# Adapting the sampling design of research surveys to improve the biomass estimation of non-target species the case study of Raja clavata 

Daniela Silva<br>Minho University, Centre of Mathematics (CMAT), Braga, 4710-057, Portugal<br>danyelasylva2@gmail.com

Raquel Menezes
Minho University, Centre of Mathematics (CMAT), Guimarães, 4800-058, Portugal rmenezes@math.uminho.pt

Bárbara Serra-Pereira<br>Portuguese Institute for the Sea and Atmosphere (IPMA), Division of Modelling and Management of Fishery Resources, Lisboa, 1495-006, Portugal bpereira@ipma.pt<br>Manuela Azevedo<br>Portuguese Institute for the Sea and Atmosphere (IPMA), Division of Modelling and Management of Fishery Resources, Algés, 1495-165, Portugal mazevedo@ipma.pt<br>\section*{Ivone Figueiredo}<br>Portuguese Institute for the Sea and Atmosphere (IPMA), Division of

# Modelling and Management of Fishery Resources, Algés, 1495-165, Portugal ifigueiredo@ipma.pt 

October 28, 2022


#### Abstract

Research surveys are important to evaluate the spatial distribution of fishery resources and to monitor their abundance. However, the underlying sampling is usually conceived with the focus on specific species and an efficient design may reconcile this objective with the collection of non-target species data. This study evaluates the adequacy of different sampling designs for the IPMA bottom trawl survey conducted along the Portuguese continental coast. It aims to obtain the maximisation of accuracy estimates for the non-target thornback ray Raja clavata, while maintaining the estimates quality for the European hake, Merluccius merluccius, one of the target species. A geostatistical model-based approach was developed considering the semi-continuous nature of the data and the excess of zero values for $R$. clavata. The proposal of new sampling designs relied on eight optimisation weights and the resulting prediction exactness. Eight survey designs were then evaluated, each adding 11 sampling locations to the survey locations from the original survey design. Three designs resulted in higher accuracy for both $R$. clavata and $M$. merluccius estimates than those obtained from the random design. The sampling design that maximised the accuracy of $R$. clavata estimates showed an acceptable trade-off between bias and variance of $M$. merluccius estimates.


Keywords: Spatial sampling design; Species distribution models; Two-part models; Research Surveys; Raja clavata

## 1 Introduction

The fishery-independent quantitative species data collected during research surveys are important for monitoring the abundance of fishery resources, are commonly used as input for stock assessment models, and provide a basis for scientific advice on stock conservation status and fishing opportunities. Survey georeferenced data is also used to investigate the spatial and temporal distribution of species.

Although during the 1960s and 1970s stock trend analysis from stock assessments performed with virtual population analysis (VPA) were matched to fishery-dependent data (commercial catch per unit effort, CPUE), issues with the underlying assumption of a proportional relationship between CPUE and abundance emphasised the importance of
using fishery-independent information. The research survey programmes that began in the 1960s were originally conceived as sources of biological information. Examples of these are the Woods Hole bottom trawl resource survey, which started in 1963 (Smith, 2002), and the International Bottom Trawl Survey in the North Sea, which started in 1965, initially aimed at juvenile herring in the central and southern North Sea (ICES, 2020). It was mainly in the 1980s that the data collected from research vessel surveys became important to estimate fish abundance for use in stock assessments, at the same time that survey design and estimation methodology were being developed (e.g., Pennington (1983, 1986); Pennington and Volstad (1994); Smith (1999)). To improve cost efficiency, the majority of research vessel surveys in the Northeast Atlantic area aim to collect data for several species and stocks. In 2021, for example, 18 countries conducted bottom trawl surveys in the North Sea and northeastern Atlantic areas on board several research vessels, collecting data on the distribution and relative abundance as well as biological information for a large number (over 50) of demersal species and stocks (ICES, 2021). One of these surveys is the Portuguese International Bottom Trawl Survey (PT-IBTSQ4), conducted in Portuguese continental waters during Autumn. This survey started in 1979 and was initially designed to monitor the distribution and abundance of the most important commercial species in the Portuguese trawl fishery (Cardador et al., 1997)), although with a focus on estimating abundance indices of recruits of European hake Merluccius merluccius and horse mackerel Trachurus trachurus (Borges, 1984, ICES, 1989).

The design of the PT-IBTS-Q4 survey has changed to that of a multi-species survey, collecting data to estimate abundance and biomass indices in addition to biological parameters for other commercially important species, including fish (e.g., blue whiting Micromesistius poutassou, mackerel Scomber scombrus and chub mackerel Scomber colias), crustaceans (e.g., Nephrops norvegicus and Parapenaeus longirostris) and cephalopods (Chaves, 2018).

The design of multi-species or multi-purpose surveys requires attention to accuracy for both target and non-target species, therefore requiring more complex and on-demand sampling schemes. Classical sampling theory and geostatistics address similar questions and result in unbiased estimates, but they are different. The former is related to designbased inference and the latter relies on model-based inference (Hoef, 2002). According to a comparison study presented in Hoef $(\overline{2002})$, geostatistical methods can be more efficient since they perform estimates closer to the true values. In particular, a Bayesian modelbased approach may easily account for the particularities of the species under study and their habitat, as well as dealing with the different sources of variability usually present in complex data. This flexibility entails some additional computational cost.

In this study, we develop a framework and propose methodologies to investigate whether the Portuguese bottom trawl survey can be more efficient by adopting an al-
ternative spatial sampling design. The aim is to maximise the accuracy of abundance estimates for non-target species of the survey while maintaining the precision of the survey target species abundance estimates. The species considered are the European hake, which is a target species of the surveys, and the thornback ray, a non-target species, for which PT-IBTS-Q4 data has been used to estimate biomass indices.

European hake is one of the most important species in western demersal surveys, given jits high abundance, wide distribution, and importance in the trophic chain (Casey and Pereiro, 1995). This species is distributed from the coast of Mauritania to the western coasts of Norway and Iceland; it is also found in the North Sea, Skagerrak, Kattegat, and Mediterranean waters (Stehmann and Bürkel, 1984). It inhabits depths ranging from 30 m to more than 500 m , over mud/sand and rocky substrata (Casey and Pereiro, 1995). Moreover, Portugal is one of the largest European markets for hake products Sylvia, 1995).

The thornback ray is caught by Portuguese fisheries along the coast and is one of the most common elasmobranch and skate species found in European waters Walker and Hislop, 1998, Machado et al., 2004)Figueiredo et al, 2010. It is distributed along the eastern Atlantic from Norway and Iceland to South Africa, including the Mediterranean and Black Seas (Stehmann and Bürkel, 1984). The species is mainly found on hard seabed (e.g., gravel and pebble), in areas of intermediate to strong tidal currents Ellis et al., 2005), from near shore to 300 m deep, with extreme records around 1000m (Ebert and Dando, 2021). From 1956, studies observed a decline in the occurrence of thornback ray in the North Sea (Walker and Heessen, 1996; Dulvy et al., 2000), but in recent years its stock has recovered in that area and throughout European waters (ICES, 2021).

This study evaluates survey efficiencies in estimating species biomass or abundance by comparing estimates derived from a random survey (under this design fishing hauls are randomly selected) to others obtained with alternative spatial sampling designs. To achieve this, a common methodology is applied to the two selected species: one target and one non-target. The procedure proposed is structured under a hierarchical Bayesian framework, which includes the adjustment of a model-based approach that accounts for the semi-continuous nature of the data and the excess of zero values for thornback ray. We also consider the environmental variables that might impact on the distribution and occurrence of the species under study. Finally, we compare the species model-based abundance estimates obtained under eight alternative non-random survey designs with those obtained from a random design. The eight different designs resulted from eight different ways of selecting the fishing hauls, depending on the specific priorities of each survey design. Comparison of the survey designs takes into account a balance between maximising the accuracy of estimates and minimising the uncertainty, and a balance between the objectives defined for both target and non-target species.

## 2 Material and Methods

### 2.1 Description of survey design

The PT-IBTS-Q4 survey, carried out by the Portuguese Institute for the Sea and Atmosphere (IPMA) using a bottom trawl (type Norwegian Campbell Trawl 1800/96 NCT) with a 20 mm codend mesh size and ground rope with bobbins, adopted a stratified random sampling design during the period 1979-1989. Initially (1979-1980), the surveyed area along the Portuguese continental coast (from latitude $41^{\circ} 20^{\prime} \mathrm{N}$ to $36^{\circ} 30^{\prime} \mathrm{N}$ and from 20 to 750 m bottom depth) was divided in 15 strata (Cardador et al., 1997). The boundaries of each stratum were based on five geographic areas and three bathymetric levels, each stratum being divided into units of around 25 square nautical miles. In 1981, with the aim of decreasing the total variance of mean abundance indices by species, the fishing hauls (sampling units) were spread at random over 36 strata (combination of twelve geographic areas and three bottom depth intervals: [20-100m[; [100-200m[; [200-500m[). Following analysis of the trade-off between biased estimates of species abundance with low variance and unbiased estimates with large variance, the survey design was changed to a predefined fishing hauls scheme in 1989 (ICES, 2002, 2017). The reduced variance of the abundance estimates obtained with the predefined sampling scheme was the dominant objective for the assessment of the southern stock of hake, at the time carried out with VPA tuning (ICES, 1990).

In 2005, the survey design changed to a sampling with partial replacement scheme (Cochran, 1977), recognising that the precision of the estimates for fish abundance trends over time could be improved by combining predefined and random fishing hauls, with a subset of hauls being matched from one survey to the next (ICES, 2004). A maximum of 96 fishing hauls, along the 36 survey strata, were sampled. These include 66 predefined hauls, distributed according to a regular grid of $5 \times 5$ nautical miles and taking into account that at least two fishing hauls should be made by stratum, with 30 hauls selected at random, carried out if ship time is available (ICES, 2002). Fishing hauls are carried out during daylight at a towing mean speed of 3.5 knots with a haul duration of 30 minutes (Chaves, 2018).

### 2.2 Species studied and environmental data

The exploitable biomass index of thornback ray, referring to the population encompassing fish with length over 50 cm , was calculated by haul and the unit used is $\mathrm{kg} / \mathrm{hour}$. The index of hake abundance is the number of fish caught per hour (nb/hour), which was also determined by fishing haul. The centroid position of each fishing haul (longitude, latitude) was calculated using the geographic coordinates of the start and final position of each fishing haul.

The studied area covers the western coast of Portugal ( $36^{\circ} 30^{\prime} \mathrm{N}$ to $41^{\circ} 20^{\prime} \mathrm{N}$ ) (Figure 6). We adopted this restriction because the geomorphology of the Portuguese coast determines different directions of the southern coast and its bathymetry, which is associated with distinct oceanographic features and environmental conditions (Relvas et al., 2007) as well as community assemblages (Moura et al., 2020). Figure 6 shows the nine geographic areas considered in our study, from CAM in the north to ARR in the south. The type of substratum and bathymetry are the environmental variables considered as both are known to be related with the thornback ray habitat (Santos et al., 2021). Bathymetric and type of substratum sediment data were collected from the EMODnet central portal, accessible from http://www.emodnet.eu/. Bathymetric data was represented in meters. The type of substratum was classified into five categories (sand; rock and boulders; mud to muddy sand; mixed sediment and coarse-grained sediment) (Figure 7). We excluded non-trawlable zones, characterised by the rock and boulders substratum, from our prediction area (black zones represented in Figure 7).

### 2.3 The proposed methodology

Our methodology focuses on proposing alternative survey designs that enhance the most accurate estimation of species abundance possible. Moreover, the proposed methodology is flexible: it allows application to other species groups or even more than two species, the introduction of different objectives, like minimising the cost of performing a survey, and the incorporation of other survey constraints. For each survey design, 65 fishing hauls were considered, of which 54 were predefined by the Portuguese bottom trawl survey and 11 were selected according to a particular objective. The specific constraints governing this methodology were: do not consider non-trawlable zones, the study region is restricted up to a depth of 200 m , at least two fishing hauls must be sampled in each stratum, and there is a minimum distance between survey locations. In our study, this distance is given by the minimum distance between two observed locations.

The methodology proposed in this study includes the following steps (Figure 1:

1. Selection of the best species distribution model (SDM) under a Bayesian framework and estimation of the predicted surface on a fine grid for each species using the available observed survey data. The selection of the best SDM, was based on goodness of fit and predictive quality criteria, using deviance information criterion values (Spiegelhalter et al., 2002) and log-conditional predictive ordinate values (Roos and Held, 2011).
2. Selection of 11 new fishing hauls, according to weight (Table 1), to be added to the predefined fishing hauls and establish alternative sampling survey designs 1-8. For reasons of terminological simplicity, hereafter these designs will be referred to as non-random conditional to the SDM used for weight construction.


Figure 1: Methodology flowchart for the proposal and assessment of alternative survey designs.
3. Prediction of abundance indices for all species at the observed locations of the benchmark survey, assuming the design as the ground truth. This prediction procedure considers the best SDM from step 1, for each of the species.
4. Comparison of the predicted and the observed values using the mean absolute or root mean square errors, the stratified mean and respective variance.

### 2.4 Species Distribution Model

The SDM of each species was constructed by assuming that, for the variables under study, no major differences occur between surveys as they take place at the same time of the
year. It is thus considered that the observations from the different surveys complemented each other and they are therefore treated as a single collection in time.

According to the SDM adopted, $Y(\mathbf{s})$ is a spatial process for the biomass index Raja clavata or the abundance index of Merluccius merluccius indices at location s, and $Z$ ( $\mathbf{s}$ ) is a presence/absence process that takes the value 0 if the species was not observed at location $\mathbf{s}$ and 1 otherwise. Consequently, given that $Z(\mathbf{s})=1, Y(\mathbf{s})$ takes the positive value of biomass or abundance index observed at location s. Under this SDM it is assumed that $Z(\mathbf{s})$ comes from a Bernoulli distribution with a probability of success, $p(\mathbf{s})$, and that $Y(\mathbf{s})$, given that $Z(\mathbf{s})=1$, follows a Gamma distribution with the shape parameter, $a(\mathbf{s})$, and scale parameter, $b(\mathbf{s})$. This two-part SDM is fitted under the Bayesian framework and can be defined as:

$$
\begin{equation*}
\operatorname{logit}(p(\mathbf{s}))=\alpha_{1}+\sum_{j=1}^{p_{1}} \beta_{i, j} f\left(X_{1, j}(\mathbf{s})\right)+W(\mathbf{s}) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\log (a(\mathbf{s}) / b(\mathbf{s}))=\alpha_{2}+\sum_{j=1}^{p_{2}} \beta_{i, j} f\left(X_{2, j}(\mathbf{s})\right)+k W(\mathbf{s}) \tag{2}
\end{equation*}
$$

The probability of occurrence, $p(\mathbf{s})$, is modelled through the logit link function $\log \left(\frac{p(\mathbf{s})}{1-p(\mathbf{s})}\right)$, and the expected abundance or biomass index, $\mu(\mathbf{s})=a(\mathbf{s}) / b(\mathbf{s})$, through its logarithm. The $f(\cdot)$ denotes possible transformation functions, such as linear splines (Zuur et al., 2017) or a logarithm of environmental covariates, $X_{1, j}(\mathbf{s})$. The terms $\alpha_{1}$ and $\alpha_{2}$ represent the intercepts, and $\beta_{i, j}, i=\{1,2\}$ are the regression coefficients (representing the impact of environmental conditions on the response variable). In this study, the environmental conditions considered were the bathymetry and the substratum sediment type. The priori distributions for parameters $\alpha_{i}, \beta_{i, j}$ and $k$ were defined as Gaussian with mean zero and variance 1000 , so that they are less informative since there is no a priori knowledge about these parameters.
$W(\mathbf{s})$ represents a spatial random effect modelled as a Gaussian Markov random field (GMRF), and it is further assumed to be an intrinsically stationarity process of mean zero. $W(\mathbf{s})$ resulted from an approximation of a latent Gaussian field (GF), using a method based on stochastic partial differential equations (SPDE), as proposed by Lindgren et al. (2011). The SPDE approach allows approximation of a spatial continuous field, represented by a Matérn covariance function, by a Markov field. This approximation was adopted due to its computational advantages. Parameterisation was carried out in terms of the marginal variance of the data, $\sigma^{2}$, the radius of influence, $\phi$, whose prior distributions were specified under PC prior framework (Simpson et al. 2017). The
two-part probability model can be represented as the product:

$$
\begin{equation*}
[Y(\mathbf{s})]=[Z(\mathbf{s})][Y(\mathbf{s}) \mid(Z(\mathbf{s})=1)] \tag{3}
\end{equation*}
$$

where [.] means "distribution of" and $\cdot \mid$ means "conditional to".

### 2.5 Alternative survey sampling designs

Bearing in mind that the predefined fishing hauls could not guarantee at least two sampling units by stratum (combination of nine geographic areas and two bottom depth intervals: $[0-100 \mathrm{~m}[; ~[100-200 \mathrm{~m}[)$, the second step considers a sampling procedure capable of selecting $7\left(n_{1}\right)$ fishing hauls under this condition, and another $4\left(n_{2}\right)$ spread over the entire prediction region.

The criteria for selecting the new fishing hauls varied according to two main specific objectives: minimisation of the uncertainty resulting from the modelling process, or maximisation of the abundance index of both or either species, or even prioritising a specific region of the study area. Table 1 summarises the difference that corresponds to 8 weights, which are computed for each location of the prediction surface and condition the selection probability of those locations. These weights are based on the two components:

$$
\begin{equation*}
u_{\mathbf{s}}^{i}=\frac{\hat{y}_{\mathbf{s}^{i}}}{\max \left\{\hat{y}_{\mathbf{s}^{i}}\right\}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{\mathrm{s}}^{i}=\frac{\hat{\sigma}_{\mathbf{s}^{i}}}{\max \left\{\hat{\sigma}_{\mathbf{s}}^{i}\right\}} \tag{5}
\end{equation*}
$$

where $\hat{y}_{\mathbf{s}}^{i}$ refers to the median prediction estimate of biomass or abundance index and $\hat{\sigma}_{\mathbf{s}}^{i}$ represents the standard deviation of spatial effects for location $\mathbf{s}=\left\{\mathbf{s}_{1}, \mathbf{s}_{2}, \cdots, \mathbf{s}_{N}\right\}$ and species $i=\{R, M\}$, such that $R$ identifies thornback ray and $M$ identifies hake. It is possible to interpret $\hat{\sigma}_{\mathrm{s}}^{i}$ as an uncertainty measure of what was not explained by the covariates, that is, it represents the remaining variance after considering the explanatory variables. Both $\hat{y}_{\mathrm{s}}^{i}$ and $\hat{\sigma}_{\mathrm{s}}^{i}$ are standardised by the corresponding maximum, since the ranges of abundance and standard deviations of spatial effects were different for the two species.

In Table 1, the weights defined for designs 4 and 7 take into account the geographic area, through the component $q_{\mathbf{s}}$, which takes integer values from 1 to 9 ranging from higher to lower priority. Thus, locations from the same area have the same value for $q_{\mathrm{s}}$. In particular, weight 8 (maximise the similarity between the distributions of the two species) was aligned with that suggested by Pennino et al. (2016) to evaluate the overlapping of predictions from two datasets.

The new additional fishing hauls of alternative design, $m$, were defined as locations
of the fishing hauls corresponding to those that minimise the weights $w_{\mathrm{s}}^{m}$ : (i) for each incomplete stratum, leading to the proposal of 7 new fishing hauls to accomplish the survey condition together with 54 predefined hauls (at least two fishing hauls by stratum); (ii) for the entire study area to select the remaining 4 locations. Steps (i) and (ii) were repeated for each weight $m$ presented in Table 1. This allows us to move forward with the proposal of the alternative survey sampling designs, which need to be evaluated among themselves and compared with a benchmark.

Table 1: Weights used to select new fishing hauls and corresponding objectives.

| Design $m$ | Weight $w_{\mathrm{s}}^{m}$ | Objective |
| :---: | :---: | :---: |
| 1 | $v_{\mathrm{s}}^{R} \times v_{\mathrm{s}}^{M}$ | Minimise the uncertainty of what was not explained by the models applied to $R$. clavata and M. merluccius. |
| 2 | $v_{\mathrm{s}}^{R}\left(1-u_{\mathrm{s}}^{R}\right) \times v_{\mathrm{s}}^{M}\left(1-u_{\mathrm{s}}^{M}\right)$ | Same objective of measure 1 maximising, at same time, the biomass or abundance of both species. |
| 3 | $v_{\mathrm{s}}^{R}\left(1-u_{\mathrm{s}}^{R}\right) \times v_{\mathrm{s}}^{M}$ | Same objective of measure 1 maximising the biomass of $R$. clavata. |
| 4 | $v_{\mathrm{s}}^{R} \times v_{\mathrm{s}}^{M} \times q_{\mathrm{s}}$ | Same objective of measure 1 giving importance to geographic strata of the study area throughout $q_{\mathrm{s}}$. |
| 5 | $\hat{\sigma}_{\mathbf{s}}^{R}$ | Minimise the uncertainty of what was not explained by the model for $R$. clavata. |
| 6 | $\hat{\sigma}_{\mathrm{s}}^{R}\left(1-u_{\mathrm{s}}^{R}\right)$ | Same objective of measure 5 maximising, at same time, the biomass of $R$. clavata. |
| 7 | $\hat{\sigma}_{\mathrm{s}}^{R} \times q_{\mathrm{s}}$ | Same objective of measure 5 giving importance to geographic strata of the study area throughout $q_{\mathrm{s}}$. |
| 8 | $\sqrt{\left(\sqrt{u_{\mathrm{s}}^{R}}-\sqrt{u_{\mathrm{s}}^{M}}\right)^{2}}$ | Maximise the similarity between the distributions of the two species. |
| Random | $\frac{1}{N}$ | Random selection giving the same importance to all locations. |

### 2.5.1 Assessment methodology of the alternative survey designs

The third step includes a survey that took place in the past used as a benchmark (in our case study, we chose the 2015 survey). Then, for each proposed design, we predict abundance indices for all species at the observed locations, assuming the design as the ground truth. This prediction procedure considers the best SDMs selected in step 1 of

Figure 1. We end up with eight databases of predicted abundance indices for each species. Each database holds the centroid position (longitude and latitude) of the fishing hauls, all covariates (in our case, the corresponding bathymetry and the substratum type), and the predictive posterior medians for the non-target and target species (in our case, thornback ray biomass and hake abundance indices).

In the last step of the flowchart shown in Figure 1, the biomass or the abundance index predicted values for each species are compared with the values observed in the benchmark survey using classic assessment metrics, such as mean absolute error (MAE), root mean square error (RMSE) (Chai and Draxler, 2014), stratified mean ( $\bar{y}_{s t r}$ ) and corresponding stratified variance $\left(s_{s t r}^{2}\right)$ (Ghosh, 1958).

Furthermore, with the aim of further evaluating the first eight survey designs that result from the respective weights proposed in Table 1, we suggest contrasting them with a random design (the ninth design presented in Table 1), which has a random selection of locations according to a homogeneous spatial Poisson process. Firstly, we simulated 200 sets of fishing hauls, allowing the random selection of new locations (in our case, 11) as long as they meet the predefined design constraints (in our case, having at least two sampling units by stratum). Secondly, we computed four assessment metrics, MAE, RMSE, $\bar{y}_{s t r}$ and $s_{s t r}^{2}$, by comparing the predicted values of biomass or abundance index obtained from each of the 200 simulated sets with those observed in the benchmark survey. Finally, we considered the empirical distribution of the 200 values obtained for the assessment metrics as an approximation of their theoretical distribution function. That way, the random design is used for evaluating the performance of the eight proposed non-random sampling designs.

The R code corresponding to the survey design procedure and its assessment is available on GitHub (https://github.com/SilvaPDaniela/Evaluation-of-survey-designs-for-species-distribution-estimation).

## 3 Results

### 3.1 Frequency of occurrence and observed biomass of thornback, and abundance of hake

During the period 2013-2016, the thornback ray biomass index was computed in 212 fishing hauls along the west coast of Portugal, with this information available for at least 49 different fishing hauls each year. The number of fishing hauls with a strictly positive value for the catch of thornback ray varied between 6 (2014) and 15 (2015) (Table 2). Between 2015 and 2016, the hake abundance index was computed for 101 fishing hauls. The number of hauls with strictly positive values for the catch of hake was 50 and 44, in 2015 and 2016, respectively (Table 2).

Table 2: Number (nb) of recorded fishing hauls, number of fishing hauls with a strictly positive catch, and percentage of zero catches by species, during PT-IBTS-Q4 surveys conducted between 2013 and 2016.

| Species | Fishing hauls/catch | 2013 | 2014 | 2015 | 2016 | Total |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| Thornback <br> ray nb of recorded fishing hauls | 57 | 49 | 54 | 52 | 212 |  |
|  | nb of fishing hauls with presence | 9 | 6 | 15 | 11 | 41 |
|  | \% of zero catch | 84 | 88 | 72 | 79 | 81 |
| Hake | nb of recorded fishing hauls | - | - | 53 | 48 | 101 |
|  | nb of fishing hauls with presence | - | - | 50 | 44 | 94 |
|  | \% of zero catch | - | - | 6 | 8 | 7 |

The highest exploitable biomass index of thornback ray (fish total length over 50 cm ; $\mathrm{kg} /$ hour) was observed in the area near Lisbon in 2015 and 2016 (Figure 6). The annual percentage of zero catches of thornback ray was high, varying between $72 \%$ and $88 \%$ (Table 2). The empirical distribution of positive of thornback ray catches $(\mathrm{kg} / \mathrm{hour})$ during 2013-2016 was right skewed, with a biomass index range of $2.0-24.9 \mathrm{~kg} / \mathrm{hour}$ and a mean value of $7.8 \mathrm{~kg} /$ hour (Figure 8). The abundance index of hake (nb/hour) was higher in 2015 than 2016, particularly in the northern part of the western Portuguese coast (Figure 6). The percentage of zero catches for this species was low, $6 \%$ in 2015 and $8 \%$ in 2016 (Table 22). The empirical distribution of positive hake catches (nb/hour) was also right skewed, with a range between 2 to 3933 individuals and a mean value of 411 fish per hour (Figure 8).

### 3.2 Species Distribution Model

To check the assumption that both species have a similar spatial distribution over surveys because they take place at the same time of the year (near October), we applied the Knox and Mantel statistical tests for space-time interaction (Meyer et al., 2016) to our datasets. Both statistical tests resulted in high p-values for both species, indicating that our assumption was not violated. In addition, the results of the Kolmogorov-Smirnov test (Frank and Massey, 1951) confirmed the adequacy of a Gamma distribution to model the strictly positive values, which indicated p-values of 0.808 and 0.603 for thornback ray biomass and hake abundance, respectively.

### 3.2.1 Thornback ray biomass

Table 3 presents a summary of the results obtained for the best SDM chosen for the thornback ray. The model was fitted to these data, considering the SPDE approach and taking into account the substratum sediment type and bottom depth covariates as fixed effects. The probability of species occurrence increases more than five times for fishing

Table 3: Main statistics of the posterior distributions for fixed effects for the thornback ray biomass index. S.D. is the standard deviation and ' $\because$ ' refers to interaction between covariates. $\chi_{q}$ identifies the quantile of probability $q$.

| Process | Covariate |  | Mean | S.D. | $\chi_{0.025}$ | $\chi_{0.5}$ | $\chi_{0.975}$ | Mode |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $Z(\mathbf{s})$ | Intercept |  | -1.574 | 0.517 | -2.705 | -1.546 | -0.610 | -1.505 |
|  | Substratum | (Mixed | 10.104 | 6.002 | -1.529 | 10.046 | 22.071 | 9.937 |
|  | sediment) |  |  |  |  |  |  |  |
|  | log(Depth):Substratum | -2.488 | 1.508 | -5.498 | -2.475 | 0.439 | -2.449 |  |
|  | (Mixed sediment) |  |  |  |  |  |  |  |
| $Y(\mathbf{s}) \mid(Z(\mathbf{s})=1)$ | Intercept | 3.630 | 1.054 | 1.519 | 3.639 | 5.684 | 3.659 |  |
|  | $\log$ (Depth) | -0.443 | 0.220 | -0.879 | -0.442 | -0.010 | -0.441 |  |

locations with a mixed sediment substratum (mean and median around 10.1). Depth exhibited a negative relationship with species occurrence in mixed substratum sediment (mean and median around -2.5 ) and also with species biomass index (mean and median around -0.44 ). The thornback ray occurrence results indicated some uncertainty associated with these regression coefficient estimates, but we kept the corresponding covariates to achieve better predictive performance of the model. The posterior distributions of spatial covariance parameters for the thornback ray biomass model showed that spatial autocorrelation is almost null from approximately 66 km and the mode for the marginal standard deviation of the spatial effects was 1.1 (second and third panels in the upper row of Figure 22). The mean precision of the Gamma observations was estimated as 3.5 (Figure 2, first panel, upper row).

The left panel of Figure 3 represents the posterior median of the predictive distribution for the thornback ray biomass index, obtained according to the product defined in equation (3). As an indicator of uncertainty resulting from the modelling procedure, the right panel of Figure 3 represents the posterior standard deviations of the spatial effects, $W(\mathbf{s})$, derived for the thornback ray model. Unsurprisingly, the standard deviation estimates of spatial effects were lower near to sampled locations since the estimation in these locations is more accurate.

### 3.2.2 Hake abundance

Table 4 presents a summary of the results for the fixed effects resulting from the best SDM chosen for hake. The probability of occurrence and the abundance index of hake increase with logarithm of depth. In areas with a bottom depth shallower than 90 m , the abundance index of hake increases by 15 fish per hour, which rises to 31 fish per hour for each increment of approximately 2.7 m in depth in areas where water is deeper than 90 m . Regarding substratum sediment type, results indicated that hake is nearly twice as abundant in mud and muddy sand locations than in other type of sediment substratum.


Figure 2: Posterior distributions of hyperparameters for thornback ray biomass (upper panel) and hake abundance (lower panel) indices. $1 / \tau^{2}$ refers to the precision of the Gamma observations, $\phi$ to the spatial range, $\sigma$ to the standard deviation of spatial effects, and $k$ is the scale parameter between the two processes (occurrence and biomass or abundance given the occurrence).


Figure 3: Map of the posterior median of the predictive distribution of biomass index (left panel) and posterior standard deviations (right panel) of spatial effects of thornback ray.

Table 4: Main statistics of posterior distributions for fixed effects for the hake abundance index. S.D. is the standard deviation and ' $\because$ ' refers to interaction between covariates. $\chi_{q}$ identifies the quantile of probability $q$.

| Process | Covariate | Mean | S.D. | $\chi_{0.025}$ | $\chi_{0.5}$ | $\chi_{0.975}$ | Mode |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $Z(\mathbf{s})$ | Intercept | -12.963 | 5.596 | -24.193 | -12.910 | -2.048 | -12.816 |
|  | $\log$ (Depth) | 3.768 | 1.368 | 1.134 | 3.746 | 6.538 | 3.708 |
| $Y(\mathbf{s}) \mid(Z(\mathbf{s})=1)$ | Intercept | -9.834 | 3.260 | -16.303 | -9.816 | -3.472 | -9.781 |
|  | log(Depth) | 15.039 | 3.361 | 8.445 | 15.032 | 21.665 | 15.020 |
|  | (log(Depth)- | 15.902 | 3.260 | 9.577 | 15.872 | 22.397 | 15.814 |
|  | $4.521)_{+}$ |  |  |  |  |  |  |
|  | Substratum (Mud | 0.807 | 0.309 | 0.205 | 0.805 | 1.420 | 0.802 |
|  | to muddy sand) |  |  |  |  |  |  |

Regarding the spatial covariance parameters for the hake abundance model, no spatial autocorrelation is expected for distances over 110 km and the mode for the marginal standard deviation of the spatial effects was 1.2 (second and third panels in the lower row of Figure 2). The precision mean for Gamma observations was estimated as 0.9 (first lower row panel of Figure 22).

The left panel of Figure 4 represents the posterior median of the predictive distribution for the hake abundance index. The right panel of Figure 4 represents the posterior standard deviations of the spatial effects, $W(\mathbf{s})$, derived for the hake model. In accordance with what was also observed for the thornback ray biomass model, the uncertainty indicators for hake estimates were lower near the sampled locations.

### 3.3 Evaluation of alternative survey designs

Table 5 presents, by species, the assessment criteria values (MAE, RMSE, the stratified mean and its variance) used to evaluate each of the eight alternative non-random survey designs. We also present the stratified mean and its variance for the thornback ray biomass index and hake abundance index, as estimated for the 2015 survey. In the case of the thornback ray, survey sampling designs with new fishing hauls selected according to weights 4,7 and 8 provided better results for MAE and RMSE criteria. In all sampling designs, excluding 3 and 6 , the stratified mean estimates of the thornback ray biomass index were lower than the corresponding 2015 estimates. Regarding hake abundance, survey designs 2, 5, 8 and 7 produced lower MAE and RMSE values than the other designs. The stratified mean abundance estimate obtained with sampling designs 2, 8 and 7 were closer to the corresponding 2015 estimates (Table 5).

Weights 2,3 and 6 , which consider the standardised estimates of biomass/abundance for one or both species, presented higher MAE and RMSE values for the thornback ray. Indeed, maximising the biomass and/or abundance indices estimates provided a


Figure 4: Map of the posterior median of the predictive distribution of the abundance index (left panel) and posterior standard deviation of spatial effects (right panel) for hake.

Table 5: Values of the assessment metrics computed for the thornback ray and hake for each proposed measure, to be used in performance evaluation of the eight alternative nonrandom survey designs. We also provide the values of the stratified mean and its variance, estimated from the benchmark survey (2015). Grey lines indicate the best alternative survey designs. MAE - mean absolute error; RMSE - root mean square error; $\bar{y}_{s t r}$ stratified mean; $s_{s t r}^{2}-$ stratified variance.

| Alternative <br> design | Raja clavata |  |  |  |  | Merluccius merluccius |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MAE | RMSE | $\bar{y}_{\text {str }}$ | $s_{\bar{y}_{\text {str }}}^{2}$ |  | MAE | RMSE | $\bar{y}_{\text {str }}$ | $s_{\bar{y}_{\text {str }}}^{2}$ |
|  | 2.714 | 5.186 | 1.199 | 0.023 |  | 362.817 | 679.665 | 361.103 | 514.626 |
| 2 | 3.131 | 5.613 | 1.302 | 0.039 |  | 351.124 | 651.092 | 398.689 | 649.951 |
| 3 | 2.907 | 5.326 | 1.442 | 0.021 |  | 359.350 | 675.524 | 380.254 | 473.513 |
| 4 | 2.551 | 4.866 | 1.083 | 0.015 |  | 353.809 | 670.369 | 379.395 | 578.688 |
| 5 | 2.862 | 5.191 | 1.163 | 0.029 |  | 344.788 | 660.462 | 371.376 | 586.391 |
| 6 | 3.005 | 5.394 | 1.464 | 0.048 |  | 360.094 | 677.111 | 381.132 | 480.876 |
| 7 | 2.533 | 4.848 | 1.205 | 0.023 |  | 350.664 | 664.200 | 381.839 | 597.662 |
| 8 | 2.690 | 5.186 | 0.953 | 0.012 |  | 349.950 | 659.390 | 388.539 | 602.207 |
| Year 2015 | - | - | 1.401 | 0.208 |  | - | - | 460.246 | 3325.801 |

less accurate prediction process, highlighting the importance of minimising the standard deviation estimates of spatial effects, which can be seen as a measure of uncertainty in the estimation process. This feature was confirmed by the results for hake abundance index estimates, where designs 3 and 6 also presented two of the worst MAE and RMSE results.

Figure 5 presents the MAE and RMSE sampling distribution for the random design, in which the location of the 11 new fishing hauls were randomly selected from a homogeneous spatial Poisson process. Results confirmed that the survey sampling designs with new fishing hauls selected according to measures 4, 7 and 8 resulted in higher accuracy for thornback ray biomass than that obtained with a random selection of fishing hauls. Regarding estimation of the hake abundance index, all sampling designs outperformed the random design (Figure 5).

Survey design 7 presented the best results of the eight proposed non-random designs, since it provided the best balance between the accuracy of results for the target and the non-target species. This survey design was based on defining the location of the 11 new fishing hauls (western Portuguese coast) that minimise the uncertainty of what was not explained by the thornback ray biomass model and give importance to specific geographic areas in the study area (namely, those with higher values of ray biomass). Although it did not present the best results for estimation of the hake abundance index per se (design 8 may be preferable), it provided good commitment when analysing results together with the non-target species. Therefore, we believe that by adopting survey design number 7 for the PT-IBTS-Q4 survey, the accuracy of the thornback ray biomass index estimates will improve, without jeopardising estimation of the hake abundance index.


Figure 5: Distribution MAE (left panels) and RMSE (right panels) densities resulting from the estimation of thornback ray biomass (top panels) and hake abundance (bottom panels), indices based on 200 sets of 52 , randomly selected fishing hauls. Vertical lines represent the three best alternative surveys for each species (with lowest values of MAE and RMSE). See Table 1 for the definition and objectives of each weight.

## 4 Discussion

Fisheries research vessel surveys should be efficient since marine survey programmes are expensive and time-consuming, but few studies have been published investigating the efficiency of multi-species sampling designs. Recently, Zhang et al. (2020) evaluated multi-species fisheries surveys considering several sampling and estimation methods and a wide range of sample sizes. The basis of their study was a simulation framework considering the joint distribution of multiple species. In our study, we develop a fourstep framework to evaluate the accuracy of alternative sampling designs for a bottom trawl research survey, focusing on improving the accuracy of abundance estimates for one non-target species, while maintaining the precision of the abundance index estimates of one target species. In the first step, we used the species spatial abundance index observed in previous surveys coupled with spatial environmental data to model species abundance. In the second step, and for a fixed number of fishing hauls, we defined alternative sampling designs by selecting the extra fishing hauls while maintaining fishing hauls from the adopted design (i.e., a combination of predefined and random fishing hauls). In the third step, we took a previous survey as a benchmark, and predicted the species abundance index for these locations. In the final step, we compared the predicted values to those observed at the benchmark. The best alternative design was selected by evaluating the trade-off between increasing the accuracy of abundance index estimates for the non-target species and the precision of the abundance index estimates for the target species. The trade-off was evaluated based on an analysis of the MAE, RMSE, stratified mean and its variance obtained for each species, and an alternative survey sampling design. The combination of MAE and RMSE metrics are often likewise used to assess model performance (Chai and Draxler, 2014). The stratified mean abundance estimate and its variance were selected from other possible abundance/biomass estimates (e.g., the mean) so as to be in accordance with the survey's stratified random sampling design, an estimator commonly used in bottom trawl research surveys (ICES, 2017, 2020). Indeed, the stratified sampling design provides higher accuracy for abundance/biomass index estimates than simple random sampling, since it is based on strata that are more homogenous within themselves than between them (Cochran, 1977; Lohr, 2009).

Species distribution models (SDMs) are increasingly popular (e.g., Coelho et al. (2018); Thorson and Barnett (2017); Martínez-Minaya et al. (2018); Azevedo and Silva (2020) as they allow the combination of species occurrence observations and/or abundance with environmental information, incorporate both spatial and temporal variability, and may have either a single or multi-species focus. In our study, we used a geostatistical model-based approach instead of a design-based approach to define the sampling design of research surveys. In a Bayesian framework, combining SDMs with geostatistical methods has proven to be ideal for handling the different sources of variability underlying complex
data correlated in space (Izquierdo et al., 2022; Martínez-Minaya et al., 2018; Pennino et al., 2019). Modelling was conducted assuming the SDM formulation for both species and allowing for the particularities of the spatial distribution of each species. In this sense, we performed a previous exploratory analysis of data to verify the reasonableness of assuming the same SDM formulation. A common feature in abundance data is the semi-continuous nature of the response variable and also a high number of zero values, particularly for species with a patchy distribution (e.g., Paradinas et al. (2017)). Both features were mainly observed for the thornback ray during the PT-IBTS-Q4 survey timeseries, but also for hake. Therefore, our SDM considered a two-part model for species occurrence together with abundance or biomass. We incorporated ancillary information, namely georeferenced data on substratum sediment type and bottom depth data, since if there is a relationship between the covariates and the abundance of the species, it is possible to predict species abundance for unsampled locations.

We proposed eight optimisation weights for selecting the extra locations of fishing hauls and making it more likely to choose locations that better represent the spatial distribution of the non-target and/or target species (in our motivating example, the thornback ray and hake species, respectively). We also assessed the performance of the eight proposed designs by means of a simulation study. We believe that the adopted simulation approach, aiming to derive the empirical distribution of MAE and RMSE assessment metrics under a random design assumption, allows us to validate the importance of the optimisation weights proposed in this work. The eight weights resulted in distinct survey designs and, consequently, in different predicted surfaces for the benchmark survey. These predicted surfaces were compared with the values observed in the benchmark survey. In our motivating example, 2015 was chosen as the benchmark survey because it presented a lower rate of zeros in the thornback ray biomass observed during the 2013-2016 period.

This work confirms the importance of including selected covariates in the spatial model to make the stochastic component of the residuals irrelevant. The spatial distribution of thornback ray biomass and hake abundance indices differed. The highest thornback ray biomass index occurred close to the coast shelf and in the Lisbon area, while the abundance index of hake was higher in the northern area and at locations more distant from the coast. A particularly noteworthy observation was the negative effect of both depth and type of substratum on the processes of thornback ray occurrence and biomass index. In our study, occurrence was associated with mixed sediment substratum. However, the impact of substratum type on the presence of thornback ray has been studied in other marine areas with varying results. Greater occurrence was related to mixed sediment in the North Sea (Sguotti et al., 2016), to coarse grain sediment in the British Isles (Elliott et al., 2020), and to sandy mud sediment in Azorean waters (Santos et al., 2021). Information provided by Portuguese fishermen further supports this substratum dependency, as they report that thornback ray adults mainly occur in the substrata of rocks surrounded
by sand and between mud and fine sand (Serra-Pereira et al., 2014). The occurrence and abundance index processes of hake show a positive correlation to depth. The hake abundance index increases at depths lower than 90 m , a feature also observed off the Portuguese continental coast and in the Thracian sea, where Maravelias et al. (2007); Korta et al. (2015) reported higher abundance of hake between 100 m and 200 m , respectively. In agreement with our study's observations, Casey and Pereiro (1995); Papaconstantinou and Stergiou (1995) also concluded that a mud to muddy sand substratum favours the abundance of hake when compared with other substratum types in the northeast Atlantic and eastern Mediterranean, respectively.

Analysis of the observed stratified mean for both the benchmark survey and the predicted stratified mean suggested a preference for designs 2,3 and 6 in case of the thornback ray and for designs 2 and 8 in the case of hake observations. This result was expected since these designs prioritise locations with higher estimates of biomass or abundance indices for the respective species, thus resulting in higher mean values. Also as expected, in all cases, the estimated stratified variance was lower than that determined for the benchmark survey since, due to the modelling process, predicted values are smoother than the observed values of biomass or abundance index. Finally, it is important to note that the MAE, RMSE, stratified mean and stratified variance values did not vary greatly between all the proposed designs, since they differ most in the location of 11 fishing hauls.

Given the importance of research surveys for marine conservation, improving survey designs leads to higher precision and quality of the information collected, and consequently to a more efficient management of fisheries resources. Our study emphasises the use of spatial modelling techniques to inform about the spatial distribution of target and non-target species caught in research vessel surveys to estimate the abundance and/or biomass indices of these species. We investigated alternative survey sampling designs and evaluated their performance. The analysis was applied to fish species occurring in Portuguese waters but, more importantly, the framework and the methodology developed in this study can be replicated for other bottom trawl research surveys and sets of species. In addition, the measures investigated to propose alternative sampling designs are easily adaptable to respond to other objectives. Although we showed that in the studied case, survey sampling designs 7 and 8 complied with the objectives of maximising the accuracy of abundance estimates for the non-target species without jeopardising the estimates for the survey's target species, survey sampling design 7 presented an acceptable trade-off between bias and variance of the target species. We recommend that a decision on which sampling design to adopt in future surveys should take into account a cost-efficiency analysis. This analysis can easily be accomplished by comparing the costs related to the duration of the survey and the displacement to fishing sites, among other survey costs that may be considered relevant.

## Supplementary material

Supplementary material is available at the ICESJMS online version of the manuscript.

## Data availability statement

The sampling data will be shared on reasonable request to co-author B. Pereira (bpereira@ipma.pt).

## Author's contributions

DS, RM, and IF developed the methodology. DS analysed the data and implemented the method. All authors contributed to the interpretation of the results and discussed ideas. DS led the writing of the manuscript, with contribution from RM, BP, MA and IF. All authors approved the final version of the manuscript.

## Conflict of interest

The authors have no conflicts of interest to declare.

## Funding

This study was supported by Portuguese funds through the Centre of Mathematics and the Portuguese Foundation for Science and Technology (FCT), within Individual Scholarship $\mathrm{PhD} \operatorname{PD} / \mathrm{BD} / 150535 / 2019$ and projects UIDB/00013/2020, UIDP/ 00013/2020 and PTDC/MAT-STA/28243/2017.

## Acknowledgements

## Complete

## References

Azevedo, M. and Silva, C. (2020). A framework to investigate fishery dynamics and species size and age spatio-temporal distribution patterns based on daily resolution data: a case study using Northeast Atlantic horse mackerel. ICES Journal of Marine Science, 77(7-8):2933-2944.

Borges, M. d. F. (1984). Evaluation of the results on horse mackerel (trachurus trachurus l.) of a series of young fish surveys in the portuguese waters (division ix). ICES C.M., 26:45pp.

Cardador, F., Sánchez-Delgado, F., Pereiro-Muñoz, F., Borges, M., Caramelo, A.M. (and Azevedo, M., Silva, A., Pérez-Contreras, M., Martins, M., Olaso-Toca, L., Pestana, G., Trujillo-Gorbea, V., and Fernández, A. (1997). Groundfish surveys in the Atlantic Iberian waters (ICES Divisions VIIIc and IXa): history and perspectives. ICES CM 1997/Y:8.

Casey, J. and Pereiro, J. (1995). European hake (M. merluccius) in the North-east Atlantic. In Alheit, J. and Pitcher, T., editors, Hake, volume 15. Springer, Dordrecht, Chapman \& Hall Fish and Fisheries Series edition.

Chai, T. and Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?- Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7:1247-1250.

Chaves, C. (2018). Relatório da Campanha Demersal 2018-02041018 IBTS PT-PGFS-Q4-2018. Relatórios de Campanha, page 45p.

Cochran, W. G. (1977). Sampling Techniques. John Wiley \& Sons, 3rd edition.
Coelho, R., Mejuto, J., Domingo, A., Yokawa, K., and et al (2018). Distribution patterns and population structure of the blue shark (Prionace glauca) in the Atlantic and Indian Oceans. Fish and Fisheries, 19(1):90-106.

Dulvy, N., Metcalfe, J., Glanville, J., Pawson, M., and Reynolds, J. (2000). Fishery Stability, Local Extinctions, and Shifts in Community Structure in Skates. Conservation Biology, 14:283-293.

Ebert, D. A. and Dando, M. (2021). Field Guide to Sharks, Rays $\mathfrak{B}$ Chimaeras of Europe and the Mediterranean. Wild Nature Press. 383pp.

Elliott, S. A., Carpentier, A., Feunteun, E., and Trancart, T. (2020). Distribution and life history trait models indicate vulnerability of skates. Progress in Oceanography.

Ellis, J., Cruz-Martinez, A., Rackham, B., and Rogers, S. (2005). The distribution of chondrichthyan fishes around the British Isles and implications for conservation. Journal of Northwest Atlantic Fishery Science, 35:195-213.

Frank, J. and Massey, J. (1951). The kolmogorov-smirnov test for goodness of fit. Journal of the American Statistical Association, 46(253):68-78.

Ghosh, S. P. (1958). A Note on Stratified Random Sampling with Multiple Characters. Calcutta Statistical Association Bulletin, 8(2-3):81-90.

Hoef, J. V. (2002). Sampling and geostatistics for spatial data. ECOSCIENCE, 9:152161.

ICES (1989). Report of the Study Group on Recruitment Indices of Hake from the Southern Stock. ICES Expert Group reports.

ICES (2002). Manual for the International bottom trawl surveys in the Western and Southern areas (revision II). Addendum to ICES CM 2002/D:03 Ref:G ACFM, ACE, page 27pp.

ICES (2004). Report of the Workshop on Survey Design and Data Analysis (WKSAD). ICES CM 2004/B:07, Ref.D, G, page 65pp.

ICES (2017). Manual for the IBTS North Eastern Atlantic Surveys. Series of ICES Survey Protocols. SISP 15, page 92pp.

ICES (2020). Manual for the North Sea International Bottom Trawl Surveys.
ICES (2021). Working Group on Elasmobranch Fishes (WGEF). ICES Scientific Reports, 3(59):822PP.

Izquierdo, F., Menezes, R., Wise, L., Teles-Machado, A., and Garrido, S. (2022). Bayesian spatio-temporal CPUE standardization: Case study of European sardine (Sardina pilchardus) along the western coast of Portugal. Fisheries Management and Ecology, 29(5):670-680.

Korta, M., García, D., Santurtún, M., Goikoetxea, N., Andonegi, E., Murua, H., Álvarez, P., no, S. C., Castro, J., and Murillas, A. (2015). European hake (Merluccius merluccius) in the Northeast Atlantic Ocean. In Arancibia, H., editor, Hakes: Biology and Exploitation, chapter 1, page 1-37. John Wiley \& Sons, Ltd.

Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. Statistical Methodology, 73(4):423-498.

Lohr, S. L. (2009). Sampling: Design and Analysis. Brooks/Cole, 2nd edition.
Machado, P., Gordo, L., and Figueiredo, I. (2004). Skate and ray species composition in mainland Portugal from the commercial landings. Aquatic Living Resources, 17:231234.

Maravelias, C. D., Tsitsika, E. V., and Papaconstantinou, C. (2007). Environmental influences on the spatial distribution of European hake (Merluccius merluccius) and red mullet (Mullus barbatus) in the Mediterranean. Ecological Research, 22:678-685.

Martínez-Minaya, J., Cameletti, M., Conesa, D., and Pennino, M. G. (2018). Species distribution modeling: a statistical review with focus in spatio-temporal issues. Stochastic Environmental Research and Risk Assessment, 32:3227-3244.

Meyer, S., Warnke, I., Rössler, W., and Held, L. (2016). Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area. Spatial and Spatio-temporal Epidemiology, 17:15-25.

Moura, T., Chaves, C., Figueiredo, I., Mendes, H., Moreno, A., Silva, C., Vasconcelos, R. P., and Azevedo, M. (2020). Assessing spatio-temporal changes in marine communities along the Portuguese continental shelf and upper slope based on 25 years of bottom trawl surveys. Marine Environmental Research, 160:105044.

Papaconstantinou, C. and Stergiou, K. I. (1995). Biology and fisheries of eastern Mediterranean hake (M. merluccius). In Alheit, J. and Pitcher, T., editors, Hake, volume 15, pages 149-180. Springer, Dordrecht, Chapman \& Hall Fish and Fisheries Series edition.

Paradinas, I., Conesa, D., López-Quílez, A., and Bellido, J. (2017). Spatio-temporal model structures with shared components for semi-continuous species distribution modelling. Spatial Statistics, 22:434-450.

Pennington, M. (1983). Efficient estimators of abundance, for fish and plankton surveys. Biometrics, 39:281.

Pennington, M. (1986). Some statistical techniques for estimating abundance indices from trawl surveys. Fishery bulletin, 84(3):519-525.

Pennington, M. and Volstad, J. H. (1994). Assessing the Effect of Intra-Haul Correlation and Variable Density on Estimates of Population Characteristics from Marine Surveys. Biometrics, 50(3):725-732.

Pennino, M. G., Conesa, D., López-Quílez, A., Muñoz, F., Fernández, A., and Bellido, J. M. (2016). Fishery-dependent and -independent data lead to consistent estimations of essential habitats. ICES Journal of Marine Science, 73(9):2302-2310.

Pennino, M. G., Paradinas, I., Illian, J. B., Muñoz, F., Bellido, J. M., López-Quílez, A., and Conesa, D. (2019). Accounting for preferential sampling in species distribution models. Ecology and Evolution, 9(1):653-663.

Relvas, P., Barton, E., Dubert, J., Oliveira, P. B., Álvaro Peliz, da Silva, J., and Santos, A. M. P. (2007). Physical oceanography of the western Iberia ecosystem: Latest views and challenges. Progress in Oceanography, 74(2):149-173. Ecological Functioning of the Iberian Seas: A synthesis of GLOBEC Research in Spain and Portugal.

Roos, M. and Held, L. (2011). Sensitivity analysis in Bayesian generalized linear mixed models for binary data. Bayesian Analysis, 6(2):259-278.

Santos, R., Medeiros-Leal, W., Novoa-Pabon, A., Crespo, O., and Pinho, M. (2021). Biological Knowledge of Thornback Ray (Raja clavata) from the Azores: Improving Scientific Information for the Effectiveness of Species-Specific Management Measures. Biology, 10(7):676.

Serra-Pereira, B., Erzini, K., Maia, C., and Figueiredo, I. (2014). Identification of potential essential fish habitats for skates based on fishers' knowledge. Environmental Management, 53(5):985-998.

Sguotti, C., Lynam, C. P., García-Carreras, B., Ellis, J. R., and Engelhard, G. H. (2016). Distribution of skates and sharks in the North Sea: 112 years of change. Global Change Biology, 22(8):2729-2743.

Simpson, D., Rue, H., Riebler, A., Martins, T. G., and Sørbye, S. H. (2017). Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors. Statistical Science, 32(1):1-28.

Smith, T. D. (2002). The woods hole bottom-trawl resource survey: development of fisheries-independent multispecies monitoring. In ICES Marine Science Symposia, volume 215, pages 474-482.

Smith, T. S. (1999). Survey methods for fisheries: challenges and statistical issues. In SSC Annual Meeting, Proceedings of the Survey Methods. Section: 91-100.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64:583-639.

Stehmann, M. and Bürkel, D. L. (1984). Rajidae. In Whitehead, P., Bauchot, M., Hureau, J. C., Nielsen, J., and Tortonese, E., editors, Fishes of the north-eastern Atlantic and Mediterranean, pages 163-196. UNESCO, Paris.

Sylvia, G. (1995). Global markets and products of hake. In Alheit, J. and Pitcher, T., editors, Hake, volume 15. Springer, Dordrecht, Chapman \& Hall Fish and Fisheries Series edition.

Thorson, J. T. and Barnett, L. A. K. (2017). Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES Journal of Marine Science.

Walker, P. A. and Heessen, H. J. L. (1996). Long-term changes in ray populations in the North Sea. ICES Journal of Marine Science, 53(6):1085-1093.

Walker, P. A. and Hislop, J. R. G. (1998). Sensitive skates or resilient rays? Spatial and temporal shifts in ray species composition in the central and north-western North Sea between 1930 and the present day. ICES Journal of Marine Science, 55(3):392-402.

Zhang, C., Xu, B., Xue, Y., and Ren, Y. (2020). Evaluating multispecies survey designs using a joint species distribution model. Aquaculture and Fisheries, 5(3):156-162. SI: Fisheries Monitoring: Science, Technology, Application and Management.

Zuur, A. F., Ieno, E. N., and Saveliev, A. A. (2017). Beginner's Guide to Spatial, Temporal, and Spatial-Temporal Ecological Data Analysis with R-INLA, volume I: Using GLM and GLMM, chapter 20: GAM with correlation and zero-inflation in R-INLA using owl data. Highland Statistics Ltd.

## Suplementary material



Figure 6: Exploitable biomass (fish larger than $50 \mathrm{~cm} ; \mathrm{kg} /$ hour) of thornback ray observed in the PT-IBTS-Q4 survey in the 2013-2016 period (upper panel) and abundance (number/hour) of hake during the PT-IBTS-Q4 survey carried out in 2015 and 2016 (lower panel). The geographic areas used in the study are (CAM: Caminha, MAT: Matosinhos, AVE: Aveiro, FIG: Figueira da Foz, BER: Berlengas, LIS: Lisboa, SIN: Sines, MIL: Vila Nova de Mil Fontes, ARR: Arrifana).


Figure 7: Bathymetry in metres (left panel) and type of substratum (right panel) of the study area. Two bottom depth intervals, $[0-100 \mathrm{~m}]$ and $[100-200 \mathrm{~m}]$, were used in our study.


Figure 8: Histograms of strictly positive thornback ray biomass (left panel) and strictly positive hake abundance (right panel), with respective Gamma density curves (red lines).

