that = |y, any two of z,y, 2
are commeasurable. So, by definition 4.1.1, (z V y)lz, i.e. Q(z V z). To prove Q(x A y), we
just need to observe that from the hypothesis we also have that —x, —y, z are all commeasurable
and, by definition 4.1.1, (—(—z V —y))lz. Once again, by definition of restriction of a function,
the value of —'(—'z V' ='y) is the same of =(—x V —y). So, (x A y)l 2, thatis, Q(x A y).

4. Let us suppose P(x), for z € B’. We want to show P(—z), that is, for all z € B’, x}z. Let
z € B'. By the hypothesis P(x), 2. So, by definition 4.1.1, (=) 2.

So P(z),forallz € B'. O

Proposition 4.1.3. The operations \/', N\ and —' are total functions and B’ is closed under these

operations.

Proof. Let us consider z,y € B’. We want to show that x V' y € B, x Ny € B’,and 'z € B'.
By lemma 4.1.2, x}y. Consequently, the elements = \V y, x A’ y, =z € B’ (due to the statements 3
and 4 of the definition of B’). It remains to prove that z V' iy, ='x € B’. By definition of restriction of a

function, the value of x V' i is = VV y and the value of ="z is —z. So, z V' y, 'z € B'. O

Proposition 4.1.4. We can generalize the statement 5 of the definition of partial Boolean algebra (defi-
nition 4.1.1) to any number of observables, that is, if any two of q, - - - , q, are commeasurable, n € N,

then the algebra of the Boolean polynomials in q,, - - - , q,, is a Boolean algebra.
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4.2 Partial Boolean algebra induced by a partial algebra

Definition 4.2.1. Let A = (A, |, +,-,0,1) be a partial algebra. The structure induced by A,
B=(B,},Vv,~,1,0), is defined as follows:

1. B={a€ A:a-a=a},thatis, the elements of B are the idempotent elements of A
2. albiffalbin A

3 avb=(a+b)—a-b

4 —a=1-a

5. 1isthelin A

6. 0 =00 1, where 0 is the real number

Observation: a — b is to be interpreted as a + (—1) o b, forall a,b € A.

Theorem 4.2.2. The structure B = (B, |,V,—,1,0), induced by the partial algebra A =
(A, L,+,-,0,1), is a partial Boolean algebra.

Proof. Let A = (A, l,+,-,0,1) be a partial algebra and B = (B, },V,—,1,0) be the induced

structure. We check the conditions 1. to 5. of the definition 4.1.1.
1. By definition 4.2.1, the relation | in B is the same as in \A. So, |} is reflexive and symmetric.

2. Since | is the same as in A, then ¢/ 1. It remains to show that ¢/ 0.

Let ¢ € B. By definition 4.2.1, ¢l 0if ¢/ (00 1). But gL (00 1) if, by definition 3.1.1, ¢/ 1, which

we already know it is always true. So, ¢} 0.

3. Let q1,q2 € B. We want to prove that \ is exactly defined when ¢,/ q.. By definition 4.2.1,
@1V ¢ = (q1 + q2) — q1 - g2 and, by definition 3.1.1, the partial binary functions + and - are
defined exactly when ¢} ¢o.

4. Letqi, qo,qs € Bsuchthatg;lg;, foralld, j € {1,2,3}. Then, by definition 3.1.1, (g1 +¢2) § g3
and (g1 - ¢2) qs. Applying, again, definition 3.1.1, we obtain [(—1) o (q1 - ¢2)]} g3, which is the

same as [—(q1 - q2)]bgs. Once (g1 + q2) b g3, [— (a1 - ¢2)]bas and (g1 + g2) b [~ (1 - g2)] (see
the observation below), then, by definition 3.1.1, [(¢1 + ¢2) — (¢1 - ¢2)] $ g3- So, by definition 4.2.1,

(1 V q2)bas.
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It remains to show that (—q1)lg2. Once g1} o then, by definition 3.1.1, (—¢1){ go. So, we have
that —q1, g2 and 1 are all compatible and, by definition 3.1.1, (1 — ¢;){ g2, which is equal, by
definition 4.2.1, to (—q1)§ go.

Observation: Since ¢, g2 and ¢; + ¢ are all commeasurable, then (q; + ¢2)4 (g1 - g2). From

here, follows that (g1 + q2)4 [~ (q1 - @2)].

. Let us consider that any two of ¢1, g2 and g3 are commeasurable. We want to prove that the algebra
of the polynomials in q1, g2, g3, thatis, B = (B, V', A’,=',1,0), is a Boolean algebra, where

B’ is defined as in the observation of the previous section (4.1).

Observations:

» We demonstrated above that any two elements in B’ are commeasurable, the operations \V/,

A" and = are total functions and B’ is closed under these operations.

e |t is also important to note that the algebra of the polynomials in ¢;,q2 and g3, i.e.,
(B',+',”,0',1), is a commutative algebra over the field of real numbers, where +' :
Hprep | and o ol . This fact will be utilized in this proof.

¢ We will denote —1 o’ @ as —'a, forall a € B’.

 Throughout this demonstration, we will state that for all « € B’, —'a is the symmetric of a.
This happens because —a’ +'a = (=10 a) +' (10'a) = (=1+1)o’a=00"a =0,
where 0, 1 and —1 are real numbers, + is defined in the field of real numbers and 0 € B’
(this is a result mentioned in the preliminaries).

* 0is the identity for the operation + because foralla € B’, 0+ a = (0o’ a)+' (10'a) =
(0+1)ca=a.

Let us consider the structure (B’, A’, V). We need to show that it is a lattice, that is, for all

a,b,c € B, we have:

(i) ldempotency for V' and A/, thatis, a V/a =a N a=a
aVaZat a—"a'ala+a—"aq
(a) Definition of \//
(b) a is an idempotent element

(c) Foralla € B’, there exists —a € B’ suchthat a +' (—'a) = 0,0 € B’, which is the
identity for the + operation
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aNa=-"(-"aV —a)
O (ot ~a—" ~a’ ~a)
21 1 a) (1 a) (1 a))
9 1)+ 1-"a)—' 111" a~"a -1+ a"a))
(1) A (1 )
(:ﬂ’(l ~"a+'"1-"a-"1+"a)
B1-1-"0)
o,

(a) Definition of A’

(b) Definition of \//

(c) Definition of =’

(d) Distributivity of - with respect to -+’

(e) 1 is the identity for the operation -’; 1 and a are idempotent elements; all the elements

in B’ have a symmetric one
() Distributivity of scalar multiplication with respect to vector addition; associativity
(g) All the elements in B’ have a symmetric one; O is the identity of the operation +’
(h) Distributivity of scalar multiplication with respect to vector addition; all the elements in

B’ have a symmetric one; associativity; 0 is the identity of the operation +’

(ii) Commutativity for V' and A/, thatis,a Vb =bV aanda N b=b N a
aVvV' b2 (a+b)~a-b2 (b+"a) —b-abvia
(a) Definition of \//
(b) Commutativity of the operations +" and -/
(c) Definition of V/

It is analogous for A'.

(ili) Associativity for V" and A, thatis, aV' (bV'c) = (aV'b)V'cand aN (bN'¢) = (aN'b)N ¢
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VOV )2 (a+ bV )= (a (bV )

Bat b+ c~"(b"c)~"(a' b+ c~" (b c))

Qar b+ c— (')~ ((a'b)+ (@' c)=" (a (b))

9, (b+c—’(b’c))—a b—a'c+ (a’' (b c))
Za+'b-"(a'b)+ c—"(a+' b+ (a-' b)) ¢
Q(av’b)+’c—’(av’b)-’c

g (aV'b)V'e

(a) Definition of \//

(b) Definition of \//

(c) Distributivity of -* with respect to +’

(d) Distributivity of scalar multiplication with respect to vector addition

(e) Commutativity; Associativity; Distributivity of scalar multiplication with respect to vector

addition
(f) Definition of \//
(g) Definition of \//

It is analogous for A'.

(iv) Absorption, thatis, a A" (a V' b) =a V' (a N'b) =

aV' (aN'b)=aV (-'(-aV ='b))

B oV (~(~'a+~'b—(~a’ b))
Sav (Z(1~"a)+ (1-"b) =" (1 -"a) ' (1-"1))))
DoV (Z((1—a)+1-"b) " 1-"b—"a+ (a'b)))
Qav(1~"a+1-"b-"1+b+a—" (a'b)))
LaV (-1~ (a 1))
Bav(1-"1+ (a"'b))

( .

( .

||=
)
+\
Q
S
N—
|\
—
Q
>
S~—

(i
=a
(a) Definition of A’

(b) Definition of \//
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(c) Definition of =
(d) Distributivity of -" with respect to +'; 1 is the identity element for -/
(e) Associativity; Distributivity of scalar multiplication with respect to vector addition
() —'a is the symmetric of a; —'1 is the symmetric of 1; 0 is the identity for +’
(g) Definition of —'; Distributivity of scalar multiplication with respect to +’
(h) —'1 is the symmetric of 1; O is the identity for +'; Definition of \//
(i) Associativity; a is an idempotent element
(i) —'(a - b) is the symmetric of a -’ b; O is the identity for 4+’
It is analogous to a A" (a V' b).

So, since in (B’, A, V') we have the idempotency, commutativity, associativity and absorp-

tion laws, (B’, \', V') is a lattice.

Now, we need to show that the lattice (B’, A’, V') is distributive, that is, for all a, b, c € B/,
aN bV )= (aNb)V (aN c).

|
_l\
_l\
S
<\
]
—~
S
+\
o
|\
j=p)
o
~
~—

_l\
Q
+
—~
[
I\
S
I\
O
+
S
O
~
I\
_l\
Q
—~
[
I\
S
I\
o
|\
+\
=
O
~
~—

O 1~a+1-"b—"c+b c—A~"b-"c+b c—"a+a'bt
a'c—"a' (b))

=1-'"1+a'b+a’'c—"a’(b'c)

=a'b+a'c—"(a'a)’ (b0

Solbta’c—"(a'b)(ac)

9@ b))V (@ ¢

B anNb) Vv (an e

(a) Definition of A’

(b) Definition of \//
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(c) Definition of =/

(d) Definition of \//
(e) Definition of -
(f) Distributivity of - with respect to +’; 1 is the identity for -/

(g) Definition of ='; —'a is the symmetric of a; —'b is the symmetric of b; —'c is the symmetric

of ¢; /(b ¢) is the symmetric of b -’ ¢; O is the identity for 4+’

(h) —'1 is the symmetric element of 1; O is the identity for +'; a is an idempotent element;

Associativity
(i) Associativity; Commutativity
(i) Definition of Vv’
K an'b=~(~a V' ='b)
=~/(~a+-"b~' (~a) ' (-'))
=
(

M—"a+'1-"b-"((1-"a)" (1-'1)))

=-"1-"a+'"1-"0-"1+ b+ a-"a-0)

I
[
+\
S
S

=a-'b

It is analogoustoa A’ c =a - ¢

Finally, we need to demonstrate thata A0 =0,aV'1=1,a N “a=0anda V' —a = 1.

(b) ©

aV12i+1-0/1%¢41- 1

(a) Definition of \//
(b) 1 is the identity for the operation -/

(c) —'ais the symmetric element of a; O is the identity for the operation +
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aN0=-"(-"aV —'0)
8 (~'a+ ~'0 ' ~'a ' ~'0)
21+ 10 (1-a) ' (1-0))
9 v1-"a)+'1-0—(1-'0-"a+0))
21+ 1 (1 a)
2—|’(1—’a—i-’1 "1+"a)
831
Do

(a) Definition of A/

(b) Definition of \//

(c) Definition of =’

(d) Distributivity of - with respect to +'; 1 is the identity for the operation -/
(e) 0O is the identity for the operation +

(f) Associativity; Distributivity of scalar multiplication with respect to +’

(g) —'a is the symmetric of a; —'1 is the symmetric of 1; 0 is the identity for the operation +;

Definition of =’

(h) —'1 is the symmetric of 1

aV' a2 a4 —'a~'(a’'a)

Bt (1-"a)~" (a’ (1" a))

Bq (a'1-"aa)

=1-"(a—"a)

=1

(a) Definition of \//

(b) Definition of =

(c) Associativity; Commutativity; 0 is the identity for the operation +

(d) 1 is the identity for the operation -’; a is an idempotent element

(e) —'a is the symmetric of a; O is the identity for the operation
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/1 @
CL/\ 1 qQ =

(a) Definition of A/

(b) Definition of \//

(c) Definition of =’

(d) Distributivity of scalar multiplication with respect to +’

(e) —'1 is the symmetric of 1; Associativity; O is the identity for the operation +’

(f) Distributivity of - with respect to +'; 1 is the identity for the operation -"; a is an idempotent

element
(g —'a is the symmetric of a; O is the identity for the operation +’

(h) —'1 is the symmetric of 1

So, since (B’, \', V') is a distributive lattice and foralla € B’, aN'0 = 0,aV'1 = 1,aN—'a =0

and a V' ='a = 1, we conclude that (B’, v/, \’, =, 1, 0) is a Boolean algebra.

Therefore, we proved that I3, induced by the partial algebra A, is a partial Boolean algebra. ]
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4.3 Boolean polynomials in the context of a partial Boolean

algebra

Definition 4.3.1. Letn € N. Let (), the set of Boolean polynomials, be defined as:
() 1e@n
(i) 0 € Qn
(i) x; € Qp, foralll <i<n
(iv) Ifo € Q,, then—p € @,
V) Ifp, € Q,, thenp Vi e Q,
The set of all Boolean polynomials is | ) Q..

neN

Observations:

¢ From the previous definition is immediate that the formulas in n variables are also Boolean polyno-

mials, more precisely, 2, C Q,,.

* Both lower case letters of the Greek alphabet ¢, v, x and «, /3, v (formulas of 32,,) will be used to

denote Boolean polynomials.

In the context of a partial Boolean algebra on the set B, every polynomial ¢ € @),, determines a map

©* : Domy,, — B, with Dom,, ,, being a subset of B", according to the following definition.

Definition 4.3.2. LetB = (B, |, V, —, 1,0) be a partial Boolean algebra and Q,, be the set of Boolean
polynomials previously defined.
We define recursively on a polynomial ¢ € @y, the set Dom,, , € B™ and the map ¢* : Dom,,, —

B, as follows:
L Ifo =1, then Dom,,,, = B"™ and ¢*(q) = 1
2. Ifp =0, then Dom,, = B™ and ¢*(q) = 0
3. If o = x;, then Dom,,,, = B™ and ¢*(q) = ¢
4. If o = =), then Dom,,,, = Domy,,, and ¢*(q) = —¢*(q)
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5. Ifo =V x, then Domy,,, = {¢ € B" : ¢ € Domy, N Dom,.,, and ¢¥*(q)x*()} and
¢ (@) =¥ (@ VvV x*(q)

Dom,,, and ©*(q) are, respectively, the domain and the map associated to the polynomial o relative to
B.

Next, we show that the definition 4.3.2 is coherent with the definition 3.2.2.

Theorem 4.3.3. Let A = (A, |, +,-,0,1) be a partial algebra, B = (B, |,V,—,1,0) be the

induced partial Boolean algebra and p,, be the following function:
Pt Qn — Py
) =

Pn

pn(0) = 00 1, where 0 is the real number

(1

(
n(®i) =

(

(

=

PV Y) = (Pn(p) + Pu(¥)) — Pul) - Pu()

pa(m9) =1 = pa(p)
Then, forall o € Q,:

1. Domyy = Dy, (o) gns Where Dy, (o) n| . denotes the restriction of the domain D, (,) . to
B", B" C A"

2. Forall § € Domyp, 0*(7) = pa(0)*(q)

Proof. Let

1. Domy,, = DPn(‘P)?”‘Bn
P(p) =

2. forall ¢ € Domyn, 0*(q) = pa(p)*(q)
The proof follows by induction on ¢.

e p=1:
1. D 9 e p |
- Lomen = = Lpu(p)n|gn

(i) Definition of Dom, , in the partial Boolean algebra

(i) D n(go),n‘Bn = Dl,n|Bn = An|Bn = B"
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(i) Definition of 1*(¢) in the partial Boolean algebra
(i) pn(p)™(q) = 17(¢) = 1

Observation: 1 is in B because, by definition, 1 is an identity element of the product in

A. Inparticular, 1 = 1 - 1, that is, 1 is an idempotent element of A.

e =0

(i) (ii) (iii)
1. Dpn(cp),n‘Bn = DOol,n|Bn =DB" = Dom%n

(i) Definition of p,,(0)

(i) Doornlgn = Dinlgn = A gn = B

(iii) Definition of Domy, ,, in the partial Boolean algebra
2. pa(@) (@ £ (00 1)@ 2001202 o*(q)

(i) Definition of p,,(0)

(i) (Oo1)*(§)=001*(q) =001

(iii) Definition of O

(iv) Definition of 0*(g) in the partial Boolean algebra

Observations:

¢ Since 0 and 1 are commeasurable, the algebra of the polynomials in 0 and 1 is a

commutative algebra over the field of real numbers.
* Oisin Bbecause (0o1)-(001)=(0x0)o(1-1)=001.
* Y=
1. Domg, £ B" 2 D, ]
(i) Definition of Dom,, ,, in the partial Boolean algebra
(i) DP?L(‘P)v”‘B" = Daynlpn = A" pn = B" (1 <i < n)
2. 0 () 2 4 2 pul)*(@)
(i) Definition of z;*(g) in the partial Boolean algebra
(i) pn(p)"(q) = 27(7) = 4
Observation: ¢, = ¢; - ¢; because, by definition, ¢ = (¢1,- -+ ,q,) € B"™. So, ¢; € B

and the elements in B are the idempotent of A.
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¢ o=
Suppose P(v)). We want to show P(—)).

L. Dpn(w),n!Bn £ Dl—pn(w),n‘Bn

2{7€ B": 7€ Dinlg N Dyoiyn g and (@) bpn($)" ()}
(7€ B":G€ BN Dyl and 1Upa(0)" (@)}
Y (g€ B": € Dy gyl g}
2{7e B": 7€ Domy,}
v Domy ,
(i) Definition of p,,(—))
(ii) Definition of D;_,, (). in the partial algebra
(i) Diplg, =B
1*(q) =1

(iv) Once Dpn(w),n} ~C B", then Dpn(w),n}Bn NB" = Dy, (4)n

B B

By definition, it is always true that 1| p, (1/)*(q)
(v) Induction hypothesis P (1))

(vi) Definition of Domy, »,

2. (P~ (@ & (1= pa()) (@
S1(@) — pal®)'(@
21-0(q)
=t (@)
£ (~0)"(@
(i) Definition of p,(—))
(i) Definition of (1 — p,(¢0))*(¢) in the partial algebra
(i) 1%(q) = 1
Induction hypothesis P())
(iv) Definition of the connective —

(v) Definition of (—¢))"(q) in the partial Boolean algebra

Observations:
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* Since 1 and 1)*(q) are commeasurable, the algebra of the polynomials in 1 and ¢*(q)

is a commutative algebra over the field of real numbers.

* —"(q) = 1 —*(q) is an idempotent element of A. For the sake of simplification of
notation, let us consider ¢*(¢) = a. We want to show that (1 —a)-(1—a) =1—a

(l—a)«(l—a)@1-1—1~a—a-1+a~agl—a—a—|—agl—a
(@) Distributivity of - with respect to +
(b) 1 is the identity of B

Sincea € B, thena-a=a

(c) —a is the symmetric element of @ and O is the identity for the operation +

*Cp=YVX
Suppose P (1)) and P(x). We want to show P(¢) V ).

(i)
1. Dpn(wvx),n ‘Bn -

0 D(pn(w)+pn(x))—pn(¢)~pn(x)an}Bn

(i) {7e B": g€ Dpn(¢),n|3n N Dpn(x)ﬂ‘Bn and p,, (¥)"(9) bpn (X)" (@)}
2 (g€ B": € Domy,, 1 Domy, and 0" (D)L (@)}

w Domyyyn

(i) Definition of p, (¢ V x)
(W) Do ()40 (x))~pn (¥) ()i =
={7€ B" : (€ Dy, w)+p.0n| gn O Dpuw)pan g and
Pn(¥) + Pu (X)) (@)L (P (¥) - Pa (X)) (D)}
={7€ B": 7€ Dy,w)n| o N Dpuynl gn @4 pu() (D 4pa(x)" ()
and (p, (1) + pr(X)) (@4 (Pa(¥) - Pu (X)) (@)}

(a) — n — * *
={7€ B": 7€ Dy, yn|ga N Dputn| o ad pa() (D dpa(x)* (D}

(a) We can omit the compatibility (p, (1) + prn(x)) ()L (Pu(¥) - pu(x))" () due
to the fact that from the compatibility of p,,(¢/)"(7) and p,(x)*(¢) we can ob-
tain the omitted one. So, once p,(¥)"(q) and p,(x)*(g) are compatible, then
Pu(t)"(@) + pu(X)"(q) and p, (1) (q) are compatible (as well as p,,(1)"(7) +
Pn(x)" () and p,(x)" (). Since any two of p,,(¢)"(§) +pn (x)" (@), Pa(¥)"(9)
and p,(x)*(q) are compatible, then p,,(1))*(q) - pn(x)"(q) and p, (V)" (7) +
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pn(x)"(q) are compatible. By definition of p*, p,(¥)*(7) + p.(x)" (@) =
(Pn(¥) + Pu(x))"(@) and P, ()" (@) - Pa(X)" (D) = (Pa(¥) - Pa(X))" (@)
(iii) Induction hypothesis P(%) and P(x)

(iv) Definition of Domyyy.n

2. (¥ VX)) (@) 2 [pa(®) + u(X) = @a(®) - 2a ()] (@)
B pu () (@) + pa() (@) = pu) (@) - pa(X) (@)
205 + (D) — (@) X (@)
S0V X(@)

2@V X)(@
(i) Definition of p,, (¢ V x)

(i) Definition of (p, (1)) + Pu(X) — Pn(¥) - pu(x))" () in the partial algebra
(iii) Induction hypothesis P(%)) and P(x)
(iv) Definition of the connective V

(v) Definition of (¢) V x)"(q) in the partial Boolean algebra

Observations:
* Since ©*(q) and x*(¢) are commeasurable, the algebra of the polynomials in ©* ()
and x*(q) is a commutative algebra over the field of real numbers.
* For the sake of simplification of notation, let us consider 1*(¢) = a and x*(¢) = b.

We want to show that ((a +b) —a-b)- ((a+b) —a-b)=(a+b)—a-b

((a+b)—a-b)-((a+b)—a-b) 2

Qwa—l—wb—a'(a~b)+b~a+b‘b—b~(a-b)—(a‘b)-a—(a-b)~b+
(a-b)-(a-b)

Yat+a-b—a-bt+ab+tb—a-b—a-b—a-b+a-b

g(a—i—b)—crb

(a) Distributivity of - with respect to +

(b) Associativity; Commutativity; a and b are idempotent elements

(c) There exists a symmetric element for a, b and any other element obtained from the
operation involving a and b, and a 0 element, which is the identity for the operation

+
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Then, for all ¢ € Q,,, P(p). O

From the lemma that follows, we can conclude that every Boolean algebra BB is a partial Boolean
algebra and that the value of o determined by a valuation in B is the value of o* on a tuple determined

by the valuation.

Lemma 4.3.4. Let B = (B, A\, V,—,1,0) be a Boolean algebra and let us consider the following
structure B, = (B, B*,V,—,1,0). Then,

(i) By, is a partial Boolean algebra
(i) Leta € X,,. Then,

(a) Dom,,, = B";
(b) For all ¢ € B™ and for all Boolean valuation v such that v(x;) = ¢;, i € {1,--- ,n},
a*(q) = a(v)
Proof. Let B = (B, A, V,—,1,0) be a Boolean algebra and B, = (B, B*,V,—,1,0).

(i) We want to prove that BB, is a partial Boolean algebra, that is:

1. B? s reflexive and symmetric;
Since the compatibility relation is B* = {(q;, q;) : ¢, q; € B}, then all the elements in
B are commeasurable. In particular, we have that (¢:, ¢:), (¢, ¢;), (¢j, @) € B2 for all
4, qj € B, q; # q;, thatis, B is reflexive and symmetric.

2. Forallq € B, (¢,0) € B*>and (q,1) € B
Letq € B. Sincel € B and 0 € B and all the elements in B are compatible, then
(¢,1) € B*and (¢,0) € B2

3. Vis exactly defined for those pairs (q1,q2) € B x B such that (¢1, q2) € B?;
Let (¢1,q2) € B x B. Then, the pair (qy, g2) is in the relation B2.

4. If any two of q1, g2, g3 € B are commeasurable, then (q; V ¢2, q3) € B? and (—qy, ¢2) €
B2
Let ¢1, 2,93 € B such that (¢;,q;) € B? foralli,j € {1,2,3}. Since s V ¢ €
B, =q; € B and all the elements in B are compatible, then (q; V ¢2,q3) € B? and
(—q1,¢2) € B~
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5. Ifanytwo of ¢, 2, g3 € B are commeasurable, then the algebra of the Boolean polynomials

in q1, g2 and g3 form a Boolean algebra.

This proof is similar to the one provided in the theorem 4.2.2 in the statement 5.

Then, B, is a partial Boolean algebra.

(i) Let v € ¥, ¢ € B™ and v be a Boolean valuation such that v(x;) = ¢;, fori € {1,--- ,n}.
Let

(@) Domg,, = B"

(b) a*(q) = a(v)

P(a) =
The proof follows by induction on .

s a=uy
(a) Dom,, , L B"
(i) Definition of Dom,, ,, in the partial Boolean algebra
0) 2@ £ g 2 v(w:) B zi(v)
(i) Definition of z;*(§) in the partial Boolean algebra
(i) By hypothesis
(iii) Definition of value in a Boolean algebra
s a=:
Suppose P(«a). We want to show P(—a).
() Dom-an 2L Domg, & B"
(i) Definition of Dom- 5, in the partial Boolean algebra
(i) By induction hypothesis P(«)
(b) (=e)"(q) = —~a*(9) £ ~a(v) & =a(v)
(i) Definition of (=)™ (§) in the partial Boolean algebra
(i) Induction hypothesis P(cv)
(iii) Definition of value in a Boolean algebra
s a=pVy

Suppose P(/3) and P (7). We want to show P(S V 7).
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(@ Domgyyn 4 {7€ B": §€ Domg,, N Dom,,, and (8*(q),7*(q)) € B*}
(i - n . =
={qde B":§J€ Domg,, N Dom,,}
w Domg , N Dom., ,,
Y B nB"

W pn
(i) Definition of Domyg,.,, in the partial Boolean algebra

(i) Since 5*(9),~v*(q) € B, then it s always true that (3*(q),v*(¢)) € B?
(i) Simplification of notation

(iv) Induction hypothesis P(3) and P(7)

(v) AN A=A, forall set A

) (5V)"(@ = 8@ V(@) = B) V() E BV ()
(i) Definition of (3 V «)"(q) in the partial Boolean algebra
(i) Induction hypothesis P(3) and P(~)

(iii) Definition of value in a Boolean algebra

Then, forall a € ¥, P(«). O

Definition 4.3.5. Let B be a partial Boolean algebra and o« € %,,. We say that o holds in B if for all
q € Domy,p, o*(q) = 1.

In the next section, we will study the formulas holding in all partial Boolean algebras.
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Chapter 5

Partial classical propositional logic

In this chapter, we will explore the ()-validity of a formula, introduce the axiomatic system of [9] along
with new definitions and theorems. Furthermore, the chapter will cover the soundness and completeness
theorems, accompanied by their respective proofs. Each introduced concept will be illustrated through

examples provided in their respective sections.

5.1 (Q-validity

In this section, the concept of formula we will use corresponds to the one provided in the preliminaries.
In addition to introducing the concept of (Q-validity, we will present a result that compares ()-validity with

C-validity, exploring these concepts in both quantum and classical propositional logic.
Definition 5.1.1. A formula is Q-valid if it holds in all partial Boolean algebras.
Theorem 5.1.2. Every Q-valid formula is a C-valid formula.

Proof. Let @ € ¥, be a ()-valid formula. To show that « is a C-valid formula, by theorem 2.3.7, is to
prove that B |= «, for all Boolean algebras B. Let B = (B, V, A, —, 1,0) be a Boolean algebra and v
a valuation in 3. We want to conclude that @(v) = 1. By lemma 4.3.4, B, = (B, B*,V,—,1,0) is a
partial Boolean algebra. Let ¢ € Dom,,, such that ¢; = v(z;). Then, by lemma 4.3.4, o*(q) = @(v).
Since av is Q-valid, a*(q) = 1. Therefore, @(v) = 1. O

Theorem 5.1.3. Let o be a formula in n variables whose only subformulas in x; alone are x; or —x;,
fori € {1,--- ,n}, and such that for all i,j (1 < i < j < n) there exists a subformula c; ; in z; and

x; alone. Then, o is Q-valid if it is C-valid.

Proof. Let B = (B,},V,—,1,0) be a partial Boolean algebra and « the Boolean polynomial in n

variables. Let us also consider ¢ € Dom,,,, and a subpolynomial «; ; such that no subpolynomial of
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«; j has occurrences of both z; and x; (see the Observation below). We want to show that a*(¢) = 1.
Given the construction of «; ;, it can only be in one of the following formats: x; Vx;, —=x; Vx;, 2;V —x; or

—x; V- ;. By definition of Dom_ ,,, we obtain that qi(qu, foralll <7 < 7 < nand by proposition 4.1.4,

the algebra of the Boolean polynomialsin ¢q, - - - , ¢,, is a Boolean algebra. Let 3’ be the Boolean algebra
of the polynomials in 1, - - , g, and o** the function associated to B’. Note that o*(¢) = o™ ().
Given that «v is Cvalid and B’ is a Boolean algebra, a**(¢) = 1. Then, a*(¢) = 1. O

Observation: Such «; ; exists. We begin with «; ; as stated in the theorem. If this «; ; still does not
satisfy the additional condition required, it is because we can choose a subpolynomial agyj where both

variables x; and x; occur. Then, we select oz;j and repeat the process.
Theorem 5.1.4. A formula in one or two variables is (Q-valid if it is C'-valid.

Proof. We are going to consider two scenarios, the first one « being a formula in one variable and the

second one in two variables.

* Let us consider a partial Boolean algebra B = (B, },V,—,1,0) and a formula « € ¥; such
that o is C-valid. We want to show that a*(¢) = 1. By the proposition 4.1.4, the algebra of the
Boolean polynomials in ¢; is a Boolean algebra. Let 3’ be the Boolean algebra of the polynomials
in g1 and o™ the function associated to 5. Note that a*(¢) = «**(¢). Given that « is C-valid
and B’ is a Boolean algebra, a**(¢) = 1. Then, a*(q) = 1.

* Let us consider a partial Boolean algebra B = (B, },V,—,1,0) and a formula & € X5 such
that o is C-valid. We want to show that a*(¢) = 1. Let us consider the property P(«) iff if

7= (q1,q2) € Dom,, o, then ¢14.go. The proof of this property follows by induction on .

o P(x;),fori € {1,2},iff ¢ € Dom,, o implies 1§ go. By definition, Dom,,. o = B*. So,
Q18-

* P(—a)iff§ € Dom_, 2 implies ¢ L go. Let us suppose P(«r) and that § € Dom_, 2. By
definition, Dom_, 2 = Dom,, 2 and, consequently, ¢ € Dom,, 2. By induction hypothesis
P(a), q1bgs.

e Pl vV pB) iff ¢ € Domgyso  implies g1l qo. Let us suppose
P(a), P(B) and that ¢ €  Domgayse. By definition, Domgyge =
{d€ B*:qd€ DomyoN Domgsand o*(q)L8*(q)}. Since ¢ € Dom,, then,
by induction hypothesis P(«), ¢1 4 qo.
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So, in all these cases, for all ¢’in the domain of a formula o € X, ¢1 | g2. By proposition 4.1.4, the
algebra of the Boolean polynomials in ¢; and ¢, is a Boolean algebra. Let 3’ be the Boolean algebra
of the polynomials in ¢; and g2 and o** the function associated to . Note that a* (¢) = a**(q).
Given that av is Cvalid and 3’ is a Boolean algebra, a**(¢) = 1. Then, o*(¢) = 1.

]

Now, we will give some examples of (Q-valid formulas and not ()-valid formulas, which were taken from

the article [9].

Example 1. The formula oo = ((z1 V 22) A x3) <> [(x1 A x3) V (22 A 23)] is a Q-valid formula.

Proof. Since the subformulas in x; alone is x1, in x5 alone is x5 and in x3 alone is x3, and for all
1 <1 < j < 3there exists o j, where a9 = 21 V @9, 13 = @1 A w3 and a3 = T2 A x3, and

given that o is C-valid (it is the distributive law), then by theorem 5.1.3, v is ()-valid. OJ
Example 2. The formula v = [(z1 V 22) V x3] <> [21 V (22 V x3)] is Q-valid.

Proof. Firstly, we can't apply theorem 5.1.3 because this formula does not satisfy all the required hypoth-
esis, specifically there does not exist «; 3, that is, a subformula of « involving only the variables x; and
x3. However, this does not mean that it is not ()-valid.
Let us consider a partial Boolean algebra B = (B, |,V,—,1,0) and let ¢ = (¢1, ¢2, ¢3) € Domg 3.
By definition,
Domgs ={G7€ B*: ¢ ¢ Domyz,vas)vas,s N Domg, v (zgvay),s and
(21 V @2) Vas) (@b(z V(22 V 23))"(9)}

= {G€ B®:§€ Domy, 3N Domy, 3N Dom,, 3 and

(1 V22) V) () h (21 V (22 V 23))"(q) and (21 V 22)"(q) L5 (q) and
21"(q)d (z2 V 3)"(@) and 21" (§) b 22" (q) and 2" (7) k5™ () }

={ge B’ : (e V) Va)b(@mV(eVas))and (a1 V g2)bgs and g1 4 (g2 V g3)

and q1 5 g2 and g2 g3}

We have that ¢1 5 g, 20 g3 and ¢1} (g2 V g3). Consequently, due to the fact that g2 g2 and g2 s,
we have go ) (g2 V q3). Therefore, any two of q1, go and g2 \V g3 are commeasurable, which implies that

the algebra of the Boolean polynomials in ¢, g2 and ¢» V g3 is a Boolean algebra.
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Additionally, we also know ¢; V g2l g3. Analogously to what we have previously done, since g2 g2
and ¢20q1, g2 (g1 V q2). Thus, any two of ¢; V ¢2, g2 and g3 are commeasurable and, consequently,

the algebra of the Boolean polynomials in ¢; V ¢1, g2 and g3 is a Boolean algebra. Then, on one hand,
(1 Vag)Vi(gpVg)=
£ @ Ve V(gVa)
= @ V[(@2Vae) Vg

2 g v (2 V g3)

(i) Associativity (of the algebra of the Boolean polynomials in ¢, ¢2 and ¢o V ¢3)
(ii) Associativity (of the algebra of the Boolean polynomials in ¢, V g2, g2 and g3)

(iii) Idempotency (of the algebra of the Boolean polynomials in ¢; V g2, g2 and g3)

On the other hand,
(1 Vg2) V(g2Vgs) =
£ (@1 V@) Va]Va
ElaV(eVe)Va
o (1 Va)Vag

(i) Associativity (of the algebra of the Boolean polynomials in q; V ¢2, g2 and ¢s)
(ii) Associativity (of the algebra of the Boolean polynomials in g1, g2 and g2 V ¢s)

(iii) Idempotency (of the algebra of the Boolean polynomials in g1, g2 and g2 V ¢s)

Since g1V (¢2V g3) = (1 V 2) V (@2 V g3) = (@1 V g2) V g3, we conclude that g1 V (g2 V g3) =
(¢1V q2) V g5 and, consequently, the formulas (x; V x9) V 23 and 1 V (24 V 3) have the same value,

establishing that the formula « is Q)-valid. [

Example 3. The formula [(z1 <> x3) <> (23 <> 24)] <> [(21 <> 74) <> (22 <> x3)] is C-valid but it
is not (Q-valid. The proof is by considering the same algebra and the same observables as in the example
of the identity that does not hold in all partial algebras (3.4) for the corresponding formula but substituting

< for +.
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5.2 Axiomatic system

LethL be the set of formulas X U {{ (a1, -+ , ) s g, -+, € 2, for m € N} E,{’ will be the
subset oné defined as X, U {} (a1, -+, ) s aq, -+, € Xy, for m € N},

Observation: We will assume that A, — and < are defined just with the connectives mentioned above,
i.e., a1 A is an abbreviation of = (- V- ); iy — i is an abbreviation of —a; Vag and a <> an

is an abbreviation of ~(—=(—ay V ay) V = (—ag V ay)).

}

Definition 5.2.1. et ® be a subset of 27‘%. A sequence vy, - - - , Y Of formulas of 25, is ®-admissible
if the following condition is satisfied:

Foralli € {1,--- ,k}, 7 is either of the type | (a1, 1), where y is a subformula of a formula
a € ® or of the type | (an, o), where ay V iy is a subformula of a formula oc € ® (we will call both
of these subformulas “axioms extracted from o.”); or there exist indices iy, - - - i, such that1 < i;, <1

and ~y; follows from ;- - - , s, by one of the rules below (rules of inference):

J;(Ofla e 7am)
Lo, o)

Lla,ar)  blan,an) o (e, ;) e L (atm, )

J)(O[h... ,Oém)

R;: where 1 <14,5 <m

Rz:
(There are m? premisses of the type | (v, a;), where 1 < i, j < m)

J)(Ckl,ag) Oy <> O3

L(ay, az)

R3:

L(mag, as)

" (o)

L(ay, ay, az)

J)(Oél V 062,063)
(L(Oéh e 70%)
ﬁ(oéh c. 705n>

a1 a1 — Qo
Q2

R5:

S;: (where 5(z1, -+ ,x,) is a C-valid formula)

Sz:
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5.2.1 ()-proof of a formula
L

Definition 5.2.2. A sequence 7, - - -,y of formulas of X35, is a (QQ-proof of a formula o € %, if it is

{a}-admissible and there exists i € {1,--- , k} such that a« = ;.

Observations: As we said before, the connectives A, — and < are defined with the connectives — and
V. It is important to note that if we have a formula « with a subformula of the type oy A aig, 7 — g

or av; <> g, We can extract the axiom (L(al, ), just like with the case of a; V an, as we show below:

* a3 Aay = —(—a; V —ag). From here, we can extract a few axioms but the one needed is

b (maq, mag). We want to show that we can obtain | (aq, ) from [ (—a, —as):

Hypothesis
Y ’—|O[
—J’( ! 2) (R1)
&(_'042, _'041)
—————(R4)
<L(0427 -y )
— (R)
J)(ﬁoéla )
———— (R4)
<L(041? 042)

* a1 — a9 = —aq V ag. From here, the most relevant axiom is g(ﬂal, Q). Let us show that we

can obtain | (a1, ) from | (—avy, cvg):

Hypothesis
L(ma, o)

(Ra)
b(an, as)

* a; ¢ ay = (7(mag Vag) V a(mag Voay)). Itis useful to see ay <> g as (g —
as) A (g — 1), because a; — i is a subformula of (o — an) A (e — ) and we know

that from «; — g we can extract | (a1, ).
So, any kind of occurrences of formulas of this type, we will extract this axiom trivially.

Let us consider some examples of ()-proofs to elucidate the definitions 5.2.1 and 5.2.2. It is important

to mention that these ()-proofs will be presented in a tree format to enhance comprehension.

Example 1. We want to construct a Q-proof of & = (x; V —z1) V x9. From «, we extract the
axioms: | (z1,~x1), { (21 V —x1, 2) (as well as the reflexive ones, that is, | (21, x1), L (—z1, —x1),

Lz V iz, 21 Vo), (e, 29), (@, ). Then,
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Lz, 21) Axiom
(R2)
) " dwvome)
1
T V X1 (51) ﬁ(l’l V —-xy, xg)
e So)

is a Q-proof of a.
Observations:

B(xy,z9) = 11 — (21 V o) is a classical tautology. So,

5(231 V ﬁ.231,.’132) = (l’l V _\1'1) — ((331 V _\.?31) V .Z'Q)

Example 2. We want to construct a Q-proof of o« = (1 V o) V —z1. We extract the axioms | (z1, z2)
and | (x1 V 9, —21) (as well as the reflexive ones) from «. Then,
Axiom

(21, 72)
5(371, 5172)

(S1)

is a ()-proof of a.
Observations:

B(x1,z2) = (1 V x2) V mx; = «vis a classical tautology.

Example 3. We want to construct a Q-proof of v = ((xg V 22) V 1) V —g. The axioms extracted

from cv are: | (zo V 9, 21), L ((xo V x9) V 1), —22) (as well as the reflexive ones). Then,

Axiom
Axiom J>($27I2)
= = (R
bz Vas,m) (Ra) (o) (51)
1 1
Ly, 29V 29) v(x2) o)
3
i(l‘laf@)
(S1)
5($1,$2)

is a (Q-proof of a.
Observations:

B(x1,22) = aand y(xg) = (x2 V 23) <> x5 are C-valid formulas.

Example 4. We want to construct a Q-proof of & = ((z1 V 22) Axg) <> ((z1 Ax3) V (22 Ax3)). The
axioms extracted from «v are: | (z1 V xa,23), L(x1 A 23,22 A x3), § (21, 22), { (21, 23), L (29, x3),

L((x1 V ) A g, (x1 A x3) V (22 A x3)) (as well as the reflexive ones). Then,

59



Axiom Axiom Axiom Axiom
B L (22, z3) (21, 3) (21, 2)
J> (Ih T2, ZU3)

5(951, T, xs)

(R2)

(S1)

is a Q-proof of a.

Observations:

In - - are the formulas of the type | (z;,2;),1 < i < 3 (reflexivity), which are axioms, and the
formulas of the type (L(xj, ), 1 <i<j<3x;# x; (symmetry), which can be obtained by the rule
Ry from | (x;, z;), that we already know to be axioms.

B(x1, x9, x3) = ais a C-valid formula (it is the distributive law).

Proposition 5.2.3. /f « is a C'-valid formula in n variables from which we can extract the axioms

L(xi,xy), forall 1 <i < j < n, then there exists a ()-proof of .

Proof. Let o« = [(xy,--- ,x,) be a Calid formula such that | (z;,z;) are axioms, for, at least,

1 <1< j <n.Then,

Axiom
Axiom Axiom (@) (Ry) Axiom Axiom
Ly, 1) e by ag) - Ly, ;) b(wn—1, ) L (@, ) (Ro)
Ly, - ) -
Bz, xn
is a Q-proof of av. ]

5.3 Soundness of the axiomatic system

Lemma 5.3.1. leta € ¥, and B = (B, },V,—,1,0) be a partial Boolean algebra. Let us also
consider § € Dom,, .. Then,

foralli € N, forall v € Eé, ify is the i-th element of a Q-proof of o, then P’(~y), where P'(~) is
defined as:

If~ is a formula of ,,, then ¢ is in the domain of the Boolean polynomial v and v*(q) = 1, If y is a
formula of the type § (av, - - -, ), then ¢ is in the domain of the Boolean polynomials cvy, - - -, cyy, and

the elements cv,,,* (q) are all in relation |, form € {1,--- | k}.

Proof. Letaw € ¥, and B = (B, |, V, —, 1,0) be a partial Boolean algebra. Let P (i) be defined as:
!

for all v € 35, if v is the i-th element of a Q-proof of «v, then P’(+y). We are going to prove P(7) by

induction on 4, for all 7 € N.
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o P(1)iffforall v € Eé, if v is the first element of a Q-proof of «v, then P’(7).

o Casey = (a1, ):
Then, o is a subformula of v and due to the recursive way the domain of the Boolean polyno-

mials are defined, we have that ¢'is in the domain of cv;. Since | is reflexive, a1 *(§) L a1 *(q).

o Casey = | (a1,0), oy # ay:
Then, a1 Vg is a subformula of cv. By definition of Domg, vag,n, ¢ € Doma, nNDomg, p
and o * (@) L az*(q).
}

* Let us assume P(j), forall j < k. We want to show P(k), i.e., forall v € X5, if v is the k-th

element of a Q-proof of «, then P’(~).

* Ry: Case v = | (ay, ), where i, j € {1,--- ,m}, is the k-th element of a Q-proof of av:
Then, v1 = [(aq, -+, ayy) is the k — t-th element of the Q-proof of «, for some ¢ € N,
and, by induction hypothesis, P’(;). Since ~; is a formula of the type | (aq, -+, o),
we have that ¢’is in the domain of the Boolean polynomials o, - - - , c,,, and the elements

a;*(q) are all in relation |, forall I € {1,--- ,m}, thatis, for all i,5 € {1,--- ,m},

a;*(q) ba;*(q).

* Ry Casey = (ay, -+ , ) is the k-th element of a Q-proof of a:
Then, o= J)(Oélagl)?’y? = nL(OélaOé?)a"' e é(@haj)a“' y Ym?2
Lam, am), 1 <p<m? arethek—t, k—ty, -+  k—t,2, forsomety, to, -+ 2 €

N, elements of the Q-proof of . By induction hypothesis applied to each ~,,r €
{1,---,m?}, and due to the fact that v, € Eé \ X, ¢is in the domain of the Boolean poly-

nomials av, -+, @y, and a*(¢)dar* (@), ar*(Q)da* (@), -+, ar*(Q)ban* (@), -,
a (b (@), -, an* (@) §an* (), i.e., the elements oy *(§) are all in relation |}, for all
le{l,---,m}.

* R3: Case v = | (a1, a3) is the k-th element of a Q-proof of c:
Then, v1 = L (a1, ), 72 = ag <> ag are the k — ty-th, k — to-th elements of the Q-proof
of «, for some t1, %5 € N. By induction hypothesis applied to v, and once v; € E,% \ 2,
we have that ¢'is in the domain of the Boolean polynomials avy, cee and i *(q) § aa*(q). By

induction hypothesis applied to v, and once ay € 3, ¢’ is in the domain of the Boolean
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polynomial 6 = a2 <> a3 and 0*(¢) = 1. 0*(¢) = 1 means, because of the observation
below, that ¢ € Dom, n N Domes, n, ao* ()b as*(q) and a*(7) = as*(q).

Since a1*(q) §ax*(q) and a2*(q) = az*(q), follows that cv1*(4) § as* ().

So, once ¢ € Domey, n N Dom, », and a1*(7) L as*(§), we conclude P'().
Observation:

0°(q) = (g <> a3)™(q) is equivalent to (=(—(—az V az) V =(=az V as)))*(q). Ap-

plying multiple times the definition of _* in a partial Boolean algebra, we get that 6* () =
~(2(ma2™(@) V as™(q) V ~(mas™(q) V a2*(q))), e, 67(7) = a2™(q) <> as™(Q).

Rs: Case v = [ (aq, a) is the k-th element of a Q-proof of a:

Then, v1 = §(—ay, ag) is the k — t-th element of the Q-proof of v, for some ¢ € N, and,
by induction hypothesis applied to v; and due to the fact that v, € E,‘% \ X, ¢isin the
domain of the Boolean polynomials —av; and ap and (—ary)*(q) §an*(q).

By definition, Dom-a,, = Domg,n. S0, ¢ € Domgy, . Since (—ay)*(q) =
—a1*(¢) and (—aq1)*(¢) and ao*(§) are commeasurable then, by theorem 4.2.2,
== * (@) L a*(q). By the observation below, =—as*(q) = a1*(q). So, ar* ()L ae*(q)

and we conclude P’(7y).

Observation:

Since —a1*(¢) and ax*(§) are commeasurable, then the Boolean polynomials in —a;*(q)

and a»* () form a Boolean algebra and, by lemma 2.3.2, we have the property =—a;*(¢) =

Oél*((jj.

Rs: Case v = [ (a1 V g, a3) is the k-th element of a Q-proof of «:

Then, 71 = [ (a1, ag, ai3) is the k—t-th element of the Q-proof of v, for some ¢ € N, and, by
induction hypothesis applied to v, and since v € Zé \ 2,., ¢'is in the domain of the Boolean
polynomials a1, g and a3 and a1 *(§) L™ (4), a1*(§) s as*(§) and a* (@)L as*(q) (as
well as the symmetric elements and the reflexive ones).

Since any two of the three previous elements are commeasurable then, by theorem 4.2.2,
a1*(q) V ao*(q)das*(q), which is, by definition, (a; V ag)*(q){as*(g). It remains
to show that ¢ is in the domain of the Boolean polynomial a;; V as. By definition,

7 € Dome,va, n if, in particular, ¢ € Domy, , N Domg, . So, P'(7).
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* S;: Case v = fB(ay, -+, ) (where S(xq, -+, x,) is C-valid) is the k-th element of a
Q-proof of a:

Then, v = L (aq,- -+, ay,) is the k — t-th element of the Q-proof of v, for some ¢ € N.
By induction hypothesis applied to v, and since o € 27{) \ X, ¢ is in the domain of the
Boolean polynomials avy, - - - , av, and a;*(§) b a;*(§), for all 2,5 € {1,--- ,n}. We want
to prove that ¢ € Dom.,,, and that v*(¢) = 1.

By definition 4.3.2, since § € Domg, ,N---NDom,, , and a;*(§) L e;*(§), forall 4, j €
{1,---,n}, ¢ € Dom,, = B". It remains to show that v*(¢) = 1. Given that any pair
among a1*(q), - - - , v, () are commeasurable, the algebra of the Boolean polynomials in
a1*(q), -, a,*(q) is a Boolean algebra. As B(x1, - - - ,x,) is a C-valid formula then, by
the principle of substitution for tautologies (2.3.8), (a1, -+ ,ay,) = v is also a C-valid
formula, that is, for all Boolean algebras 3; and for all valuation v, 7(v) = 1. Once more,
due to the commeasurability of all the elements of B, we have that B = (B, B%,V, -, 1,0).

Let us consider the Boolean algebra B; = (B, A, V, —, 1, 0) such that for all valuation v in

B, v(z;) = o;*(q), forall i € {1,--- ,n}. Then, by lemma 4.3.4, v*(¢) = 7(v) = L.

* §,: Case v = «y is the k-th element of a Q-proof of a:

Then, v1 = a1 and 75 = a3 — ao are the k — t1-th, k — to-th elements of the
Q-proof of «, for some t1,t; € N. By induction hypothesis applied to v;, ¢ is in the
domain of the Boolean polynomial oy and a;*(¢) = 1. By induction hypothesis ap-
plied to 72, ¢ is in the domain of the Boolean polynomial # and 6*(q) = 1, where
0 = o — 9. Once @ is equivalent to —ay V a then, by definition, Dom_a,va,n =
{7 € B : ¢ € Dom-4, n N Domyg, , and ma1*(q)bax*({)} = {¢ € B" : 7 €
Domye, » N Dome, , and aq* (@) oo (4) }.

We have that o, *(¢) = 1. So, 0*(q) = (ay — a2)*(¢) = 1 implies, by the observation
below, that a.e*(¢) = 1.

Since § € Domy, », and a*(§) = 1, we conclude P’(7y).

Observations:

* Since a1*(¢) and i *(q) are commeasurable, then the Boolean polynomials in vy *(§)
and ap*(§) form a Boolean algebra and since «1*(¢) = 1, we have by definition 4.3.2,

by lemma 2.3.2 and by definition 2.3.1, the following equalities:
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(a1 = a2)"(q) = (mauVa2)(Q) = ™ (@) V a2*(q) = -1V ax*(q) =
ov @2*<q> = 052*((1).
e The rule S5 does not preserve (Q-validity, as remarked in [9], i.e., there are ()-valid

formulas i1 and a; — a such that s is not Q-valid.

]

Soundness Theorem. [f there is a OQ-proof of o« € X, then, for all partial Boolean algebra I3, « holds

inB.

Proof. Suppose that there is a Q-proof of a € ¥, say S = 1, ,¥m. Let B be a partial Boolean
algebra and ¢ € Dom,,,,. Since S is a Q-proof of «, then o = ~;, for some ¢ € {1,--- ,m}. By

lemma 5.3.1, we have P’(~y). Since a € %3,,, we conclude that a*(q) = 1. O

5.4 Completeness of the axiomatic system

In order to demonstrate the completeness theorem, it will be necessary to introduce a few lemmas as well

as new concepts.

}

Definition 5.4.1. Let o € X,. A formula v of ¥5, is called “c-provable” if there exists an {a}-

admissible sequence vy, - - - , vy such that~y = ~;, forsomei € {1,--- | k}.
Observation: From now on, we will assume that « is a fixed formula in exactly n variables.

Definition 5.4.2. Let us define ), as the subset of formulas of 3, such that (3, 3) is a-provable,

that is, Q. = {8 € X, : (B, 5) is a — provable}. Formulas of §2,, contain no other variables than

1

U PR

Lemma 5.4.3. The formulas x4, - - - , x,, and « are formulas of €).

Proof. Let us consider the set €2 previously defined. We want to show that ¢, - - - , z,, and « are formulas
of ), thatis, that xy, - - - , ., @ € X, (which is trivially true) and § (x;, x;) and | (a, o) are a-provable,

forall 1 < ¢ < n. Since « is a formula in exactly n variables, then x; is a subformula of «, for all
i€ {1,---,n}. So, we extract the axioms | (z;, x;). Similarly, since « is a subformula of itself, then we
also extract the axiom | (c, ). So, | (24, z;) and { («v, ) are a-provable and, consequently, z;, & € €,

foralli € {1,--- ,n}. O

1Whenever there is no ambiguity, we will write 2 instead of 2.
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Definition 5.4.4. Given ., ay € 3, We Say “avy s a-provable equivalent to avy ” (notation: av; <>, aa)

when o;; <> «up IS a-provable.
Lemma 5.4.5. The relation <+, is an equivalence relation on the set 2.
Proof. We want to show that <+, is an equivalence relation on €.

* >, isreflexive, thatis, forall ag € Q, a1 <>, 1. Since a; € Q, then | (a1, ) is a-provable.

So, we have

a-provable
L(a, aq)
L(ar)

a1 < 0

(R2)
(S1)

and, consequently, a;; <>, 7.

* <, issymmetric, thatis, for all aq, aig € €, if iy <+, g, then ay <+, . Since g, ap € €},

we have that | (a1, 1), § (g, i) are a-provable. So, the tree

_a-provable —, orovable
<
<L(041, C¥1) aq Qg (Ra)
a-provable b(aq, a2) (S1)
1 < Qo (Oél < OéQ) — (042 — Oél>
Qg <> O (S2)

proves that ay <>, 1.

* <, istransitive, thatis, for all aq, i, iz € €, if iy <>, a2 and iy <>, a3, then aq <>, as.

Since v, g, arg € €2, we have that | (v, o), § (e, ), { (a3, a3) are a-provable.

a-provable P P, P a-provable
JJ(O[ZHO[Z') J)(alacYQ) J)(CYQ,Oég) J)(Oél,O[;g) LJJ(aj7ai) (Ra)
a-provable <L(a1, ag, ag) s
a-provable 1 £ (1 & ap) = [(az & a3) = (m @ as)]
2
Qg <> Q3 (OZQ — OZ3) — (Oél < 043)
aq <> Q3 (S2)
where 1 <37 <5 < 3.
P is the subtree:
_a-provable .\ oyovable
bar, ) X & (Rs)  Q-provable
(L(Ozh Oég) Qg <> Q3
(R3)
L(ay, az)
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B, is the subtree:

a-provable a-provable
<L(042, as) Qg <> Q3
(R3)
é(Oé27 043)
P is the subtree:
_a-provable \ byovable
é(Ozl,Oél) 1 < Qo
(R3)
43(0517 aQ)
So, since <+, is reflexive, symmetric and transitive, we conclude that it is an equivalence relation on
Q. O

Lemma 5.4.6. Let 3 € Q). Then, the formula | (3, 8 <> [3) is a-provable.

Proof. Let us consider 3 € Q. Then, | (5, ) is a-provable. To show that | (53, 8 <+ [3) is a-provable,

we just need to take into account the following tree:

a-provable
\6.5) .
a-provable L(B) 5
6.8  Bo—B "
o
=50
a-provable  _@-Provable. $=6.8) (Ry)
(BB L(B, ﬁﬁ) . a-provable
LB.5,B) 16.6)
WBV=5.B) L(5) .
L(B.5V ~P) BV-BoBeh
L(B, 8« B)
In - - - appear the following formulas (which are obviously a-provable): (=3, —3) and [ (=3, 3). In

L

fact, there are in total 9 formulas of X5 but since two of the formulas in [ (3, 3, —/3) are the same, we

are going to have some of them repeated. ]

Definition 5.4.7. Given a formula « € X3,,, the structure associated with itis B = (B, {,V,—,1,0),
with B = Q/ <, 2, where:

1 forall [aq], [ao] € B, [an]b[ae] iff § (aq, as) is a-provable

2Whenever there is no ambiguity, we will write [8] instead of [B]«s,, , for all elements [3] of B.
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2. forall [aq], [ag] € B such that [c1] L [cvs], [c1] V [a] is the class [a V ag]
3. forall (1] € B, —[avy] is the class [—av |

4. 1 is the class of a-provable formulas, that is, 1 = {3 € 2 : (3 is a-provable}
5. 0 is the class —1, that is, 0 = [—[3], for 3 a-provable

Lemma 5.4.8. Let B = (B, },V,—,1,0) be defined as in the previous structure. The relation | and

the operations \/ and — are well defined on B.

Proof. Let us consider B = (B, },V,—,1,0). To show that |, — and V are well defined on B, we need

to demonstrate:

o Ifag 4 ag, f1 <4 P2 and L(aq, 1) is a-provable, then [ (a, B2) is a-provable. Let us
suppose that i <4 g, 81 >4 B2 and | (ay, 1) is a-provable. The following tree demonstrates

the desired proof:

_a-provable.
blar, B1) () a-provable
L(B1,a1) o
16ay) Chrovatle.
J)(@Q;ﬁﬁ b P (Rs)
J,(a2752)

e If ay <>, o, then ~ay <>, -y, Let us suppose that oy <>, 9. Then, we just need to

consider the following tree to prove that —a <>, —as:

_a-provable -\ ovable
<L(041,041) Q<> Qg
(R3)
a-provable b(an, a0) (S1)
1 <> Qp (041 — Ozg) — (_|O./1 e ﬁ042) (5]
2

() <> 0
o Ifay ¢34 ag, 81 ¢34 B2, §(aq, B1) is a-provable and | (aa, B2) is a-provable, then ay V 31 4+,
g V B. Let us suppose that g <4 o, 81 <34 B2, L (a1, B1) is a-provable and | (a, 52) is

a-provable. We just need to consider the following tree:

a-provable a-provable a-provable a-provable

(v, ) b(Bi, Bi) blan, Br) Llag,B) P Py Py P

(R2)

a-provable L(B1, B2, 01, a2) .
a-provable p1 < B2 (B1 ¢ B2) = [(an ¢ ag) = (a1 V B1 <> aa V Bo)] ()
a1 > Q2 (a1<—>a2)—>(a1\/61<—>a2\/ﬂ2)

(Sa2)
a1V« apV B,

where:
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Pll

_a-provable -\ ovable

(L<Oél,061) a1 < Qo

(L(Oél, OQ)

(R3)

PQ:

_a-provable  a-provable

Mﬁl;ﬁl) B <> B2
L(Br, B2)

(R3)

Laprovable  a-provable

L(aq, Br) B <> Ba
<L(041, f32)

(R3)

a-provable

bas, By) (Ry)  «-provable
L(Br, o) a1 <7 Qo

<L(51, Oé2)
J>(042,51)

(R3)

(R1)

Observations:

* The formula o (x1, X2, x3,24) = (T1 > T2) = [(23 > x4) — (3 V 21 > T4V T2)]

is Cvalid. Note that o (31, B2, a1, a2) is the formula

(Br ¢ B2) = [(1 > ) = (a1 V 1 > az V 5y)]

e When we apply the R, rule in the main tree, theoretically, we should have had 4> = 16
formulas, but we only presented 8. This decision was made because the remaining ones are
very similar to demonstrate (the idea is exactly the same as the other ones). So, we chose to

omit them.
L]

Lemma 5.4.9. The structure previously defined, that is, B = (B, |,V,—,1,0), is a partial Boolean
algebra.
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Proof. We want to prove that:

1. The relation | is reflexive and symmetric. Let us consider [a;] € B. We know that [cv;]} [a]
if { (a1, 1) is a-provable. By definition 5.4.7, a; € €2 and by definition of Q, | (aq,aq) is

a-provable.

Now, let us consider [a], [ae] € B such that o] [aa]. Then, [ (a1, ) is a-provable. We want
to show that | (e, vy ) is a-provable. By the R; rule, from | (a1, ca) we can conclude [ (avz, aiy).

Consequently, | (e, 1) is a-provable.

2. Forall [a1] € B, [a1]51 and a1 /0. Let us consider [o;] € B. It is going to be useful to
see 1 as [a; <> aq] and 0 as [~(a; <> aq)]. To prove that, in fact, 1 = [y <> a4] and
0 = [—(ag <> a1)] we just need to show that a; <> « is a-provable. So, the following tree

proves it:

a-provable
L(ay, aq) (
L(ar)

a1 <> 0

Ra2)
(S1)

Now, [aq]l [ <> ] iff L (a1, 0 4> ) is a-provable. By lemma 5.4.6, since a;; € €2, then
b(aq, a1 <> ay) is a-provable.

In an analogous way, one can easily prove that [cv1]§ [= (a1 <> )], i.e., that | (a1, = (g <> aq))

is a-provable. The only difference is in the initial steps:

a-provable
Al ar) (R2)
a-provable L(aq) .
1
(L(Oél,Oél — Oél) (Ckl — Oél) g _|_|(Oél — Ckl) (Ra)
3

Llar, ~ (a1 <> o))
L(==(an ¢ an), an)
L(=(on ¢ ar),an)
blar, (a1 & aq))

(R1)

4)

(R1)

3. The function V is defined exactly for those pairs ([v1], [va]) € B x B such that [a]{ [cve]. By
lemma 5.4.8, it is trivial that this holds.

4. If any two of [a], [awa], 3] € B are commeasurable, then [aq] V [ao]l [as] and =[] ).
By definition, [cv1] V [an] = [ V aw]. So, we want to show that | («; V ave, ai3) is a-provable.

By the hypothesis, we extract that | (a1, o), (a1, a3) and | (a, a3) are all a-provable and by
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the fact that v, € €2, we have that | (o, i) are a-provable, for all k € {1,2,3}. So, to prove

that | (aq V g, ai3) is a-provable we just need to consider the following tree:

a-provable
a-provable a-provable «-provable «-provable J)(Oémoéj) (R1)
1
é(@kaak) é(Oél,OQ) <L(0417a3) J>(042>043) é(ajaai) (Ro)
2

where 1 <7 <5 < 3.

Now, by definition, =[] = [—ay]. We want to show that | (=, i) is a-provable. Acknowledg-

ing some of the facts mentioned above, we just need to consider the following tree:

_a-provable.
a-provable Lon0) o oprovable
—_— 2 -
Sloan) L T () bar, o)
L(ag, an) m;iﬂ) Wum
$(a27—'ﬂa1) 3 Wgﬂ)
3
J)<0527_|_‘051>
(R1)
J)(ﬁ—\al,()éz) (Ra)
4
(L(_‘OQ,OCQ)

5. Let us consider that any two of [a], [a], [as] € B are commeasurable. We want to prove that
the algebra of the polynomials in [cv;], [a], [as], thatis, B = (B’, v/, A’, =", 1,0), is a Boolean

algebra, where:

e B’ C B is inductively defined:

L [a1], [ag], [as] € B
2.0,1¢ B
3. If[g], [o] € B' and [5]}[o], then [8] V [0] € B"and [B] A [o] € B’
4. If Bl € B',[-B] € B
» The operations \V/, =" and A’ are defined as:
V' Vg
=g
N @ B' x B" — B’ such that for all [3], [0] € B, with [5]{[o], [B] N [o] = [B A o] =
[=(=8V —0o)]
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Observations: We are going to assume that any two elements in B’ are compatible, the three
new operations are total functions and B’ is closed under these operations. The proof is similar to

the ones provided in lemma 4.1.2 and proposition 4.1.3.

Since any two elements in B” are compatible, we will state some facts which are going to be useful

throughout the following proofs:

e Forall [8] € B', (B, 8) is a-provable

* Forall [8],[0] € B, L(B,0) is a-provable (definition of compatibility)

Let us consider the structure (B’, A’, V). We want to show that it is a lattice, that is, for all

18], [o],[0] € B, we have:

(a) Idempotency for V" and A, thatis, [3] V' [5] = [B] = [B] A [B]. By definition, [3] V' [5] =
[BV [3]. We want show that (5 V 3) <>, 3. We just need to consider the tree:

a-provable

L(B,8) )
L(B)
(BVB) <

(S1)

It is analogous to the operation .

(b) Commutativity for V' and A’ that is, [5] V' [o] = [o] V' [5] and [B] A [o] = [o] A [f].
By definition, [5] A [o] = [B A o] and [o] A" [B] = [0 A 5]. We want to show that
BN o <> oA [B. We just need to consider the tree:

a-provable

L(8,0)
(BA0) & (0 AB)

(S1)

It is analogous to V'

(c) Associativity for V" and A, thatis, ([5] V' [o]) V' [0] = [B] V' ([o] V' [6]). By definition,
((BIV o) V' [0] = [(B v o) v O] and [5] V' ([o] V' [0]) =[5V (o V 0)]. We want to
show that (5 V o) V 8 <>, BV (o V ). We just need o consider the tree:

a-provable a-provable a-provable
L(8,0) L(3,0) L(0,0)

L(B,0,6)
(BVo)VO<« BV (ocV0)

a-provable

(R2)

(S1)

5

In - - - are the formulas of 35, of the type | (5, 5), L(6,0) and | (o, o) and the formulas of
the type § (o, ), L (0, 8) and L (0, o), that by R; rule, one obtains a-provable formulas.
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It is analogous to A,

(d) Absorption, thatis, [5] A" ([B V' [o]]) = [5] = [5] V' ([ A [o]]). By definition, [3] A
([BV'[o]]) = [BA (B Vo)]. We want to show that 5 A (B V o) <>, . We just need to
consider the tree:

«-provable

L(8,0)
BABV) <
It is analogous to [5] V' ([8 A [a]]).

(S1)

So, we proved that (B’, A, V') is a lattice.

Now, we need to show that the lattice (B’, A, V') is distributive, that is, for all [5], [0], [0] € B/,
BN ([o] V' 16]) = ([B] A [o]) V' ([8] A" [8]). By definition, [B] A" ([o] V' [6]) = [B A (v 6)]
and ([B] N [a]) V' ([BI N 10]) = [(BA o)V (B AB)]. We want to show that 5 A (o V 0) <>,
(BA o)V (B AB). Wejust need to consider the tree:

a-provable a-provable a-provable
L(8,0) L(8,0) L(0,0)

L(8,0,0)
BA(VO) & (BAT)V (BN

«-provable

(R2)

(S1)

In - - are the formulas of E,‘J{ of the type L (3, 8), £(6,0) and [ (o, o) and the formulas of the
type § (0, 8), §(6,5) and [ (6, o), that by Ry rule, one obtains a-provable formulas.
So, (B, N, V') is a distributive lattice.

Finally, it remains to show that for all [5] € B', [5] N0 =0, [5]V' 1 =1, [5]N =[] =0
and [3] V' =[6] = 1.

Let us consider [3] € 1.

Observations: For this part of the proof, it will be useful to see 1 as [5V =] and O as
[—(B8 Vv =B)] = [B A —pB] (actually, we could consider any tautology in classical logic). Let us
prove that 1 =[5V =] and 0 = [3 A —3]. We want to show that 3V —/3 is a-provable. Then,

we just need to consider the tree:

a-provable
L(B,8)

L(B)
BV -p
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By definition, we have [5] A" O = [5] A [BA =B8] = [BA (B A —f)]. We want to show that
BN (BA-B) <o B A —S. We just need to consider the tree:

a-provable

L(8.8)

——— (R2)

5(8)
BABNA=B) < BN

By definition, we have [5] V/' 1 = [B] V' [BV =B8] = [BV (B V —3)]. We want to show that
BV (BV —B) <o BV . We just need to consider the tree:

(S1)

a-provable

6.5 ..

\(? .
BV(BV-B) & BV-B

By definition, [5] A" —[8] = [8 A —]. We want to show that 5 A =3 <>, 5 A = 3. We just need

to consider the tree:

a-provable

\5.8) .

5(8)
BA=B < BAS

By definition, [5] V' —=[8] = [8 V —]. We want to show that 5 V =3 <>, 5V = 3. We just need

(S1)

to consider the tree:

a-provable

L(8.8)

——— (R2)

L(8)
BVoB < BVp

(S1)

So, since (B’, \', V') is a distributive lattice and for all [3], [0] € B/, [5]] N0 =0, [f] V' 1 =1,

[B] N =[5] = 0and [5] V' =[B] = 1, we conclude that (B’, v/, A, =", 1, 0) is a Boolean algebra. [J

Completeness Theorem. /fa formula o € X2, holds in all partial Boolean algebras, then there exists

a QQ-proof of cv.

Proof. Let us assume that there does not exist a ()-proof of the formula o € 35,,. We want to construct

a partial Boolean algebra B such that «v does not hold in 5. Let us consider the partial Boolean algebra

B = (B,/l,V,—,1,0) previously defined in the definition 5.4.7. Let ¢; be the class of the formula

z; € Qandlet § € Q. So, [z;] = x;*(§) = ¢;. Similarly, the class of 3 is the element *(§), that is,
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(8] = B*(q), which is easily proven by induction on 3; we have chosen to omit it. By definition, 3 holds
in the partial Boolean algebra B iff for all § € Domg,,, *(¢) = 1 (definition 4.3.5). Consequently,
f*(q) = 1iff [g] = 1iff 5 is a-provable (the first equivalence is by the previous observation that
B*(q) = [B], and the second one is by definition of 1). So, 5 is a-provable iff 3 holds in B. In particular,

o is a-provable? iff o holds in B. Since « is not a-provable, o does not hold in B. O]

3ais a-provable if there exists a Q-proof of .
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Chapter 6

Conclusion

Having all the basic concepts clarified, our study began with an exploration of partial algebras, the foun-
dational structures from which the compatibility relation originated. We studied polynomials within this
context, their domains and their respective function, crucial for assigning values to these polynomials in
the partial algebra. Subsequently, we extended our study to partial Boolean algebras, delving into Boolean
polynomials, their domains and their respective function, in order to assign values to these Boolean poly-
nomials in the partial Boolean algebra. We concluded that the set of formulas in n variables constitutes
a subset of the Boolean polynomials in n variables, implying that the value of a propositional calculus
formula aligns with the value of a Boolean polynomial, when it makes sense to do such a comparison,
that is, when we have all the compatibilities inherent to the formula within the domain of the Boolean
polynomial.

The dissertation’s title, “Partial classical propositional logic”, was elucidated through the study of @-
valid formulas, accompanied by illustrative examples and counterexamples. The creation of a counterex-
ample, which is not straightforward, involved utilizing partial algebras. So, although we initially defined
partial Boolean algebras independently of partial algebras, studying them became necessary. The process
of proving theorems within this newly formal system proved to be complex and, occasionally, counterin-
tuitive. Certain seemingly straightforward logical deductions required significant effort. For instance, the
direct demonstration (without resorting to the theorems of soundness and completeness) that any C-valid
formula in one or two variables is ()-provable was omitted, because we could not prove it in full generality.

The dissertation’s beginning involved the study of orthologic and ortholattices, although these studies
did not make it into the dissertation. This exploration was essential in understanding the varying semantics
of different quantum logics. Initially, our plan was to study two articles, one of which was [9] and the
other [8]. However, we focused on the [9] because on the other one the formal system seemed to be
less intuitive, due to the lack of resemblance to the formal system of classical logic, and more complex.

Additionally, this paper did not explore the use of partial algebras. An area | had hoped to explore was
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transitive Boolean algebras. Unfortunately, due to the complexity of the quantum logic currently being
studied, | did not have the opportunity of such exploration. Diving into additional literature might have
offered a deeper understanding of the different possibilities of interpretation of this logic, as seen in [8].
Looking ahead, delving deeper into this quantum logic and its related counterparts, such as transitive
partial Boolean algebras, along with their connection to partially ordered orthomodular sets, would be a
logical continuation. Understanding the alignment of these new concepts with the logic explored here
and determining whether orthological and orthomodular quantum logics offer advantages over partial
classical propositional logic would mark a promising starting point for future research. Additionally, fully
understanding the recent article [1] would be interesting and it could be the next step to delve deeper into

the world of quantum computing.
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