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Abstract. Multibody dynamics deals with the modeling and analysis of me-

chanical systems comprising multiple bodies, whose interactions are governed 

by kinematic constraints and external applied forces. Contact-impact events 

represent one of the most critical and challenges issues when dealing with dy-

namical systems, because they can significantly affect the behavior of multi-

body systems. The accurate response of a collision in multibody dynamics is 

strongly dependent on some critical factors, including the geometry of contact-

ing surfaces, material properties of the bodies involved, and the constitutive 

laws utilized to evaluate the contact forces. This work provides a comprehen-

sive overview of the main aspects and state-of-the-art techniques for modeling 

contact-impact events in multibody dynamics. In the sequel of this process, con-

tact detection and contact resolution tasks are presented. In addition, some of 

the most prominent force models available in the literature to compute normal 

and tangential forces developed within contact-impact events are discussed. 

Moreover, this work examines key numerical aspects related to contact-impact 

events that strongly influence the computational accuracy and efficiency. Final-

ly, an application example is presented, whose results permit to discuss the key 

aspects related to the modeling process of friction contact-impact events in 

multibody dynamics. 

Keywords: Contact-Impact, Frictional Contacts, Multibody Dynamics, Contact 

Detection, Contact Resolution. 

1 Introduction 

It has been recognized by many researchers that the application of multibody method-

ologies to actual systems requires the modeling and analysis of contact situations [1]. 

The dynamic response of contact-impact problems can be influenced by several dif-

ferent aspects, including the physical properties of the contacting surfaces and the 

approach used to model the contact process. By and large, the formulation for dynam-

ic contact problems includes three main points: (i) identification of the potential con-

tact points of the colliding bodies; (ii) computation of the contact-impact forces de-

veloped; and (iii) establishment of the transitions between different contact scenarios. 
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The mathematical representation of contact-impact problems in multibody dynam-

ics can be strongly influenced by the method used to model the interaction of the con-

tacting surfaces. In a broad sense, there are two key approaches to handling collisions 

within multi-body dynamics analysis: the “piecewise” formulation and the “continu-

ous” methods. Both of these methods are suitable for computational analysis in multi-

body dynamics. Nevertheless, both techniques require precise determination of the 

instant of contact between the colliding surfaces [2]. 

In the piecewise formulation, also denominated discrete or impulse-momentum ap-

proach, the impact process is considered to occur instantaneously. The discontinuous 

nature of the collision results in an abrupt variation in velocities at the instant of im-

pact. In the piecewise method, the rapid change in velocities is infinitesimal, while the 

position and orientation of the bodies in the system are unaltered. In this formulation, 

the dynamics of the mechanical system are based on the numerical resolution of the 

equations of motion until a discontinuous event associated with an impact occurs. At 

that point, the resolution of the system's equations of motion is halted, and a momen-

tum balance is used to compute the post-impact velocities of the bodies involved in 

the collision event. Afterward, the resolution of the equations of motion resumes with 

the updated velocities until a new impact event occurs. The coefficient of restitution is 

the parameter used to quantify the energy dissipated during the contact-impact events. 

It must be highlighted that the piecewise formulation is quite effective, but its ap-

plicability can be limited by the unknown duration of the contact-impact events. It 

must be noticed that for long collisions, the configuration of the multibody model can 

change significantly [3]. 

In turn, the continuous method, also known as the compliant or force-based ap-

proach, the bodies are allowed to deform locally. Thus, the relative contact velocity of 

the contacting surfaces changes continuously. The contact-impact forces generated 

during collisions are typically represented by spring-damper elements, which mimic 

the stiffness and damping characteristics related to the resistive contact phenomenon. 

In practice, the contact forces are written as continuous functions of the penetration 

and penetration rate associated with contact-impact points. The penetration, indenta-

tion, or deformation is represented by the overlap of the bodies occurring at the local 

contact area. Over the last decades, several contact force solutions have been present-

ed in different scientific domains, with many of them being based on Hunt and Cross-

ley's cornerstone contact force model [4]. 

The present study revisits the fundamental aspects associated with the modeling 

and analysis of contact-impact events in multibody mechanical systems, aiming to 

characterize the state of the art. The organization of this work is structured as follows. 

Section 2 deals with the main aspects related to the contact kinematics, that permits 

the comprehensive determination of the local contact deformation, as well as the nor-

mal and tangential contact velocities between two contacting surfaces in a mechanical 

system. In section 3, the most fundamental and well-established contact force models 

to handle normal and tangential actions are revisited and compared. A representative 

example of application and corresponding results are provided in Section 4. Finally, 

Section 5 addresses the key conclusions, and discusses future directions in terms of 

potential developments in the area of contact-impact events in multibody systems. 
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2 Contact Kinematics 

Contact kinematics is the dimension in which potential or candidate contact points, as 

well as the relative normal and tangential velocities, are determined [5]. "This set of 

information plays a key role in the response of the systems, as they are required to 

compute the contact-impact reaction forces generated during collisions. To better 

comprehend how these contact characteristics are evaluated within a multibody sys-

tem, let's consider the contact scenario between two convex surfaces that can collide 

with each other, as depicted in Fig. 1. In the case illustrated in Fig. 1a, the two bodies, 

denoted as i and j, are separated and moving with absolute velocities 
ir  and jr  [6]. 
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Fig. 1. (a) Convex surfaces separated; (b) Two convex surfaces in contact. 

The vector connecting the candidate contact points, Pi and Pj, as represented in Fig. 1, 

signifies the gap distance, which can be expressed as [6] 

 = −P P

j id r r  (1) 

in which the terms 
P

ir  and 
P

jr  are written as 

 '= +P P

k k k kr r A s      (k =i, j) (2) 

where ri and rj denote the global position vectors of the bodies i and j, respectively and 

'Pis  and 'Pjs  are the local components of the candidate contact points with respect to 

local coordinates systems. It must be noted that Ai and Aj represent the transformation 

matrices associated with bodies i and j [6]. 

The normal vector depicted in Fig. 1b, is given by 

 =
d

d
n  (3) 

It is clear that the tangential vector t, represented in Fig. 1b, can be computed by rotat-

ing the normal vector n counterclockwise by 90 degrees. 

The magnitude of the distance vector d, shown in Fig. 1a, is evaluated as 

 
T= =d d n  (4) 
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At this stage, it is important to note that the condition expressed by Eq. (4) is not 

sufficient to detect candidate contact points, as it cannot account for all potential col-

lision scenarios. Therefore, contact points are established as those corresponding to 

the maximum value of penetration, representing the points at which maximum defor-

mations occur along the normal direction [5]. Thus, the effective conditions for the 

contact between two convex surfaces can be defined as (i) The distance between the 

two potential contact points, as represented by vector d, corresponds to the minimum 

distance; (ii) the vectors ni and d have to be collinear with each other; (iii) the two 

normal vectors ni and nj must also be collinear. From the implementation point of 

view, conditions (ii) and (iii) can be expressed by two vector products [4] 

  =id n 0  (5) 

  =j in n 0  (6) 

It must be highlighted that the mathematical conditions associated with Eqs. (5) 

and (6) represent two nonlinear equations with two unknowns, which can be calculat-

ed using, for instance, the well-known Newton-Raphson numerical scheme [6]. The 

set of solutions that result from Eqs. (5) and (6) represent the effective candidate or 

potential contact points. After identifying the contact points, the next step involves 

evaluating the relative penetration between the contacting bodies. 

The velocities associated with the potential contact points are computed as the time 

derivative of Eq. (2), resulting in 

 '= +P P

k k k kr r A s      (k =i, j) (7) 

where the dot denotes the derivative with respect to time, being A the time derivative 

of the transformation matrix [6]. The relative velocity of the contact points needs to 

be projected onto the normal and tangential directions of the contacting points, since 

they play a crucial role in identifying the type of contact dynamics problem. 

The scalar contact velocities, in the normal and tangential directions, are evaluated 

using the following formulation 

 ( )
T

n = = −P P

j iv r r n  (8) 

 ( )
T

t = −P P

j iv r r t  (9) 

This representation of the relative normal and tangential velocities is highly con-

venient, as it eliminates the need to derive the normal unit vector directly from the 

differentiation of Eq. (4) to obtain the velocity components. Furthermore, the applica-

tion of fully rigid body velocity kinematics is straightforward, and the computational 

implementation of this method is highly effective. This formulation has some limita-

tions, as it applies only to convex rigid bodies with smooth surfaces, at least within a 

vicinity of the potential contact points. In such cases, the contact area can be reduced 

to a single point that may move relative to the bodies’ surfaces. This approach can be 

extended to accommodate more generalized contact geometries, provided that a 

common tangent plane of the contacting bodies is uniquely established [2]. 
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3 Contact Force Models 

The oldest and simplest force model is based on Hooke’s law, which utilizes a spring 

to simulate a collision. This contact force model can be expressed as [2] 

 n =f k  (10) 

in which k denotes the stiffness, and  is the local deformation. This model is repre-

sented in the diagram of Fig. 2a. A more advanced formulation was introduced by 

Hertz, which established a nonlinear relation between force and deformation as [2] 

 n = nf K  (11) 

where n represents the nonlinear exponent. Figure 2b depicts the force-penetration 

diagram relative to the Hertz contact force model. The first force model that accounts 

for energy dissipation in contact interactions is due to Kelvin-Voigt solution. This ap-

proach combines a spring with a damper to compute the forces at the contact points [4] 

 n  = +f K D  (12) 

in which the first parcel represents the elastic term, and the second parcel is the dissi-

pative term, being D the damping coefficient, and   is the relative contact velocity in 

the normal direction. Figure 2c shows the diagram for the relation between force and 

deformation of the Kelvin-Voigt formulation. Hunt and Crossley presented the most 

prominent force model that can be expressed as [4] 

 r
n ( )

3(1 )
1

2




 −

 −
= + 

 

n c
f K  (13) 

in which the first parcel represents the nonlinear Hertz’s force model, being the sec-

ond parcel the dissipative term, cr is the restitution coefficient, and 
( ) −

 denotes the 

initial impact velocity. Figure 2d represents the force deformation diagram for Hunt 

and Crossley approach. The most well-known force model in multibody systems was 

offered by Lankarani and Nikravesh as [7] 

 

2

r
n ( )

3(1 )
1
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 −

 −
= + 

 

n c
f K  (14) 

More recently, Flores et al. [8] presented an alternative formulation as  

 r
n ( )

r

8(1 )
1

5




 −

 −
= + 

 

n c
f K

c
 (15) 
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Fig. 2. Force-deformation diagrams for different force models: (a) Hooke’s approach; (b) 

Hertz’s model; (c) Kelvin-Voigt law; (d) Hunt and Crossley contact force solution. 
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The well-known friction force model proposed by Coulomb is given by [9] 

 
 

( )
s n s n t

t

d n t t

, if 0

sgn if 0

 



 − =
= 



f f v
f

f v v
 (16) 

where 

 ( ) t

t

t

1 if 0
sgn

1 if 0

− 
= 



v
v

v
 (17) 

in which s and d denote the static and dynamic friction coefficients, fn represents the 

normal contact force, and vt denotes the relative contact tangential velocity of the con-

tact points. Figure 3a depicts a graphical representation of the Coulomb’s friction force 

model. Threlfall [9] regularized the Coulomb’s law to remove the discontinuities, as it 

is represented in the diagram of Fig. 3b. The Threlfall friction model is expressed as 

 

t3
ε

d n t ε

t

d n t ε

1 e if

0.95 if





−  
−   

 =   




v

v
f v v

f

f v v

 (18) 

where v is a threshold velocity. Bengisu and Akay [9] presented an alternative formu-

lation to determine the friction force as follows 

 

( )

( ) ( )

2
s n

t 0 s n t t 0

0
t

t 0
d n s n d n t t 0

sgn( ) if

e sgn( ) if





  
− −

  
− − +   

 = 
 + −  

v

f
v f v v v

vf

f f f v v v
v

v

 (19) 

where  is a positive parameter that represents the negative slope of the sliding state. 

Figure 3c shows the evolution of the Bengisu and Akay friction law. Ambrósio (cf. 

Fig. 3d) suggested an alternative solution for friction force as follows [9] 

 t d d n tsgn( )=f c f v  (20) 

in which cd represents a dynamic correction factor. 
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Fig. 3. (a) Coulomb’s friction model; (b) Threlfall friction model; (c) Bengisu and Akay fric-

tion model; (d) Ambrósio friction model. 

4 Example of Application 

A hexapod walking robotic system that experiences both normal and tangential con-

tact events between its feet and the ground surfaces and stairs, is utilized here as an 

application example [10, 11]. Figure 4 depicts a multibody model of the hexapod robot-

ic system under analysis. Each leg is established using a four-bar mechanism connected 

to the main body via a spatial revolute joint. This robotic system is operated using six 
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rotational motors and six linear actuators, which promote traction and elevation actions, 

respectively. In addition, a spherical foot is rigidly attached to each leg, allowing for the 

model of contact interactions with the ground and stairs. The normal and tangential 

contact forces are computed using the continuous formulation described in Section 3. 

 
Fig. 4. Snapshots of the hexapod of a standard set of stairs climbing dynamic simulation. 

In the present work, two representative simulations were conducted to assess the dy-

namic behavior of the hexapod system. Specifically, the simulations involved navi-

gating a straight path on a planar horizontal surface and climbing a standard set of stairs. 

Figure 4 shows a series of snapshots from the simulation depicting the case of climbing 

stairs. The plots of the torques and forces generated in the rotational and linear actua-

tors of a front leg for hexapod locomotion on flat terrain and during stairs climbing 

are depicted in Fig. 5. From the analysis of these diagrams, it can be observed that the 

worst case occurs in the stairs climbing simulation. Overall, this study allows to ex-

plore the critical role of the contact process in the success of hexapod motion simula-

tions. Specifically, the adopted contact detection procedure and the smooth transition 

between different contact regimes are of paramount importance to ensure the dynamic 

stability of the hexapod robotic system. 

5 Concluding Remarks 

This work summarizes the state of the art related to main modeling aspects of contact-

impact events in multibody mechanical systems. For this purpose, the fundamental 

kinematic aspects associated with collisions in dynamical systems are revisited, name-

ly in what concerns the identification of the potential or candidate contact points, as 

well as the computation of the normal and tangential contact velocities. Furthermore, 

a short revision of the most relevant contact force models is offered. Finally, a hexa-

pod system was considered as a demonstrative example of application, highlighting 

the key aspects related to modeling contact-impact events in dynamical systems.  
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Future directions for research within the framework of contact mechanics in multi-

body dynamics may include: (i) identification and estimation of contact parameters 

for complex scenarios; (ii) development of benchmark problems to assess the suitabil-

ity of existing techniques for handling contact-impact events; (iii) analysis of contact 

problems with very large contact areas; (iv) development of techniques to accelerate 

contact detection with multiple potential contacts. These directions aim to address the 

challenges and enhance the capabilities of current methods in handling contact inter-

actions within multibody mechanical systems. 

 
Fig. 5. (a) Torque developed in the rotational motor during the hexapod traction motion; (b) 

Force generated in the linear motor on the front leg during the traction motion. 
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