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Abstract

Research surveys are important to evaluate the spatial distribution of fishery re-

sources and to monitor their abundance. However, the underlying sampling is usu-

ally conceived with the focus on specific species and an efficient design may reconcile

this objective with the collection of non-target species data. This study evaluates

the adequacy of different sampling designs for the IPMA bottom trawl survey con-

ducted along the Portuguese continental coast. It aims to obtain the maximisation

of accuracy estimates for the non-target thornback ray Raja clavata, while main-

taining the estimates quality for the European hake, Merluccius merluccius, one of

the target species. A geostatistical model-based approach was developed consid-

ering the semi-continuous nature of the data and the excess of zero values for R.

clavata. The proposal of new sampling designs relied on eight optimisation weights

and the resulting prediction exactness. Eight survey designs were then evaluated,

each adding 11 sampling locations to the survey locations from the original sur-

vey design. Three designs resulted in higher accuracy for both R. clavata and M.

merluccius estimates than those obtained from the random design. The sampling

design that maximised the accuracy of R. clavata estimates showed an acceptable

trade-off between bias and variance of M. merluccius estimates.

Keywords: Spatial sampling design; Species distribution models; Two-part models; Research

Surveys; Raja clavata

1 Introduction1

The fishery-independent quantitative species data collected during research surveys are2

important for monitoring the abundance of fishery resources, are commonly used as input3

for stock assessment models, and provide a basis for scientific advice on stock conservation4

status and fishing opportunities. Survey georeferenced data is also used to investigate5

the spatial and temporal distribution of species.6

Although during the 1960s and 1970s stock trend analysis from stock assessments7

performed with virtual population analysis (VPA) were matched to fishery-dependent8

data (commercial catch per unit effort, CPUE), issues with the underlying assumption of9

a proportional relationship between CPUE and abundance emphasised the importance of10
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using fishery-independent information. The research survey programmes that began in11

the 1960s were originally conceived as sources of biological information. Examples of these12

are the Woods Hole bottom trawl resource survey, which started in 1963 (Smith, 2002),13

and the International Bottom Trawl Survey in the North Sea, which started in 1965,14

initially aimed at juvenile herring in the central and southern North Sea (ICES, 2020).15

It was mainly in the 1980s that the data collected from research vessel surveys became16

important to estimate fish abundance for use in stock assessments, at the same time17

that survey design and estimation methodology were being developed (e.g., Pennington18

(1983, 1986); Pennington and Volstad (1994); Smith (1999)). To improve cost efficiency,19

the majority of research vessel surveys in the Northeast Atlantic area aim to collect data20

for several species and stocks. In 2021, for example, 18 countries conducted bottom21

trawl surveys in the North Sea and northeastern Atlantic areas on board several research22

vessels, collecting data on the distribution and relative abundance as well as biological23

information for a large number (over 50) of demersal species and stocks (ICES, 2021).24

One of these surveys is the Portuguese International Bottom Trawl Survey (PT-IBTS-25

Q4), conducted in Portuguese continental waters during Autumn. This survey started in26

1979 and was initially designed to monitor the distribution and abundance of the most27

important commercial species in the Portuguese trawl fishery (Cardador et al., 1997)),28

although with a focus on estimating abundance indices of recruits of European hake29

Merluccius merluccius and horse mackerel Trachurus trachurus (Borges, 1984; ICES,30

1989).31

The design of the PT-IBTS-Q4 survey has changed to that of a multi-species survey,32

collecting data to estimate abundance and biomass indices in addition to biological pa-33

rameters for other commercially important species, including fish (e.g., blue whiting Mi-34

cromesistius poutassou, mackerel Scomber scombrus and chub mackerel Scomber colias),35

crustaceans (e.g., Nephrops norvegicus and Parapenaeus longirostris) and cephalopods36

(Chaves, 2018).37

The design of multi-species or multi-purpose surveys requires attention to accuracy38

for both target and non-target species, therefore requiring more complex and on-demand39

sampling schemes. Classical sampling theory and geostatistics address similar questions40

and result in unbiased estimates, but they are different. The former is related to design-41

based inference and the latter relies on model-based inference (Hoef, 2002). According to42

a comparison study presented in Hoef (2002), geostatistical methods can be more efficient43

since they perform estimates closer to the true values. In particular, a Bayesian model-44

based approach may easily account for the particularities of the species under study and45

their habitat, as well as dealing with the different sources of variability usually present46

in complex data. This flexibility entails some additional computational cost.47

In this study, we develop a framework and propose methodologies to investigate48

whether the Portuguese bottom trawl survey can be more efficient by adopting an al-49
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ternative spatial sampling design. The aim is to maximise the accuracy of abundance50

estimates for non-target species of the survey while maintaining the precision of the sur-51

vey target species abundance estimates. The species considered are the European hake,52

which is a target species of the surveys, and the thornback ray, a non-target species, for53

which PT-IBTS-Q4 data has been used to estimate biomass indices.54

European hake is one of the most important species in western demersal surveys, given55

its high abundance, wide distribution, and importance in the trophic chain (Casey and56

Pereiro, 1995). This species is distributed from the coast of Mauritania to the western57

coasts of Norway and Iceland; it is also found in the North Sea, Skagerrak, Kattegat, and58

Mediterranean waters (Stehmann and Bürkel, 1984). It inhabits depths ranging from59

30m to more than 500m, over mud/sand and rocky substrata (Casey and Pereiro, 1995).60

Moreover, Portugal is one of the largest European markets for hake products (Sylvia,61

1995).62

The thornback ray is caught by Portuguese fisheries along the coast and is one of the63

most common elasmobranch and skate species found in European waters (Walker and64

Hislop, 1998; Machado et al., 2004)Figueiredo et al, 2010. It is distributed along the65

eastern Atlantic from Norway and Iceland to South Africa, including the Mediterranean66

and Black Seas (Stehmann and Bürkel, 1984). The species is mainly found on hard seabed67

(e.g., gravel and pebble), in areas of intermediate to strong tidal currents (Ellis et al.,68

2005), from near shore to 300m deep, with extreme records around 1000m (Ebert and69

Dando, 2021). From 1956, studies observed a decline in the occurrence of thornback ray70

in the North Sea (Walker and Heessen, 1996; Dulvy et al., 2000), but in recent years its71

stock has recovered in that area and throughout European waters (ICES, 2021).72

This study evaluates survey efficiencies in estimating species biomass or abundance73

by comparing estimates derived from a random survey (under this design fishing hauls74

are randomly selected) to others obtained with alternative spatial sampling designs. To75

achieve this, a common methodology is applied to the two selected species: one target76

and one non-target. The procedure proposed is structured under a hierarchical Bayesian77

framework, which includes the adjustment of a model-based approach that accounts for78

the semi-continuous nature of the data and the excess of zero values for thornback ray.79

We also consider the environmental variables that might impact on the distribution and80

occurrence of the species under study. Finally, we compare the species model-based81

abundance estimates obtained under eight alternative non-random survey designs with82

those obtained from a random design. The eight different designs resulted from eight83

different ways of selecting the fishing hauls, depending on the specific priorities of each84

survey design. Comparison of the survey designs takes into account a balance between85

maximising the accuracy of estimates and minimising the uncertainty, and a balance86

between the objectives defined for both target and non-target species.87
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2 Material and Methods88

2.1 Description of survey design89

The PT-IBTS-Q4 survey, carried out by the Portuguese Institute for the Sea and Atmo-90

sphere (IPMA) using a bottom trawl (type Norwegian Campbell Trawl 1800/96 NCT)91

with a 20 mm codend mesh size and ground rope with bobbins, adopted a stratified ran-92

dom sampling design during the period 1979-1989. Initially (1979-1980), the surveyed93

area along the Portuguese continental coast (from latitude 41o20’N to 36o30’N and from94

20 to 750 m bottom depth) was divided in 15 strata (Cardador et al., 1997). The bound-95

aries of each stratum were based on five geographic areas and three bathymetric levels,96

each stratum being divided into units of around 25 square nautical miles. In 1981, with97

the aim of decreasing the total variance of mean abundance indices by species, the fish-98

ing hauls (sampling units) were spread at random over 36 strata (combination of twelve99

geographic areas and three bottom depth intervals: [20-100m[; [100-200m[; [200-500m[).100

Following analysis of the trade-off between biased estimates of species abundance with101

low variance and unbiased estimates with large variance, the survey design was changed102

to a predefined fishing hauls scheme in 1989 (ICES, 2002, 2017). The reduced variance103

of the abundance estimates obtained with the predefined sampling scheme was the dom-104

inant objective for the assessment of the southern stock of hake, at the time carried out105

with VPA tuning (ICES, 1990).106

In 2005, the survey design changed to a sampling with partial replacement scheme107

(Cochran, 1977), recognising that the precision of the estimates for fish abundance trends108

over time could be improved by combining predefined and random fishing hauls, with a109

subset of hauls being matched from one survey to the next (ICES, 2004). A maximum of110

96 fishing hauls, along the 36 survey strata, were sampled. These include 66 predefined111

hauls, distributed according to a regular grid of 5 x 5 nautical miles and taking into112

account that at least two fishing hauls should be made by stratum, with 30 hauls selected113

at random, carried out if ship time is available (ICES, 2002). Fishing hauls are carried out114

during daylight at a towing mean speed of 3.5 knots with a haul duration of 30 minutes115

(Chaves, 2018).116

2.2 Species studied and environmental data117

The exploitable biomass index of thornback ray, referring to the population encompassing118

fish with length over 50 cm, was calculated by haul and the unit used is kg/hour. The119

index of hake abundance is the number of fish caught per hour (nb/hour), which was120

also determined by fishing haul. The centroid position of each fishing haul (longitude,121

latitude) was calculated using the geographic coordinates of the start and final position122

of each fishing haul.123
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The studied area covers the western coast of Portugal (36o30’N to 41o20’N) (Figure124

6). We adopted this restriction because the geomorphology of the Portuguese coast de-125

termines different directions of the southern coast and its bathymetry, which is associated126

with distinct oceanographic features and environmental conditions (Relvas et al., 2007)127

as well as community assemblages (Moura et al., 2020). Figure 6 shows the nine geo-128

graphic areas considered in our study, from CAM in the north to ARR in the south. The129

type of substratum and bathymetry are the environmental variables considered as both130

are known to be related with the thornback ray habitat (Santos et al., 2021). Bathy-131

metric and type of substratum sediment data were collected from the EMODnet central132

portal, accessible from http://www.emodnet.eu/. Bathymetric data was represented in133

meters. The type of substratum was classified into five categories (sand; rock and boul-134

ders; mud to muddy sand; mixed sediment and coarse-grained sediment) (Figure 7). We135

excluded non-trawlable zones, characterised by the rock and boulders substratum, from136

our prediction area (black zones represented in Figure 7).137

2.3 The proposed methodology138

Our methodology focuses on proposing alternative survey designs that enhance the most139

accurate estimation of species abundance possible. Moreover, the proposed methodology140

is flexible: it allows application to other species groups or even more than two species, the141

introduction of different objectives, like minimising the cost of performing a survey, and142

the incorporation of other survey constraints. For each survey design, 65 fishing hauls143

were considered, of which 54 were predefined by the Portuguese bottom trawl survey and144

11 were selected according to a particular objective. The specific constraints governing145

this methodology were: do not consider non-trawlable zones, the study region is restricted146

up to a depth of 200m, at least two fishing hauls must be sampled in each stratum, and147

there is a minimum distance between survey locations. In our study, this distance is given148

by the minimum distance between two observed locations.149

The methodology proposed in this study includes the following steps (Figure 1:150

1. Selection of the best species distribution model (SDM) under a Bayesian framework151

and estimation of the predicted surface on a fine grid for each species using the152

available observed survey data. The selection of the best SDM, was based on good-153

ness of fit and predictive quality criteria, using deviance information criterion values154

(Spiegelhalter et al., 2002) and log-conditional predictive ordinate values (Roos and155

Held, 2011).156

2. Selection of 11 new fishing hauls, according to weight (Table 1), to be added to the157

predefined fishing hauls and establish alternative sampling survey designs 1-8. For158

reasons of terminological simplicity, hereafter these designs will be referred to as159

non-random conditional to the SDM used for weight construction.160
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Observed data

1. Spatial prediction of abundance indices for
all species at the same fine grid of dimension N .

2.1. Select n1 fishing hauls in order to guarantee any de-
sign condition (e.g. at least two sampling units by stra-

tum) according to the weights presented in Table 1.

2.2. Select n2 fishing hauls considering the entire
grid according to the 9 weights presented in Table 1.

Alternative designs

3. Choose a past survey as a benchmark and, for each alterna-
tive design, predict abundance indices for all species at those

observed locations assuming the design as a ground truth.

Databases (of predicted abun-
dance indices for each species)

4. For each alternative design and species, compute assessment criteria
(e.g. MAE and RMSE), and compare stratified mean and respective

stratified variance using the predicted and observed abundance values.

Figure 1: Methodology flowchart for the proposal and assessment of alternative survey
designs.

3. Prediction of abundance indices for all species at the observed locations of the161

benchmark survey, assuming the design as the ground truth. This prediction pro-162

cedure considers the best SDM from step 1, for each of the species.163

4. Comparison of the predicted and the observed values using the mean absolute or164

root mean square errors, the stratified mean and respective variance.165

2.4 Species Distribution Model166

The SDM of each species was constructed by assuming that, for the variables under study,167

no major differences occur between surveys as they take place at the same time of the168
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year. It is thus considered that the observations from the different surveys complemented169

each other and they are therefore treated as a single collection in time.170

According to the SDM adopted, Y (s) is a spatial process for the biomass index Raja171

clavata or the abundance index of Merluccius merluccius indices at location s, and Z(s)172

is a presence/absence process that takes the value 0 if the species was not observed at173

location s and 1 otherwise. Consequently, given that Z(s) = 1, Y (s) takes the positive174

value of biomass or abundance index observed at location s. Under this SDM it is assumed175

that Z(s) comes from a Bernoulli distribution with a probability of success, p(s), and that176

Y (s), given that Z(s) = 1, follows a Gamma distribution with the shape parameter, a(s),177

and scale parameter, b(s). This two-part SDM is fitted under the Bayesian framework178

and can be defined as:179

logit(p(s)) = α1 +

p1∑
j=1

βi,jf(X1,j(s)) +W (s) (1)

and180

log(a(s)/b(s)) = α2 +

p2∑
j=1

βi,jf(X2,j(s)) + kW (s) (2)

The probability of occurrence, p(s), is modelled through the logit link function log
(

p(s)
1−p(s)

)
,181

and the expected abundance or biomass index, µ(s) = a(s)/b(s), through its logarithm.182

The f(·) denotes possible transformation functions, such as linear splines (Zuur et al.,183

2017) or a logarithm of environmental covariates, X1,j(s). The terms α1 and α2 represent184

the intercepts, and βi,j, i = {1, 2} are the regression coefficients (representing the impact185

of environmental conditions on the response variable). In this study, the environmental186

conditions considered were the bathymetry and the substratum sediment type. The pri-187

ori distributions for parameters αi, βi,j and k were defined as Gaussian with mean zero188

and variance 1000, so that they are less informative since there is no a priori knowledge189

about these parameters.190

W (s) represents a spatial random effect modelled as a Gaussian Markov random field191

(GMRF), and it is further assumed to be an intrinsically stationarity process of mean192

zero. W (s) resulted from an approximation of a latent Gaussian field (GF), using a193

method based on stochastic partial differential equations (SPDE), as proposed by Lind-194

gren et al. (2011). The SPDE approach allows approximation of a spatial continuous195

field, represented by a Matérn covariance function, by a Markov field. This approxi-196

mation was adopted due to its computational advantages. Parameterisation was carried197

out in terms of the marginal variance of the data, σ2, the radius of influence, φ, whose198

prior distributions were specified under PC prior framework (Simpson et al., 2017). The199
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two-part probability model can be represented as the product:200

[Y (s)] = [Z(s)] [Y (s)|(Z(s) = 1)] (3)

where [.] means “distribution of” and ·|· means “conditional to”.201

2.5 Alternative survey sampling designs202

Bearing in mind that the predefined fishing hauls could not guarantee at least two sam-203

pling units by stratum (combination of nine geographic areas and two bottom depth204

intervals: [0-100m[; [100-200m[), the second step considers a sampling procedure capable205

of selecting 7 (n1) fishing hauls under this condition, and another 4 (n2) spread over the206

entire prediction region.207

The criteria for selecting the new fishing hauls varied according to two main specific208

objectives: minimisation of the uncertainty resulting from the modelling process, or max-209

imisation of the abundance index of both or either species, or even prioritising a specific210

region of the study area. Table 1 summarises the difference that corresponds to 8 weights,211

which are computed for each location of the prediction surface and condition the selection212

probability of those locations. These weights are based on the two components:213

uis =
ŷsi

max{ŷsi}
(4)

and214

vis =
σ̂si

max{σ̂i
s}

(5)

where ŷis refers to the median prediction estimate of biomass or abundance index and215

σ̂i
s represents the standard deviation of spatial effects for location s = {s1, s2, · · · , sN}216

and species i = {R,M}, such that R identifies thornback ray and M identifies hake. It217

is possible to interpret σ̂i
s as an uncertainty measure of what was not explained by the218

covariates, that is, it represents the remaining variance after considering the explanatory219

variables. Both ŷis and σ̂i
s are standardised by the corresponding maximum, since the220

ranges of abundance and standard deviations of spatial effects were different for the two221

species.222

In Table 1, the weights defined for designs 4 and 7 take into account the geographic223

area, through the component qs, which takes integer values from 1 to 9 ranging from224

higher to lower priority. Thus, locations from the same area have the same value for225

qs. In particular, weight 8 (maximise the similarity between the distributions of the226

two species) was aligned with that suggested by Pennino et al. (2016) to evaluate the227

overlapping of predictions from two datasets.228

The new additional fishing hauls of alternative design, m, were defined as locations229
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of the fishing hauls corresponding to those that minimise the weights wm
s : (i) for each230

incomplete stratum, leading to the proposal of 7 new fishing hauls to accomplish the231

survey condition together with 54 predefined hauls (at least two fishing hauls by stratum);232

(ii) for the entire study area to select the remaining 4 locations. Steps (i) and (ii) were233

repeated for each weight m presented in Table 1. This allows us to move forward with the234

proposal of the alternative survey sampling designs, which need to be evaluated among235

themselves and compared with a benchmark.236

Table 1: Weights used to select new fishing hauls and corresponding objectives.

Design m Weight wm
s Objective

1 vRs × vMs

Minimise the uncertainty of what was not

explained by the models applied to R.

clavata and M. merluccius.

2 vRs
(
1− uRs

)
× vMs

(
1− uMs

) Same objective of measure 1 maximising,

at same time, the biomass or abundance of

both species.

3 vRs
(
1− uRs

)
× vMs

Same objective of measure 1 maximising

the biomass of R. clavata.

4 vRs × vMs × qs
Same objective of measure 1 giving im-

portance to geographic strata of the study

area throughout qs.

5 σ̂R
s

Minimise the uncertainty of what was not

explained by the model for R. clavata.

6 σ̂R
s

(
1− uRs

) Same objective of measure 5 maximising,

at same time, the biomass of R. clavata.

7 σ̂R
s × qs

Same objective of measure 5 giving im-

portance to geographic strata of the study

area throughout qs.

8
√

(
√
uRs −

√
uMs )2

Maximise the similarity between the dis-

tributions of the two species.

Random 1
N

Random selection giving the same impor-

tance to all locations.

2.5.1 Assessment methodology of the alternative survey designs237

The third step includes a survey that took place in the past used as a benchmark (in238

our case study, we chose the 2015 survey). Then, for each proposed design, we predict239

abundance indices for all species at the observed locations, assuming the design as the240

ground truth. This prediction procedure considers the best SDMs selected in step 1 of241
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Figure 1. We end up with eight databases of predicted abundance indices for each species.242

Each database holds the centroid position (longitude and latitude) of the fishing hauls, all243

covariates (in our case, the corresponding bathymetry and the substratum type), and the244

predictive posterior medians for the non-target and target species (in our case, thornback245

ray biomass and hake abundance indices).246

In the last step of the flowchart shown in Figure 1, the biomass or the abundance247

index predicted values for each species are compared with the values observed in the248

benchmark survey using classic assessment metrics, such as mean absolute error (MAE),249

root mean square error (RMSE) (Chai and Draxler, 2014), stratified mean (ȳstr) and250

corresponding stratified variance (s2
str) (Ghosh, 1958).251

Furthermore, with the aim of further evaluating the first eight survey designs that252

result from the respective weights proposed in Table 1, we suggest contrasting them with253

a random design (the ninth design presented in Table 1), which has a random selection254

of locations according to a homogeneous spatial Poisson process. Firstly, we simulated255

200 sets of fishing hauls, allowing the random selection of new locations (in our case,256

11) as long as they meet the predefined design constraints (in our case, having at least257

two sampling units by stratum). Secondly, we computed four assessment metrics, MAE,258

RMSE, ȳstr and s2
str, by comparing the predicted values of biomass or abundance index259

obtained from each of the 200 simulated sets with those observed in the benchmark260

survey. Finally, we considered the empirical distribution of the 200 values obtained261

for the assessment metrics as an approximation of their theoretical distribution function.262

That way, the random design is used for evaluating the performance of the eight proposed263

non-random sampling designs.264

The R code corresponding to the survey design procedure and its assessment is265

available on GitHub (https://github.com/SilvaPDaniela/Evaluation-of-survey-266

designs-for-species-distribution-estimation).267

3 Results268

3.1 Frequency of occurrence and observed biomass of269

thornback, and abundance of hake270

During the period 2013-2016, the thornback ray biomass index was computed in 212271

fishing hauls along the west coast of Portugal, with this information available for at least272

49 different fishing hauls each year. The number of fishing hauls with a strictly positive273

value for the catch of thornback ray varied between 6 (2014) and 15 (2015) (Table 2).274

Between 2015 and 2016, the hake abundance index was computed for 101 fishing hauls.275

The number of hauls with strictly positive values for the catch of hake was 50 and 44, in276

2015 and 2016, respectively (Table 2).277
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Table 2: Number (nb) of recorded fishing hauls, number of fishing hauls with a strictly
positive catch, and percentage of zero catches by species, during PT-IBTS-Q4 surveys
conducted between 2013 and 2016.

Species Fishing hauls/catch 2013 2014 2015 2016 Total

Thornback
ray

nb of recorded fishing hauls 57 49 54 52 212
nb of fishing hauls with presence 9 6 15 11 41
% of zero catch 84 88 72 79 81

Hake
nb of recorded fishing hauls - - 53 48 101
nb of fishing hauls with presence - - 50 44 94
% of zero catch - - 6 8 7

The highest exploitable biomass index of thornback ray (fish total length over 50cm;278

kg/hour) was observed in the area near Lisbon in 2015 and 2016 (Figure 6). The annual279

percentage of zero catches of thornback ray was high, varying between 72% and 88%280

(Table 2). The empirical distribution of positive of thornback ray catches (kg/hour)281

during 2013-2016 was right skewed, with a biomass index range of 2.0-24.9 kg/hour and282

a mean value of 7.8 kg/hour (Figure 8). The abundance index of hake (nb/hour) was283

higher in 2015 than 2016, particularly in the northern part of the western Portuguese284

coast (Figure 6). The percentage of zero catches for this species was low, 6% in 2015 and285

8% in 2016 (Table 2). The empirical distribution of positive hake catches (nb/hour) was286

also right skewed, with a range between 2 to 3933 individuals and a mean value of 411287

fish per hour (Figure 8).288

3.2 Species Distribution Model289

To check the assumption that both species have a similar spatial distribution over surveys290

because they take place at the same time of the year (near October), we applied the291

Knox and Mantel statistical tests for space-time interaction (Meyer et al., 2016) to our292

datasets. Both statistical tests resulted in high p-values for both species, indicating that293

our assumption was not violated. In addition, the results of the Kolmogorov-Smirnov test294

(Frank and Massey, 1951) confirmed the adequacy of a Gamma distribution to model the295

strictly positive values, which indicated p-values of 0.808 and 0.603 for thornback ray296

biomass and hake abundance, respectively.297

3.2.1 Thornback ray biomass298

Table 3 presents a summary of the results obtained for the best SDM chosen for the299

thornback ray. The model was fitted to these data, considering the SPDE approach and300

taking into account the substratum sediment type and bottom depth covariates as fixed301

effects. The probability of species occurrence increases more than five times for fishing302
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Table 3: Main statistics of the posterior distributions for fixed effects for the thornback
ray biomass index. S.D. is the standard deviation and ‘:’ refers to interaction between
covariates. χq identifies the quantile of probability q.

Process Covariate Mean S.D. χ0.025 χ0.5 χ0.975 Mode

Z(s)

Intercept -1.574 0.517 -2.705 -1.546 -0.610 -1.505
Substratum (Mixed
sediment)

10.104 6.002 -1.529 10.046 22.071 9.937

log(Depth):Substratum
(Mixed sediment)

-2.488 1.508 -5.498 -2.475 0.439 -2.449

Y (s)|(Z(s) = 1)
Intercept 3.630 1.054 1.519 3.639 5.684 3.659
log(Depth) -0.443 0.220 -0.879 -0.442 -0.010 -0.441

locations with a mixed sediment substratum (mean and median around 10.1). Depth303

exhibited a negative relationship with species occurrence in mixed substratum sediment304

(mean and median around -2.5) and also with species biomass index (mean and median305

around -0.44). The thornback ray occurrence results indicated some uncertainty associ-306

ated with these regression coefficient estimates, but we kept the corresponding covariates307

to achieve better predictive performance of the model. The posterior distributions of308

spatial covariance parameters for the thornback ray biomass model showed that spatial309

autocorrelation is almost null from approximately 66 km and the mode for the marginal310

standard deviation of the spatial effects was 1.1 (second and third panels in the upper311

row of Figure 2). The mean precision of the Gamma observations was estimated as 3.5312

(Figure 2, first panel, upper row).313

The left panel of Figure 3 represents the posterior median of the predictive distribu-314

tion for the thornback ray biomass index, obtained according to the product defined in315

equation (3). As an indicator of uncertainty resulting from the modelling procedure, the316

right panel of Figure 3 represents the posterior standard deviations of the spatial effects,317

W (s), derived for the thornback ray model. Unsurprisingly, the standard deviation esti-318

mates of spatial effects were lower near to sampled locations since the estimation in these319

locations is more accurate.320

3.2.2 Hake abundance321

Table 4 presents a summary of the results for the fixed effects resulting from the best322

SDM chosen for hake. The probability of occurrence and the abundance index of hake323

increase with logarithm of depth. In areas with a bottom depth shallower than 90m, the324

abundance index of hake increases by 15 fish per hour, which rises to 31 fish per hour325

for each increment of approximately 2.7m in depth in areas where water is deeper than326

90m. Regarding substratum sediment type, results indicated that hake is nearly twice as327

abundant in mud and muddy sand locations than in other type of sediment substratum.328
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Figure 2: Posterior distributions of hyperparameters for thornback ray biomass (upper
panel) and hake abundance (lower panel) indices. 1/τ 2 refers to the precision of the
Gamma observations, φ to the spatial range, σ to the standard deviation of spatial
effects, and k is the scale parameter between the two processes (occurrence and biomass
or abundance given the occurrence).

Figure 3: Map of the posterior median of the predictive distribution of biomass index
(left panel) and posterior standard deviations (right panel) of spatial effects of thornback
ray.
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Table 4: Main statistics of posterior distributions for fixed effects for the hake abundance
index. S.D. is the standard deviation and ‘:’ refers to interaction between covariates. χq

identifies the quantile of probability q.

Process Covariate Mean S.D. χ0.025 χ0.5 χ0.975 Mode

Z(s)
Intercept -12.963 5.596 -24.193 -12.910 -2.048 -12.816
log(Depth) 3.768 1.368 1.134 3.746 6.538 3.708

Y (s)|(Z(s) = 1)

Intercept -9.834 3.260 -16.303 -9.816 -3.472 -9.781
log(Depth) 15.039 3.361 8.445 15.032 21.665 15.020
(log(Depth)-
4.521)+

15.902 3.260 9.577 15.872 22.397 15.814

Substratum (Mud
to muddy sand)

0.807 0.309 0.205 0.805 1.420 0.802

Regarding the spatial covariance parameters for the hake abundance model, no spatial329

autocorrelation is expected for distances over 110 km and the mode for the marginal330

standard deviation of the spatial effects was 1.2 (second and third panels in the lower331

row of Figure 2). The precision mean for Gamma observations was estimated as 0.9 (first332

lower row panel of Figure 2).333

The left panel of Figure 4 represents the posterior median of the predictive distribu-334

tion for the hake abundance index. The right panel of Figure 4 represents the posterior335

standard deviations of the spatial effects, W (s), derived for the hake model. In accor-336

dance with what was also observed for the thornback ray biomass model, the uncertainty337

indicators for hake estimates were lower near the sampled locations.338

3.3 Evaluation of alternative survey designs339

Table 5 presents, by species, the assessment criteria values (MAE, RMSE, the stratified340

mean and its variance) used to evaluate each of the eight alternative non-random survey341

designs. We also present the stratified mean and its variance for the thornback ray342

biomass index and hake abundance index, as estimated for the 2015 survey. In the case343

of the thornback ray, survey sampling designs with new fishing hauls selected according344

to weights 4, 7 and 8 provided better results for MAE and RMSE criteria. In all sampling345

designs, excluding 3 and 6, the stratified mean estimates of the thornback ray biomass346

index were lower than the corresponding 2015 estimates. Regarding hake abundance,347

survey designs 2, 5, 8 and 7 produced lower MAE and RMSE values than the other348

designs. The stratified mean abundance estimate obtained with sampling designs 2, 8349

and 7 were closer to the corresponding 2015 estimates (Table 5).350

Weights 2, 3 and 6, which consider the standardised estimates of biomass/abundance351

for one or both species, presented higher MAE and RMSE values for the thornback352

ray. Indeed, maximising the biomass and/or abundance indices estimates provided a353
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Figure 4: Map of the posterior median of the predictive distribution of the abundance
index (left panel) and posterior standard deviation of spatial effects (right panel) for hake.
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Table 5: Values of the assessment metrics computed for the thornback ray and hake for
each proposed measure, to be used in performance evaluation of the eight alternative non-
random survey designs. We also provide the values of the stratified mean and its variance,
estimated from the benchmark survey (2015). Grey lines indicate the best alternative
survey designs. MAE – mean absolute error; RMSE – root mean square error; ȳstr –
stratified mean; s2

str – stratified variance.

Alternative
design

Raja clavata Merluccius merluccius
MAE RMSE ȳstr s2

ȳstr MAE RMSE ȳstr s2
ȳstr

1 2.714 5.186 1.199 0.023 362.817 679.665 361.103 514.626
2 3.131 5.613 1.302 0.039 351.124 651.092 398.689 649.951
3 2.907 5.326 1.442 0.021 359.350 675.524 380.254 473.513
4 2.551 4.866 1.083 0.015 353.809 670.369 379.395 578.688
5 2.862 5.191 1.163 0.029 344.788 660.462 371.376 586.391
6 3.005 5.394 1.464 0.048 360.094 677.111 381.132 480.876
7 2.533 4.848 1.205 0.023 350.664 664.200 381.839 597.662
8 2.690 5.186 0.953 0.012 349.950 659.390 388.539 602.207

Year 2015 - - 1.401 0.208 - - 460.246 3325.801

less accurate prediction process, highlighting the importance of minimising the standard354

deviation estimates of spatial effects, which can be seen as a measure of uncertainty in355

the estimation process. This feature was confirmed by the results for hake abundance356

index estimates, where designs 3 and 6 also presented two of the worst MAE and RMSE357

results.358

Figure 5 presents the MAE and RMSE sampling distribution for the random design,359

in which the location of the 11 new fishing hauls were randomly selected from a homoge-360

neous spatial Poisson process. Results confirmed that the survey sampling designs with361

new fishing hauls selected according to measures 4, 7 and 8 resulted in higher accuracy362

for thornback ray biomass than that obtained with a random selection of fishing hauls.363

Regarding estimation of the hake abundance index, all sampling designs outperformed364

the random design (Figure 5).365

Survey design 7 presented the best results of the eight proposed non-random designs,366

since it provided the best balance between the accuracy of results for the target and the367

non-target species. This survey design was based on defining the location of the 11 new368

fishing hauls (western Portuguese coast) that minimise the uncertainty of what was not369

explained by the thornback ray biomass model and give importance to specific geographic370

areas in the study area (namely, those with higher values of ray biomass). Although it371

did not present the best results for estimation of the hake abundance index per se (design372

8 may be preferable), it provided good commitment when analysing results together with373

the non-target species. Therefore, we believe that by adopting survey design number 7374

for the PT-IBTS-Q4 survey, the accuracy of the thornback ray biomass index estimates375

will improve, without jeopardising estimation of the hake abundance index.376
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Figure 5: Distribution MAE (left panels) and RMSE (right panels) densities resulting
from the estimation of thornback ray biomass (top panels) and hake abundance (bottom
panels), indices based on 200 sets of 52, randomly selected fishing hauls. Vertical lines
represent the three best alternative surveys for each species (with lowest values of MAE
and RMSE). See Table 1 for the definition and objectives of each weight.
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4 Discussion377

Fisheries research vessel surveys should be efficient since marine survey programmes are378

expensive and time-consuming, but few studies have been published investigating the379

efficiency of multi-species sampling designs. Recently, Zhang et al. (2020) evaluated380

multi-species fisheries surveys considering several sampling and estimation methods and381

a wide range of sample sizes. The basis of their study was a simulation framework382

considering the joint distribution of multiple species. In our study, we develop a four-383

step framework to evaluate the accuracy of alternative sampling designs for a bottom384

trawl research survey, focusing on improving the accuracy of abundance estimates for385

one non-target species, while maintaining the precision of the abundance index estimates386

of one target species. In the first step, we used the species spatial abundance index387

observed in previous surveys coupled with spatial environmental data to model species388

abundance. In the second step, and for a fixed number of fishing hauls, we defined389

alternative sampling designs by selecting the extra fishing hauls while maintaining fishing390

hauls from the adopted design (i.e., a combination of predefined and random fishing391

hauls). In the third step, we took a previous survey as a benchmark, and predicted the392

species abundance index for these locations. In the final step, we compared the predicted393

values to those observed at the benchmark. The best alternative design was selected by394

evaluating the trade-off between increasing the accuracy of abundance index estimates395

for the non-target species and the precision of the abundance index estimates for the396

target species. The trade-off was evaluated based on an analysis of the MAE, RMSE,397

stratified mean and its variance obtained for each species, and an alternative survey398

sampling design. The combination of MAE and RMSE metrics are often likewise used399

to assess model performance (Chai and Draxler, 2014). The stratified mean abundance400

estimate and its variance were selected from other possible abundance/biomass estimates401

(e.g., the mean) so as to be in accordance with the survey’s stratified random sampling402

design, an estimator commonly used in bottom trawl research surveys (ICES, 2017, 2020).403

Indeed, the stratified sampling design provides higher accuracy for abundance/biomass404

index estimates than simple random sampling, since it is based on strata that are more405

homogenous within themselves than between them (Cochran, 1977; Lohr, 2009).406

Species distribution models (SDMs) are increasingly popular (e.g., Coelho et al.407

(2018); Thorson and Barnett (2017); Mart́ınez-Minaya et al. (2018); Azevedo and Silva408

(2020) as they allow the combination of species occurrence observations and/or abun-409

dance with environmental information, incorporate both spatial and temporal variability,410

and may have either a single or multi-species focus. In our study, we used a geostatistical411

model-based approach instead of a design-based approach to define the sampling design of412

research surveys. In a Bayesian framework, combining SDMs with geostatistical methods413

has proven to be ideal for handling the different sources of variability underlying complex414
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data correlated in space (Izquierdo et al., 2022; Mart́ınez-Minaya et al., 2018; Pennino415

et al., 2019). Modelling was conducted assuming the SDM formulation for both species416

and allowing for the particularities of the spatial distribution of each species. In this417

sense, we performed a previous exploratory analysis of data to verify the reasonableness418

of assuming the same SDM formulation. A common feature in abundance data is the419

semi-continuous nature of the response variable and also a high number of zero values,420

particularly for species with a patchy distribution (e.g., Paradinas et al. (2017)). Both421

features were mainly observed for the thornback ray during the PT-IBTS-Q4 survey time-422

series, but also for hake. Therefore, our SDM considered a two-part model for species423

occurrence together with abundance or biomass. We incorporated ancillary information,424

namely georeferenced data on substratum sediment type and bottom depth data, since425

if there is a relationship between the covariates and the abundance of the species, it is426

possible to predict species abundance for unsampled locations.427

We proposed eight optimisation weights for selecting the extra locations of fishing428

hauls and making it more likely to choose locations that better represent the spatial dis-429

tribution of the non-target and/or target species (in our motivating example, the thorn-430

back ray and hake species, respectively). We also assessed the performance of the eight431

proposed designs by means of a simulation study. We believe that the adopted simula-432

tion approach, aiming to derive the empirical distribution of MAE and RMSE assessment433

metrics under a random design assumption, allows us to validate the importance of the434

optimisation weights proposed in this work. The eight weights resulted in distinct survey435

designs and, consequently, in different predicted surfaces for the benchmark survey. These436

predicted surfaces were compared with the values observed in the benchmark survey. In437

our motivating example, 2015 was chosen as the benchmark survey because it presented438

a lower rate of zeros in the thornback ray biomass observed during the 2013-2016 period.439

This work confirms the importance of including selected covariates in the spatial model440

to make the stochastic component of the residuals irrelevant. The spatial distribution of441

thornback ray biomass and hake abundance indices differed. The highest thornback ray442

biomass index occurred close to the coast shelf and in the Lisbon area, while the abun-443

dance index of hake was higher in the northern area and at locations more distant from444

the coast. A particularly noteworthy observation was the negative effect of both depth445

and type of substratum on the processes of thornback ray occurrence and biomass index.446

In our study, occurrence was associated with mixed sediment substratum. However, the447

impact of substratum type on the presence of thornback ray has been studied in other448

marine areas with varying results. Greater occurrence was related to mixed sediment in449

the North Sea (Sguotti et al., 2016), to coarse grain sediment in the British Isles (Elliott450

et al., 2020), and to sandy mud sediment in Azorean waters (Santos et al., 2021). Informa-451

tion provided by Portuguese fishermen further supports this substratum dependency, as452

they report that thornback ray adults mainly occur in the substrata of rocks surrounded453
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by sand and between mud and fine sand (Serra-Pereira et al., 2014). The occurrence454

and abundance index processes of hake show a positive correlation to depth. The hake455

abundance index increases at depths lower than 90 m, a feature also observed off the Por-456

tuguese continental coast and in the Thracian sea, where Maravelias et al. (2007); Korta457

et al. (2015) reported higher abundance of hake between 100m and 200m, respectively.458

In agreement with our study’s observations, Casey and Pereiro (1995); Papaconstantinou459

and Stergiou (1995) also concluded that a mud to muddy sand substratum favours the460

abundance of hake when compared with other substratum types in the northeast Atlantic461

and eastern Mediterranean, respectively.462

Analysis of the observed stratified mean for both the benchmark survey and the463

predicted stratified mean suggested a preference for designs 2, 3 and 6 in case of the464

thornback ray and for designs 2 and 8 in the case of hake observations. This result465

was expected since these designs prioritise locations with higher estimates of biomass or466

abundance indices for the respective species, thus resulting in higher mean values. Also as467

expected, in all cases, the estimated stratified variance was lower than that determined for468

the benchmark survey since, due to the modelling process, predicted values are smoother469

than the observed values of biomass or abundance index. Finally, it is important to note470

that the MAE, RMSE, stratified mean and stratified variance values did not vary greatly471

between all the proposed designs, since they differ most in the location of 11 fishing hauls.472

Given the importance of research surveys for marine conservation, improving survey473

designs leads to higher precision and quality of the information collected, and conse-474

quently to a more efficient management of fisheries resources. Our study emphasises the475

use of spatial modelling techniques to inform about the spatial distribution of target and476

non-target species caught in research vessel surveys to estimate the abundance and/or477

biomass indices of these species. We investigated alternative survey sampling designs and478

evaluated their performance. The analysis was applied to fish species occurring in Por-479

tuguese waters but, more importantly, the framework and the methodology developed in480

this study can be replicated for other bottom trawl research surveys and sets of species.481

In addition, the measures investigated to propose alternative sampling designs are easily482

adaptable to respond to other objectives. Although we showed that in the studied case,483

survey sampling designs 7 and 8 complied with the objectives of maximising the accuracy484

of abundance estimates for the non-target species without jeopardising the estimates for485

the survey’s target species, survey sampling design 7 presented an acceptable trade-off486

between bias and variance of the target species. We recommend that a decision on which487

sampling design to adopt in future surveys should take into account a cost-efficiency488

analysis. This analysis can easily be accomplished by comparing the costs related to the489

duration of the survey and the displacement to fishing sites, among other survey costs490

that may be considered relevant.491
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Suplementary material659

Figure 6: Exploitable biomass (fish larger than 50 cm; kg/hour) of thornback ray observed

in the PT-IBTS-Q4 survey in the 2013-2016 period (upper panel) and abundance (num-

ber/hour) of hake during the PT-IBTS-Q4 survey carried out in 2015 and 2016 (lower

panel). The geographic areas used in the study are (CAM: Caminha, MAT: Matosinhos,

AVE: Aveiro, FIG: Figueira da Foz, BER: Berlengas, LIS: Lisboa, SIN: Sines, MIL: Vila

Nova de Mil Fontes, ARR: Arrifana).
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Figure 7: Bathymetry in metres (left panel) and type of substratum (right panel) of
the study area. Two bottom depth intervals, [0-100m] and [100-200m], were used in our
study.

Figure 8: Histograms of strictly positive thornback ray biomass (left panel) and strictly
positive hake abundance (right panel), with respective Gamma density curves (red lines).
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