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We present a semi-analytical theoretical model, which describes the operation of a selective molecular sensor [1] employing a double
resonance between a dipole-active molecular vibration mode, tunable surface plasmons in a periodic structure of graphene nanorib-
bons (NRs), and the incident light, in the THz-to-IR range, used for testing. The model is based on the solution of Maxwell’s equa-
tions for the NR structure deposited on a dielectric substrate, using the electromagnetic Green’s function, and is extended to the
case of an additional (buffer) layer present between the NRs and the substrate. Both the graphene NRs and the layer of adsorbed
molecules are considered as two-dimensional, since their thicknesses are very small in comparison with the wavelength of the incident
light. The model is applied to different molecular systems, the protein studied in Ref. [1], for which an excellent agreement with ex-
perimental data is obtained, and an organometallic molecule Cd(CH3)2. Two different assumptions concerning the way of sticking of
the analyte molecules to the sensor’s surface are considered and the limitations of this sensing principles are discussed.

1 Introduction

Graphene, a 2D crystal made up of carbon atoms arranged in a honeycomb lattice, is a very versatile
material with a plethora of already demonstrated and potential applications. [2] Its unique conical band
structure near the Dirac point results in a set of exceptional electronic and optical properties, which are
explored, in particular, in the area of Plasmonics. [3–5]

Graphene plasmons, propagating oscillations of free electrons confined to one atomic plane, which oc-
cur in the THz-to-mid-infrared spectral range, were demonstrated experimentally for the first time in
2012. [6, 7] Since then, a lot of experimental and theoretical research on their properties and applications
has been carried out, reviewed in Refs. [4, 5, 8–10] Similar to noble metals, plasmons in graphene also ex-
hibit strong electromagnetic (EM) confinement and therefore high near–field intensity. [11, 12] This is par-
ticularly important in the region extending from the THz to the mid-IR, because in this spectral range
noble metal plasmons are poorly confined and lossy. Therefore, graphene emerges as a technological ma-
terial able to perform in a spectral range where noble metals fail.
As known, surface plasmons cannot be launched directly by a propagating electromagnetic (EM) wave
because of the wavevector mismatch. [13] They are coupled to an evanescent EM wave and form surface
plasmon-polaritons (SPPs). There are several methods for achieving the wavector matching and excit-
ing SPPs in graphene by incident light, [9] of which probably the most popular one is patterning it into
a periodic array of nanoribbons. [1, 14–17] The spatial period of the array determines the frequencies of the
SPPs which, additionally, can be tuned by applying a gate voltage to the graphene nanoribbons (another
advantage of graphene compared to noble metals). [6, 14,18,19]

One important application of surface plasmonsis in the area biomolecular and environment sensing. The
most paradigmatic sensing principle is based on the surface plasmon resonance (SPR) and such sensors
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have been commercialized by several companies since the 1990-th. [20] The resonance between the inci-
dent light of a certain wavelength and the SPPs, mediated by a prism in the Kretschmann configura-
tion or by a grating, occurs at a well defined angle of incidence, which is very sensitive to the dielec-
tric properties of the environment of the plasmonic surface. [13, 20] Initial proposals of incorporation of
graphene into sensors based on this principle were limited to to covering the plasmonic (metallic) film by
graphene layers for improving the adsorption of analyte molecules. [8] Later, the idea of using graphene
for the electrical control of the SPPs induced metallic nanostructures has also been explored. [10, 21–23]

Despite their high sensitivity, a shortcoming of conventional SPR-based sensors is the lack of selectiv-
ity. The sensing can be made species-selective if the resonance is pushed to longer wavelengths. Indeed,
most of the molecules have a clear and specific spectroscopic signature in the THz and mid-IR, which
can be identified by IR absorption spectroscopy. [24] This is a powerful technique since it can be used to
extract useful information without requiring any sort of labeling or destruction of the samples. However,
the vibrational signals of biomolecules are rather weak and hard to isolate in the IR absorption spec-
tra. This limitation can be eliminated or at least mitigated by taking advantage of the strong optical
near fields characteristic of the SPR. Reaching the FIR spectral range is not possible with flat metal sur-
faces but may be achieved with specially designed nanoantennas [25, 26] or, for some molecules, with spoof
plasmons. [27] However, these suffer from all the previously mentioned weaknesses, the poor confinement
in this spectral range and limited tunability. [10, 28]

Thankfully, graphene is a viable alternative to these systems, especially when arranged in a periodic se-
quence of nanoribbons (NRs), a superlattice (SL), which allow for the direct excitation of the SPPs. Ow-
ing to the intense EM fields created by the SPPs, the specific molecular spectroscopic resonances are
boosted to become clearly visible in the excitation spectrum of the array of nanoribbons. Therefore, this
method emerges as a promising strategy for the creation of sensors using this physical principle, in some
sense similar to the surface-enhanced Raman spectroscopy (SERS). [29], and the protein sensing has been
achieved by detecting narrow dips corresponding to molecular vibration bands. [1, 30]

In this work, we will present a semi-analytical model of a graphene NR SL sensor of the type devised in
Ref. [1] The optical properties of a graphene NR SL on a dielectric substrate have been investigated the-
oretically before [9, 16] but here we shall use a different (namely, EM Green’s function) approach to derive
the EM fields and extend it to a structure with an additional dielectric layer (shown in the inset of Fig-
ure 1). The graphene is described by its 2D optical conductivity [5], σG(ω), and the molecules are added
to the system by simply adding their conductivity to σG(ω). We shall present calculated results that re-
produce very well the experimental data [1] and allow for optimization of graphene nanoribbon structures
in order to detect another type of molecular species, an organometallic compound Cd(CH3)2.

2 Graphene NR superlattice

2.1 Model and approach

We begin by deriving the scattering of a plane EM wave while traversing a 2D interface with a periodi-
cally modulated conductivity. For a transverse magnetic (TM) wave of a frequency ω, with the compo-
nents B = (0, By, 0) and E = (Ex, 0, Ez) (the coordinate frame is shown in 1)), and for an interface with
the conductivity σ(x, ω) that depends on the position x, the magnetic field derivative obeys the follow-
ing integral equation that follows from the discontinuity condition: [9]

2B0e
ikxx +

i

2ϵ1

∫ ∞

−∞
dx′g(|x− x′|)∂By(x)

∂z

∣∣∣∣∣
z=0+

= −i
4πσ(x, ω)

ϵ1ω

∂By(x)

∂z

∣∣∣∣∣
z=0+

, (1)

where g(|x− x′|) is the Green’s function given by

g(|x− x′|) = ϵ1H
(1)
0 (k1|x− x′|) + ϵ2H

(1)
0

(√
k2|x− x′|

)
, (2)

where H
(1)
0 is the Hankel function of the first kind, ki =

√
ϵiω/c and ϵi (i = 1, 2) is the dielectric permit-

tivity of each medium (see Sec. 7 of Ref. [9] for details of the derivation).
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Figure 1: Normal incidence optical spectra of the structure shown in the inset, calculated for different values of the SiO2

layer thickness (d), with the following parameters: ϵ1 = 1, ϵ2 = 3.9, ϵ2 = 11.8, EF = 0.35 eV, Γ = 5 meV, D = 40 nm and
d1 = d2 = D/2. Notice the absorbance peak corresponding to the 1-st plasmonic resonance of the NR SL.

Let us define a function, f(x), proportional to the magnetic field derivative, i.e. the transverse electric
field at the interface. Since σ(x, ω) is a periodic function in the case we are interested in here, we can
expand f(x) in a Fourier series,

f(x) =
1

ϵ1B0

∂By(x)

∂z

∣∣∣∣∣
z=0+

= eikxx
+∞∑

n=−∞

ane
i 2πn

D , (3)

where kx is the in-plane component of the wavevector and D is the SL period. Multiplying Equation (1)
by exp (−i2πm/D) (m is an integer) and integrating over the SL period, we arrive at the following sys-
tem of linear equations for the coefficients an:

2iδm,0 =
4π

ω

+∞∑
n=−∞

anσnm(ω) + am

(
ϵ1
q1m

+
ϵ2
q2m

)
. (4)

Here,

qin =

√
ϵi
ω2

c2
−
(
kx +

2π

D
n

)2

(5)

kx is the x−component of the wavevector,

σnm(ω) =

{
σ1(ω)d1+σ2(ω)d2

D
≡ σ̄ n = m

σ2(ω)−σ1(ω)
2πi(n−m)

(
1− e

2πid1
D

(n−m)
)

n ̸= m
, (6)

and d1 and d2 are the widths of the NRs and the gaps between them, respectively. Equations (4) yield
the coefficients an, which determine the scattered EM fields in the upper and lower half-spaces.
The magnetic field in the upper half-space is the sum of the scattered, reflected and incident fields, which
are written as follows: [9]

Bscat
y (x, z < 0) = iϵ1B0e

ikxx

+∞∑
n=−∞

an
q1n

ei(
2πi
D

nx−q1nz) ; (7)

Bref
y (x, z < 0) = B0e

ikxx−ik1zz ; (8)

Binc
y (x, z < 0) = B0e

ikxx+ik1zz , (9)
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2.2 Optical spectra of the full structure

which leads to

By(x, z < 0) = 2B0 cos (k1zz) + iϵ1B0e
ikxx

∞∑
n=−∞

an
q1n

ei(
2πn
D

x−q1nz) . (10)

The x component of the electric field can be expressed through Maxwell’s equation in the following way:

Ex(x, z < 0) = −i
c

ϵ1ω

∂By(x, z < 0)

∂z
(11)

= 2iB0
ck1z
ϵ1ω

sin (k1zz)− iB0
c

ω
eikxx

∞∑
n=−∞

an
q1n

ei(
2πn
D

x−q1nz) . (12)

In the lower half-space, we have only the transmitted (scattered) wave:

Btrans
y (x, z > 0) = −iϵ2B0e

ikxx

+∞∑
n=−∞

ane
2πi
D

nx

q2n
eiq2nz ; (13)

Etrans
x (x, z > 0) = −i

c

ϵ2ω

∂By(x, z > 0)

∂z
. (14)

Different terms in the above equations represent the different orders of scattering with respect to the SL
period. Only those that correspond to real values of the z−component of the wavevector, qin, can be ob-
served in the far field. Let us assume for simplicity that only the zeroth order mode of the scattered field
(∝ a0) is propagating, while all higher modes are evanescent. As we shall see below, this assumption is
valid for the structures considered below. Therefore, at large distances from the SL, the relative ampli-
tudes of the propagating field are given by the following Fresnel coefficients:

r̂ = 1 + i
ϵ1
k1z

a0 , (15)

t̂ = −i
ϵ2
k2z

a0 . (16)

Here kiz ≡ qin. These expressions are valid for a NR SL cladded by two semi-infinite media.

2.2 Optical spectra of the full structure

Let us now generalise the model for the structure shown in the inset of Figure 1, with a SiO2 buffer layer
and a thick Si substrate. In the upper half-space we have the same fields as before. In the buffer layer,
we have to take into account the primary scattered wave and the one reflected at the interface between
the media 2 and 3,

By(x, 0 ≤ z ≤ d) = −iϵ2B0e
ikxx

∞∑
n=−∞

ei
2πn
D

x

q2n

(
ane

iq2nz + cne
−iq2nz

)
; (17)

Ex(x, 0 ≤ z ≤ d) = −iB0
c

ω
eikxx

∞∑
n=−∞

ei
2πn
D

x
(
ane

iq2nz − cne
−iq2nz

)
. (18)

Finally, in the substrate we have:

By(x, z ≥ d) = −iϵ3B0e
ikxx

∞∑
n=−∞

ei
2πn
D

x

q3n
ene

iq3nz ; (19)

Ex(x, z ≥ d) = −iB0
c

ω
eikxx

∞∑
n=−∞

ene
i( 2πn

D
x+q3nz) , (20)
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2.2 Optical spectra of the full structure

where bn, cn and en are some coefficients.
Now we have two sets of boundary conditions, one at z = 0,E(1)

x (x, z = 0) = E(2)
x (x, z = 0) ;

B(1)
y (x, z = 0)−B(2)

x (x, z = 0) =
4πσG

c
E(1)

x (z = 0) ,

(21)

(22)

and another at z = d, {
E(1)

x (x, z = d) = E(2)
x (z = d) ;

B(1)
y (x, z = d) = B(2)

x (z = d) .

(23)

(24)

Substituting the fields into these relations and noting that they must be fulfilled separately for each or-
der n, after some algebra we arrive at the following system of equations for the coefficients an:

2iδm,0 =
4π

ω

∞∑
n=−∞

σnm(ω)an + am

(
ϵ1
q1m

+
ϵ2
q2m

1 + e2iq2md∆23
m

1− e2iq2md∆23
m

)
(25)

where

∆23
m =

ϵ3q2n − ϵ2q3n
ϵ3q2n + ϵ2q3n

. (26)

The coefficients en that determine the transmitted wave are related to an as follows:

en = an
2ϵ3q3n

(ϵ3q2n + ϵ2q3n) (1− e2iq2nd∆23
n )

ei(q2n−q3n)d . (27)

The Fresnel coefficients of the structure, under the same assumption that only the zeroth order wave is
propagating, are given by:

r̂ = 1 + i
ϵ1
k1z

a0 , (28)

t̂ = −iϵ3
e0
k3z

. (29)

With these, we can calculate the reflectance, transmittance and absorbance spectra:

R = |r̂|2 ; (30)

T =
k3zϵ1
k1zϵ3

|t̂|2 ; (31)

A = 1− T −R . (32)

The coefficients a0 are dependent on the conductivities, which we take here as{
σ1(ω) = σG(ω)

σ2(ω) = 0
. (33)

The conductivity of graphene is a sum of the part due to interband transitions, [5, 9] σI = σ′
I + iσ′′

I with

σ′
I = σ0

(
1 +

1

π
arctan

h̄ω − 2EF

h̄γ
− 1

π
arctan

h̄ω + 2EF

h̄γ

)
, (34)

and

σ′′
I = −σ0

1

2π
ln

(2EF + h̄ω)2 + h̄2γ2

(2EF − h̄ω)2 + h̄2γ2
, (35)

and the intraband (Drude) term,

σG(ω) =
e2EF

πh̄

1

Γ− ih̄ω
. (36)
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2.3 Graphene NR superlattice as a biosensor

Here σ0 = e2/(4h̄), γ and Γ are the relaxation rates (to be taken as equal), and EF > 0 denotes the
Fermi level position with respect to the Dirac point.
Figure 1 shows the normal incidence spectra (kx = 0) for this case, with the parameters listed in the
caption. As expected, they display an absorbance peak at a certain frequency, which corresponds to the
plasmonic resonance. Considering these values, we check that all qin with n > 0 are imaginary, in accor-
dance with our assumption.
We notice that there is an increase in the transmittance and a respective decrease in the reflectance as
the buffer layer becomes thicker. This is related with constructive/destructive interference due to the
buffer layer. It helps to amplify the NR signal and the absorbance is considerably increased in the case
of d=1000 nm.

2.3 Graphene NR superlattice as a biosensor

Now we will include a layer of adsorbed (bio-)molecules in the system. Since this layer is expected to
be just a few nanometers’ thick, we shall consider it as two-dimensional and describe by a 2D optical
conductivity. The latter can be simply related to the molecular polarisability of the analyte molecules,
α0(ω), as follows:

σM(ω) = −iωϵ1N
(2D)
M α0(ω) , (37)

where N
(2D)
M is the number of molecules per unit area.

The molecules studied by Rodrigo et al. [1], a recombinant protein A/G and the goat anti-mouse immunoglob-
ulin G (IgG), have two IR-active vibrational modes wityh the frequencies ω1 = 1668cm−1 and ω2 =
1532cm−1 (corresponding to the amide I and amide II vibration bands). Therefore, we shall write Equa-
tion (37) in the form:

σM(ω,Θ) = −iωϵ1Θδ
∑
i=1,2

βi

ω2
i − ω2 − iωγi

, (38)

where Θ is the dimensionless coverage (defined in such a manner that Θ = 1 corresponds to a fully cov-
ered monolayer, Θ = 2 corresponds to a bilayer, and so forth), δ the thickness of the molecular mono-

layer (so that N
(2D)
M /δ is the 3D density of the molecules in the adsorption layer), γi are the correspond-

ing damping parameters and the amplitudes βi can be related (through the Clausius-Mossotti relation)
to the resonant frequencies, damping parameters and the oscillator strengths (Si) of the vibrational bands
in the frequency-dependent permittivity, ϵM(ω):

βi =
3γiωi

4π
Im

(
ϵM(ωi)− ϵ∞
ϵM(ωi) + 2ϵ∞

)
; (39)

ϵM(ω) = ϵ∞ +
S2
1

ω2
1 − ω2 − iωγ1

+
S2
2

ω2
2 − ω2 − iωγ2

. (40)

The permittivity ϵM(ω) of the condensed phase of the molecules was measured experimentally by Ro-
drigo et al. [1] and ϵ∞ ≈ 2.1 in Equation (39) is a background dielectric constant. Details of the deriva-
tion of Equation (39) can be found in the Supplementary Information.
As already pointed out, the thickness of the molecular layer, δ, is very small, k1zδ ≪ 1, so we can safely
assume that the molecules and the graphene experience exactly the same EM field, including its propa-
gating and evanescent components, E(x, z = 0). So, we should be able to model the biosensor by sim-
ply adding the optical conductivity of the molecules to that of the NR SL in Equation (6). Yet, the ad-
sorbed molecules’ density can be unequal over the nanoribbons and in the gaps between them. Two ex-
treme alternatives are:
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Model 1 - Molecules distributed evenly over the whole interface

In this model, we will assume that the molecules are adsorbed to the whole interface, not only to the
graphene nanoribbons. The conductivities, σ1(ω) and σ2(ω), are given by{

σ1(ω) = σG(ω) + σM(ω)

σ2(ω) = σM(ω)
. (41)

Model 2 - Molecules adsorbed only by the NRs

In this model, we will consider a system composed of parallel graphene strips with molecules stuck to
them, intercalated by clean SiO2 surface. Then we have:{

σ1(ω) = σG(ω) + σM(ω)

σ2(ω) = 0
. (42)

In order to compare calculated results obtained with these two models, we shall keep the total number
of molecules the same for both, i.e. the coverage, Θ, will be taken (D/d1) times larger for the second
model.

3 Results

3.1 Simulation of the results obtained by Rodrigo et al. [1]

These experimental results have been simulated in the article [1] using a Finite Elements Method (An-
sys HFSS software). It requires considering both the graphene and the condensed molecular phase as
finite thickness slabs and this is not very convenient because it requires using an effective thickness of
graphene, which is not a well-defined quantity. [5] We shall apply our theoretical model described in sec-
tion 2 to the data of Rodrigo et al. [1] using the set of parameters presented on Table 1. Notice that a
different value of the dielectric constant of SiO2 was used here as compared to Figure 1 because we are
interested in a different spectral range, which is separated from the low-frequency region by bands of po-
lar optical phonons. [31]

The results will be compared in terms of the extinction coefficient,

Extinction = 1− T

T0

, (43)

where T0 is the transmittance of the structure without graphene NRs and the molecules, that we calcu-
late by applying Equation (31) with σ1 = σ2 = 0. The obtained results are summarized in Figure 2
where we compare the experimental results with our simulations for the two models proposed in the pre-
vious section. Notice that the experimental spectra are shifted in the vertical direction in order to fa-
cilitate the visualization of the results for different values of the Fermi level, so we did the same in our
calculated results.

Table 1: Parameters used in the simulations

Physical quantity Value Physical quantity Value
Damping parameter, Γ 43.9 meV Air permittivity, ϵ1 1
Supperlattice period, D 80 nm [1] SiO2 permittivity, ϵ2 1.4 [31]

Width of the first stripe, d1 30 nm [1] Width of the second stripe, d2 50 nm [1]

SiO2 thickness, d 280 nm Si permittivity, ϵ3 11.9
Molecular layer thickness, δ 4 nm [1] Coverage factor, Θ 1 or 2.7
Vibrational mode 1, ω1 207 meV [1] Vibrational mode 2, ω2 190 meV [1]

Damping parameter 1, γ1 9.68 meV [1] Damping parameter 2, γ2 12.5 meV [1]

Oscillator strength 1, S1 26.4 meV [1] Oscillator strength 2, S2 24.8 meV [1]
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3.2 Application to an OMC molecule
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Figure 2: (a) Experimental results by Rodrigo et al. [1] and our calculated extinction spectra obtained for: (b) Model 1 –
Molecules over the whole interface, and (c) Model 2 – Molecules only over the nanoribbons.

Our calculated results are in excellent agreement with the experimental data, at least as good as in Ref. [1]

Somewhat counter-intuitive, Model 1 (with molecules covering evenly the whole interface) seems to re-
produce the experimental results slightly better. We also notice that the coverage used by us for this
model, Θ = 1, is smaller than the corresponding quantity used by Rodrigo et al. in their simulations,
which considered a bilayer of protein molecules with the thickness 2δ = 8 nm.

3.2 Application to an OMC molecule

Sensors based on this principle should work for any molecules that have IR-active vibrational modes.
Let us consider another potentially interesting example, the OMC molecule Cd(CH3)2. This compound
is important, for instance, in the technologies of CdTe growth in the forms of epilayers [32] and nanocrys-
tals (quantum dots). [33]

The molecule is schematically shown in in Figure 3. It is linear and symmetric with respect to the Cd
atoms and the Cd-C bonds are polar, with the equilibrium length of 0.213 nm. [34] It possesses two vibra-
tional modes due to the stretching/compression of these bonds, of which only the asymmetric one is IR
active, with the frequency ωAS = 534cm−1. [35] This frequency falls into the region where the dielectric
function of SiO2 varies strongly because of the optical phonon resonances. [31] Although coupling of the
phonons to the graphene plasmons can be interesting by itself, [36] it would certainly complicate interpre-
tation of the spectra aimed at the molecular sensing. Therefore, we shall assume that graphene NRs are
deposited directly on silicon; the necessary FET-type structure may be achieved by using an intrinsic Si
layer on top of n-Si.
Apart from this, we apply the same procedure as before, i.e. we derive the 2D conductivity of the molec-
ular layer, Equation (37) in terms of the Cd(CH3)2 polarisability owing to the IR-active vibration mode,

α0(ω) =
A

ω2
AS − ω2 − iωγ

, (44)

and add it to the graphene conductivity according to our Models 1 and 2. As shown in the SI, the am-
plitude A can be expressed in terms of the atomic masses and the effective charge q (Figure 3 ) as fol-
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3.2 Application to an OMC molecule

Figure 3: Diagram of the Cd(CH3)2 molecule. The arrows represent the asymmetric vibrational mode of the molecule.

lows:

A = 2q2
2m+M

mM
, (45)

where M and m are the masses of the Cd atom and the CH3 fragment, respectively. The NR SL param-
eters need to be adjusted in such a way that its first surface plasmon resonance (shown in Figure 1) falls
in the vicinity of ωAS. The following approximate formula [37] for the resonance frequency is helpful for
this:

ωR =
4

D

√
παfc

h̄

d1EF

ϵ1 + ϵ2
, (46)

where αf is the fine structure constant and d1 is the NR width.
Figure 4 shows the extinction spectra calculated for the two models of their adhesion to the structure.
In both cases, one can easily see the presence of a sharp feature corresponding to the vibrational mode
of the OMC molecule superimposed onto a broad plasmon resonance band. The feature is more clearly
seen in the case of molecules stuck only to the NRs (remind that we used Θ = 2 right panel in Figure 4,
while Θ = 1 for the Model 1). The height of the peak, for the lowest values of the Fermi energy, coin-
cides with that characteristic of the molecular layer if deposited on the substrate without graphene NRs.
Interestingly, the shape of the Cd(CH3)2 related feature changes from a peak to a dip when it passes
from the wing to the middle of the plasmonic band with the increase Fermi energy. This shape clearly
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Figure 4: Calculated extinction spectra for Cd(CH3)2 for graphene NR SL on a Si substrate: (a) Model 1 – Molecules over

the whole interface, (b) Model 2 – Molecules only over the NRs. Parameters: N
(2D)
M = 7× 1014 cm−2 [34], ωAS = 534 cm−1,
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is of the Fano type for EF ≥ 0.07 eV. Indeed, here we have a superposition of the narrow molecular reso-
nance and the broad plasmonic band, a condition for the Fano resonance. [38]

4 Conclusion

We have shown that the theoretical model presented here, based on a semi-analytical approach and treat-
ing the graphene NR superlattice and the layer of adsorbed molecules as two-dimensional, reproduces
very well the experimental data of Rodrigo et al. [1] who first implemented this type of sensor. Our model
has the advantage of requiring lower computational resources as compared to Maxwell equations’ solvers
based numerical methods such as the Finite elements one. Moreover, it allows one to try different mod-
els of adsorption of analyte molecules to the sensor surface. The thickness of the buffer layer between
the NR SL and the (silicon) substrate was shown to influence the signal via interference between the in-
cident waves (for each scattering order n, i.e. for in-plane wavevector (kx + 2nπ/D)) and those reflected
from the buffer/substrate interface (Figure 1).
We also applied it to another potentially interesting example, namely, the Cd(CH3)2 molecules. Although
we obtained a clearly detectable feature in the extinction spectra of the sensor structure in this case, a
word of caution is necessary in this respect. Since the effective charge involved in the polar Cd-C bond
is not known, we took it as equal to the electron charge, which is probably an exaggeration. With this
charge and the bond length of 0.213 nm we obtain a static dipole moment of 10.2 D, while the dipole
moments of the most common molecular bonds are just of the order of 0.5 - 3.5 D. [39] Of course, the dy-
namic charge revealing itself in the vibrations is not the same as the static one in polar molecules, still,
the amplitude of the calculated Cd(CH3)2 signal may be overestimated. It means than the detection
would require not just one but few monolayers of adsorbed molecules. In this respect, the modelled type
of sensor can hardly compete with the molecular detection based on SERS, [22, 40] which, however, has its
own drawbacks.
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A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garćıa de Abajo, R. Hillen-
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ToC Entry

We present a semi-analytical theoretical model, which describes the operation of a selective molecular
sensor employing a double resonance between a dipole-active molecular vibration mode, tunable surface
plasmons in a periodic structure of graphene nanoribbons (NRs), and the incident light, in the THz-to-
IR range. The model is applied to two different molecular systems, the A/G-IgG protein and an organometal-
lic compound.
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