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A B S T R A C T   

Environmental managers need information to quickly detect which stressor combinations should be addressed to 
reverse river degradation across large study areas. The pivotal role of riparian vegetation in regulating thermal 
regimes and inputs of light, nutrients and organic matter has made it a major target of stressor-mitigation and 
conservation actions. However, due to the dendritic and extensive nature of river networks, field-based moni
toring of local riparian conditions is expensive and time-consuming. Ongoing developments in remote sensing 
offer an unparalleled opportunity to address this challenge. Nonetheless, there is still a limited understanding of 
the capacity of remote sensing indicators to predict changes in local riparian and river conditions, urging for local 
calibration with in situ measurements. This study aims to evaluate the capacity of remote sensing to detect 
impacts on quality elements commonly used in river biomonitoring: riparian vegetation, abiotic river condition 
and macrophyte biomass. To this end, four remote sensing metrics were tested against field-based indicators in 
50 stream locations from four river basins across the Northwest of Portugal: i) the lateral riparian continuity at 
reach scale (riparian forest buffer width), ii) the riparian vegetation density at reach scale (Normalized Differ
ence Vegetation Index, NDVI100m), and iii) the land use intensification at both reach (LUI100m) and iv) segment 
(LUI500m) scales. We found that the combination of remote sensing variables (riparian forest buffer width and the 
land use intensification index) correlated with riparian vegetation quality and dissolved inorganic nitrogen 
concentrations. We also found that the riparian vegetation density was able to predict changes in vascular plant 
biomass except for bryophytes. Our study provides new insights on the capacity of satellite-based indicators to 
assess riparian and river health, illustrating their utility for land and water managers, to identify and monitor, at 
a reduced cost and time, potential changes in the riparian vegetation.   

1. Introduction 

Human activities have produced multiple interacting pressures on 
river ecosystems, including land-use intensification and hydroclimatic 
alterations (Dudgeon et al., 2006; Reid et al., 2019). Despite increasing 
EU efforts to reverse freshwater degradation through Water Framework 
Directive, only 41 % of the European surface water bodies reached a 
good ecological status (EEA, 2018; Filipe et al., 2019). One major 
obstacle to restore ecological health is the accumulation of multiple 
stressors across spatial and temporal scales (Birk et al., 2020; Capon 

et al., 2021). Cumulative effects of multiple stressors produce cascading 
effects that undermine biodiversity and ecosystem functioning, and 
stand out as the main threat for riparian and aquatic ecosystems 
worldwide (Bruno et al., 2016). Therefore, there is a need to develop 
cost-effective indicators that help to identify which stressor combina
tions should be addressed to reverse river degradation and to ensure the 
long-term sustainability of river ecosystems (Carvalho et al., 2019). 

The pivotal role of riparian vegetation in regulating thermal regimes 
and inputs of light, nutrient and organic matter (Yirigui et al., 2019; Riis 
et al., 2020), has made it an important target for stressor-mitigation or 
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biomonitoring actions (Feld et al., 2018). However, due to the dendritic 
and extensive nature of river networks, field-based monitoring of local 
riparian conditions is expensive and time-consuming. Ongoing de
velopments in remote sensing offer an unparalleled opportunity to 
address this challenge. However, we have a limited understanding on 
the capacity of remote sensing variables to anticipate changes in local 
riparian and river conditions. 

The use of satellite data has a great potential to increase both spatial 
coverage and the frequency of riparian and river monitoring (Huylen
broeck et al., 2020). For example, 2 m resolution multispectral 
WorldView-2 satellite images were used to discriminate exotic species 
(e.g., willow stands) from surrounding native riparian vegetation 
(Doody et al., 2014). Aerial LiDAR data were used to analyze forest 
conditions (height, longitudinal continuity, water accessibility) of ri
parian buffer to highlight their regional variability and explore the 
factors controlling it (Michez et al., 2017). In particular, the structure of 
riparian vegetation (i.e., density and complexity) was typically moni
tored by means of spectral indices to estimate the fraction of photo
synthetically active radiation absorbed by Earth’s vegetation and to map 
its distribution within the entire river networks (Novillo et al., 2019; 
Pérez-Silos et al., 2019). Among the high number of vegetation indices, 
the Normalized Difference Vegetation Index (NDVI) has been frequently 
used to assess large scale and long-term trends of vegetation (Peng et al., 
2012). NDVI can be used to monitor primary productivity over time 
(Pace et al., 2021), to investigate productivity–diversity relationships 
(Wang et al., 2016; Torresani et al., 2019) and to determine vegetation 
and landscape structure (Álvarez-Martínez et al., 2018; Rocchini et al., 
2018). In addition, multi-temporal remotely sensed vegetation indices 
can be used to detect changes in riparian areas and deltas due to hy
drological and bioclimatic processes (e.g., floods and droughts; Nagler 
et al., 2020) or due to anthropogenic activities (e.g., dams and alteration 
of hydrologic and sediment regimes; Nagler et al., 2016; Zaimes et al., 
2019). However, there is still uncertainty associated with the use of 
NDVI metrics in fluvial ecosystems. The high spatial heterogeneity of 
river landscape and the high temporal dynamics of river-corridor hab
itats may lead to contrasting outcomes between NDVI and field-based 
approaches, urging the need for a local calibration with in situ mea
surements (Bizzi et al., 2016; Knehtl et al., 2018; Fonseca et al., 2021; 
Dias-Silva et al., 2021). 

Remote sensing has been also used to produce land use maps over 
large areas across ecosystems (Costa et al., 2018; Schulz et al., 2021). 
Recent advances in machine learning algorithms, together with the 
increased availability of dense time series data, have further enhanced 
the precision and the accuracy of land use mapping (Potapov et al., 
2015; Holloway and Mengersen, 2018; Venter and Sydenham, 2021). 
Since streams are particularly sensitive to land use at local and catch
ment scales, land cover classes and land use indices (LUI) have been 
frequently used to assess, indirectly, the quality of stream water (Feld, 
2004; Tran et al., 2010). However, the most adequate spatial scale to 
assess human influence on stream quality is still uncertain, because 
different scales (catchment scale, reach scale, local buffers, riparian 
corridors) can provide contrasting results (Fernandes et al., 2011; 
Monteagudo et al., 2012; Wahl et al., 2013; Erba et al., 2015). 

In this context, remote sensing offers a promising avenue to predict 
local riparian and river conditions. For example, riparian density and 
lateral continuity are usually related to the amount of available habitat 
within the riparian zone, thus they are directly related to the riparian 
quality (Fonseca et al., 2021). On one hand, riparian density reflects 
how well riverbed is shadowed by vegetation, thus it mediates water 
temperature by intercepting solar radiation (Garner et al., 2017). On the 
other hand, riparian lateral continuity mediates the exchange of energy 
and materials with the surrounding landscape; thus, it can be directly 
related to the lateral inputs of nutrients (De Sosa et al., 2018). Moreover, 
disturbances in the major extension of the riparian ecosystem along the 
river margin (e.g. fragmentation and clearing) have direct effects on 
riverbank stabilization, thereby contributing to erosion and instream 

sedimentation (Tufekcioglu et al., 2020). As such, certain land use cat
egories (e.g. agricultural or pasture land uses) may magnify deliveries of 
N or P into streams, thus landscape metrics can explain reach-scale 
impacts (Finkler et al., 2021; Lei et al., 2021). 

In addition to that, riparian vegetation has an effect on freshwater 
habitats by influencing environmental conditions (Evangelista et al., 
2017), and producing cascading effects on freshwater organisms. By 
intercepting light, nutrients and sediments, riparian trees are considered 
key environmental filters that can influence primary producers espe
cially aquatic macrophytes (Baattrup-Pedersen et al., 2006; Tremp, 
2007; Hrivnák et al., 2010; Jusik and Staniszewski, 2019). Therefore, 
remote sensing metrics that describe riparian density and lateral conti
nuity may also serve as proxies of local abiotic conditions and aquatic 
primary producers (e.g., macrophye biomass). 

This study aims to evaluate the capacity of remote sensing metrics to 
detect impacts on field-based quality elements commonly used in river 
biomonitoring, namely riparian vegetation, abiotic river condition and 
macrophyte biomass. Specifically, we determined i) the capacity and 
suitability of remote sensing variables to represent direct field obser
vations, as well as their relationships with riparian quality, maximum 
water temperature, concentration of dissolved nutrients in stream water 
and percentage of instream fine sediments; and ii) the relative impor
tance of remote sensing versu local abiotic variables to represent the 
observed spatial distribution in macrophyte biomass. To this end, we 
derived four remote sensing metrics characterizing the lateral riparian 
continuity at the reach scale (riparian forest buffer width), the riparian 
vegetation density at the reach scale (Normalized Difference Vegetation 
Index) and the land use intensification at the reach and the segment 
scales. 

2. Materials and methods 

2.1. Study area 

We selected 50 stream reaches (some examples are in Fig. S1 as 
supplementary information) in four river basins across the Northwest of 
Portugal, the Minho, the Lima, the Cávado and the Ave River basins, 
which drain to the Atlantic Ocean (Fig. 1). The Minho River is an in
ternational water body of approximately 300 km. Its drainage basin 
covers 17,080 km2 (Mota et al., 2014). The Lima River spring is in the 
San Mamede mountain (Spain) at an altitude of about 950 m. The total 
catchment area is 2535 km2, from which more than half is in Spain 
(Santos et al., 2004). The Cávado River basin occupies 1,589 km2, with a 
mean elevation of 564 m with several peaks of 1,500 m. The water is 
intensively used for hydropower generation, domestic and industrial 
water supply and agricultural irrigation (Vieira et al., 1998). The upper 
parts of these three basins are within the Peneda-Gerês National Park 
and contains river segments with species and habitats important for 
conservation. Concerning riparian vegetation, native broadleaved for
ests are dominated by the presence of Quercus robur and Quercus pyr
enaica followed by Alnus glutinosa, Salix atrocinerea, Laurus nobilis and 
Crataegus monogyna, which characterize the Galicio Portuguese oak 
woods (Habitat 9230 sensu Habitats Directive, European Commission, 
1992; European Commission, 2013); A. glutinosa, Fraxinus excelsior, 
Osmunda regalis and S. atrocinerea, which characterize the Alluvial for
ests Osmundo-Alnion (Habitat 91E0 sensu Habitat Directive, European 
Commission, 1992; European Commission, 2013). Concerning aquatic 
macrophytes, the water courses are often characterized by the presence 
of submerged or floating vegetation (e.g., Ranunculus fluitans, R. tri
chophyllus and Callitriche spp.) or aquatic mosses (e.g., Fontinalis anti
pyretica), which are characteristic of the Ranunculion fluitantis and 
Callitricho-Batrachion vegetation (Habitat 3260 sensu Habitats Directive, 
European Commission, 1992; European Commission, 2013). Lastly, the 
Ave River spring is in the Cabreira mountain and it runs through ca. 94 
km long, with an area of ca. 1,390 km2 (Araujo et al., 1998). The water is 
intensively used for agriculture and industry. 

G. Pace et al.                                                                                                                                                                                                                                    



Ecological Indicators 144 (2022) 109519

3

2.2. Remote sensing data 

To characterize the riparian lateral continuity and density, we used 
Google Earth satellite’s high-resolution images and Sentinel-2 orthor
ectified surface reflectance images (S2A MSI L2A). To cover the whole 
study area, we selected two scenes (T29TNG and T29TNF tiles), with the 
lowest amount of noise (e.g., shadows and clouds). The acquisition 
strategy was designed to meet fundamental quality standards, namely i) 
to have no cloud cover during summer months, ii) to minimize pheno
logical variation (Zaimes et al., 2019), iii) to get the highest riparian 
vegetation complexity corresponding to the most productive time for 
riparian vegetation in our study area (Pace et al., 2021), iv) to get the 

highest vegetation expansion, according to the soil moisture content and 
the phreatic water table depth, during baseflow conditions (Gurnell 
et al., 2001) and v) to match our field data (June 2020). Images were 
acquired from Copernicus Open Access Hub user interface, developed by 
the European Space Agency for Earth observation. Sentinel-2 images 
were chosen since they offer freely available high spatial resolution 
images (10 m to 20 m) and multi-spectral global coverage. 

To characterize land use intensification at the local scale, we used the 
Portuguese Land Use and Land Cover map also known as COS (https:// 
www.dgterritorio.pt). COS is a vectorial map with a minimum mapping 
unit of one hectare and offers a detailed level of thematic and positional 
accuracy. This map is harmonized with global and European policies 

Fig. 1. (A) Map of Portugal with the distribution of the 50 stream reaches across four river basins; (B) Minho River Basin and sampling sites; (C) Lima River Basin and 
sampling sites; (D) Cávado River Basin and sampling sites; (E) Ave River Basin and sampling sites. 

Fig. 2. Research approach for the remote sensing indicators retrieval: (A) the riparian forest buffer width (BUFF); (B) the land use intensification index at the 
segment scale (LUI500m); (C) the land use intensification index at the reach scale (LUI100m); (D) the riparian density at reach scale (NDVI100m): mean NDVI values 
were calculated only for pure riparian pixels (black squares). 
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related to geographic data quality and standards (Costa et al., 2018). 

2.2.1. Computation of remote sensing metrics 
Based on Google Earth satellite’s high-resolution images, S2A MSI 

L2A images and COS layers, four remote sensing metrics were calculated 
(Fig. 2): 1) the width of the riparian vegetation buffer (BUFF), which 
reflects the lateral continuity of the riparian vegetation in both 
streambanks; 2) the Normalized Difference Vegetation Index of the ri
parian vegetation (NDVI100m), which provides a proxy of riparian 
vegetation density at the reach scale; 3) the land use intensification 
index for fine grain (LUI100m), which indicate local landscape intensi
fication at the reach scale; and 4) the land use intensification index for 
coarse grain (LUI500m), which indicate landscape intensification at the 
segment scale that includes agricultural activities that generate pollut
ants, nutrient enrichment and sedimentation. 

We calculated a riparian forest buffer width (BUFF) at each sampling 
site using Google Earth satellite’s high-resolution images, loaded in 
QGIS via the QuickMapServices plugin. Width was calculated for both 
bank sides. Then, we calculated the averaged bank side values to have a 
representative site-specific value. 

Land use intensification indexes (LUI) were calculated as in Eq. (1) 
through a weighted mean which considers land-use categories and their 
percentage of occupation using the scoring system outlined by Feld 
(2004) and applied by Erba et al. (2015). 

LUI = 5 (%artificial) + 3 (%agricultural) + (%pasture) (1). 
We derived two land use intensification indexes at different grain 

sizes for the reach and the segment scale, respectively: 100 × 100 m 
(LUI100m) or 500 × 500 m (LUI500m) cells. 

The Normalized Difference Vegetation Index (NDVI) was calculated 
for all images acquired as per Eq. (2) using bands 4 and 8 in Sentinel-2, 
which have been calibrated to measure radiation in the visible (Red) and 
near-infrared (NIR) regions of the spectrum, respectively. 

NDVI = (NIR-RED)/(NIR + RED) (2). 
NDVI values range between − 1.0 and 1.0, with values close to 1 

indicating more greenness and vegetation activity. NDVI values nearing 
zero and below indicate non-vegetated areas (e.g., water, snow, ice, 
clouds and barren surfaces). To estimate the riparian vegetation density 
at the reach scale, we first identified the number of riparian vegetation 
pixels (each pixel had a 10 m spatial dimension) within a 100 × 100 m 
cells. Riparian vegetation pixels, included in the land cover class of ri
parian forests and shrubs, were identified based on COS layers and 
Google Earth high resolution maps. Then, we estimated the mean NDVI 
values belonging to the riparian vegetation identified. Finally, we 
multiplied the mean NDVI values obtained by the percentage of riparian 
vegetation pixels within the 100x100m cells. In this way, we restricted 
our NDVI analysis only to pure riparian vegetation pixels avoiding noise 
from mixed pixel due to agriculture and urban land cover (e.g. crops, 
parks) in the site-specific floodplains. Some representative photos from 
the field and satellite (Google Earth satellite’s high-resolution images 
and NDVI maps) of the riparian areas monitored in our study are in 
Fig. S1. 

All spatial analyses were performed in QGIS 3.10.12 (Quantum GIS 
Development Team, 2009). 

2.3. Characterization of instream condition 

We surveyed the 50 stream reaches (approximately 100-m reach) in 
two consecutive years (2019 and 2020) during summer (July and 
September). These reaches were characterized based on their chemical 
condition, vegetation structure, habitat complexity and hydrological 
condition, using classical in situ methodologies at one sampling site for 
each reach as follow. 

At each sampling site, stream water samples were collected into 
plastic bottles, transported in a cool box (4 ◦C) to the laboratory and 
used within 24 h for chemical analyses. Concentrations of phosphate, 
nitrite, nitrate, and ammonium were determined using a HACH DR/ 

2000 spectrophotometer (Hach Company, Loveland, CO, USA). Total 
dissolved inorganic nitrogen (DIN) was calculated as the sum of nitrite, 
nitrate and ammonium concentrations. For each sampling site, dissolved 
oxygen and water temperature were recorded every 10 min during 24 h 
using PME-miniDo2T Logger. These dataloggers were fixed to the river 
bed at 10–30 cm depth within 0.5 m from the stream margin using iron 
bars. This information was used to calculate maximum daily tempera
ture for each site. 

For each sampling site, relative light levels were measured for 30 
days using Onset- HOBO UA-002–64 dataloggers. We also estimated the 
percentage of stream channel shading by direct in situ observation. 

Riparian vegetation structure and ecological quality were evaluated 
based on the riparian quality index (QBR; Munné et al., 2003). The QBR 
focuses on the riparian areas with an emphasis on the total riparian 
cover, the cover structure, the cover quality and the anthropogenic 
alteration (Zaimes and Iakovoglou, 2021). Habitat complexity was 
evaluated based on the habitat hetereogeneity index (IHF; Pardo et al., 
2002), whereas the percentage of fine sediments was estimated visually. 
Mean current velocity was derived by averaging between 5 and 15 
measurements (depending on the channel width) of a flow meter 
(Valeport Electromagnetic Flow Meter-Model 801). Results of instream 
condition measures are in Table S1. 

2.4. Macrophyte sampling and biomass determination 

For each site, macrophyte cover and biomass were surveyed along 
40-m reach following the national protocols (INAG, 2008). We defined 
macrophytes as any vascular plant or bryophyte growing in the stream 
channel or directly at the water-land interface. Each reach was visually 
divided into three sectors and the frequency of occurrence for each 
macrophyte type (aquatic vascular plant or bryophyte) was estimated by 
counting the squares of occurrence (Rääpysjärvi et al., 2016). For each 
sector and date, we collected one sample of aquatic vascular plants and 
bryophytes with a quadrat of 0.01 m2 surface. Chlorophyll-a concen
tration in macrophyte tissues was determined by spectrophotometry, 
following extraction in 90 % acetone (Jeffrey and Humphrey, 1975). We 
estimated aquatic vascular plant and bryophyte biomass as their Chlo
rophyll-a concentration per unit of surface at the reach scale. To do this, 
the mean Chlorophyll-a concentration from up to three samples of 
vascular plants and bryophytes was determined and multiplied by their 
reach-scale cover. 

2.5. Data analysis 

First, we used Pearson’s correlation coefficients to explore the ca
pacity of remote sensing metrics (BUFF, NDVI100m, LUI100m, LUI500m) to 
depict riparian and instream habitat features (n = 50; dataset from 
2020). Response variables were the riparian quality index, the per
centage of stream channel shading, the maximum water daily temper
ature, the percentage of fine sediments, and the concentration of 
dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus 
(SRP). Next, to understand which combinations of remote sensing pre
dictors better capture variations in riparian and instream habitat fea
tures, we adopted a multi-model inference approach based on linear 
regression models (Burnham and Anderson, 2002; Grueber et al., 2011). 
To do this, for each response variable, we evaluated the explanatory 
capacity of seven linear regression models considering all possible 
combinations of predictors, excluding those with high collinearity (Zuur 
et al., 2009). Thus, we avoided models including NDVI100m, LUI100m, 
LUI500m simultaneously, because they showed high collinearity (Vari
ance Inflation Factor, VIF > 2). Afterwards, using the dredge() function 
from the MuMIn R package (Barton, 2020), we ranked all seven models 
using the values of the Akaike Information Criterion for small sample 
sizes (AICc) and retained those models with ΔAICc ≤ 7 relative to the 
model ranked first (Zuur et al., 2010). For each model, we also derived 
the explained variance (R2) and Akaike weights to inform on the 
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explanatory power and the relative likelihood of each model of being the 
best model. We used the MuMIn R package to calculate AICc, rank 
models and estimate explained variance and Akaike weights (Barton, 
2020). For the retained models (best models), based on model’s Akaike 
weights, we finally obtained the mean-weighted partitioned variance for 
each predictor (Hoffman and Schadt, 2016). To better understand the 
association between remote sensing metrics and field measures (riparian 
and instream habitat features), we calculated the normalized root-mean 
squared error (nRMSE) of each model from a 5-fold cross-validation 
process using cv.lmvar() function from the lmvar R package (Partners, 
2019). Cross-validations were performed using untransformed response 
variables to allow comparisons across models (Rääpysjärvi et al., 2016). 

To evaluate the capacity of remote sensing versu abiotic instream 
features to represent the observed spatial distribution in macrophyte 
biomasses we followed a similar approach (i.e., correlations plus multi- 
model inference) (n = 100; datasets from 2019 and 2020). In this case, 
we used linear mixed-effect models to account for repeated measures in 
the same site for consecutive years. In brief, for each response variable, 
we evaluated 15 mixed-effect models including all possible combina
tions of remote sensing and instream abiotic predictors, avoiding those 
combinations with high collinearity (i.e., excluding predictor combi
nations meeting VIF > 2). Then, following the procedure explained 
above, we ranked models based on AICc values, obtained predictor co
efficients, explained variance for each predictor and Akaike weights, 
and retained best models (ΔAICc ≤ 7). 

For all models, residuals plots were visually checked to verify model 
assumptions. Before analysis and to reduce distribution skewness, we 
performed a log-transformation for river width, riparian forest buffer 
widths, relative light levels and concentrations of soluble reactive 
phosphorus. We performed a square-root transformation for Chloro
phyll-a content, the land use intensification index at both reach and 
segment scales, altitude, maximum temperature, dissolved inorganic 
nitrogen and mean current velocity. We performed a logit trans
formation for the NDVI values, percentage of stream channel shading 
and the riparian quality index. Finally, we z-standardized (mean = 0, SD 
= 1) predictors to facilitate comparisons among model coefficients. All 
statistical analyses were executed in R 3.5.1 (R Core Team, 2020). 

3. Results 

3.1. Associations between remote sensing metrics, riparian quality and 
instream conditions 

The riparian vegetation density (NDVI100m) and the riparian forest 
buffer width (BUFF) were positively correlated with the riparian quality 
index (rP = 0.72 for both cases; Fig. 3), whereas this index showed a 
negative relationship with land use intensification at reach and segment 
scales (rP = -0.75 for LUI100m and rP = -0.69 for LUI500m; Fig. 3). 
Conversely, NDVI100m and BUFF were negatively correlated with dis
solved inorganic nitrogen concentrations (DIN) (rP = -0.67 and − 0.59 
respectively; Fig. 3) and soluble reactive phosphorus concentration 
(SRP) (rP = − 0.40 and − 0.43 respectively; Fig. 3). LUI indices displayed 
a positive correlation (rP = 0.70) with DIN (Fig. 3), SRP (rP = 0.44; 
Fig. 3) and the percentage of fine sediments (rP = 0.61 for LUI100m and 
rP = 0.57 for LUI500m; Fig. 3). BUFF was the only variable showing a 
positive correlation with river shadow (rP = 0.33; Fig. 3), whereas 
LUI500m was the only one that presented a significant positive correla
tion with the maximum daily temperature (rP = 0.33; Fig. 3). 

The relative contribution of remote sensing metrics to each riparian 
and instream conditions varied considerably across features (Fig. 4). 
LUI100m was generally the best predictor of riparian quality index (mean 
explained variance: 41.2 %, nRMSE = 0.34) followed by LUI500m (mean 
explained variance: 13 %, nRMSE = 0.39) and BUFF (mean explained 
variance: 12.3 %, nRMSE = 0.38). BUFF was the best predictor of 
channel shading (mean explained variance: 19 %, nRMSE = 0.69), fol
lowed by NDVI100m (mean explained variance: 0.01 %, nRMSE = 0.64) 

and LUI100m (mean explained variance: 0.01 %, nRMSE = 0.69). 
Maximum daily temperature was best explained by LUI500m (mean 
explained variance: 12.3 %, nRMSE = 0.13). The percentage of fine 
sediments was best explained by LUI100m (mean explained variance: 
31.7 %, nRMSE = 0.61) followed by LUI500m (mean explained variance: 
5.2 %, nRMSE = 0.64). LUI500m was generally a better predictor of DIN 
(mean explained variance: 39.1 %, nRMSE = 0.81) than LUI100m (mean 
explained variance: 9.9 %, RMSE = 0.79) or BUFF (mean explained 
variance: 6 %, nRMSE = 0.79). LUI500m was generally a better predictor 
of SRP (mean explained variance: 9 %, nRMSE = 1.50) than LUI100m 
(mean explained variance: 6 %, nRMSE = 1.54), BUFF (mean explained 
variance: 5 %, nRMSE = 1.54) or NDVI100m (mean explained variance: 2 
%, nRMSE = 1.58). 

3.2. Remote sensing versus instream conditions to predict macrophyte 
biomass 

The riparian vegetation density (NDVI100m) showed negative asso
ciations with aquatic vascular plant biomass (mean standardized coef
ficient ± SE: − 1.32 ± 0.20; Fig. 5a) together with the riparian forest 
buffer widths (BUFF; mean standardized coefficient ± SE: − 0.51 ±
0.13). Conversely, the land use intensification index at reach scale 
(LUI100m) showed positive associations with aquatic vascular plant 
biomass (mean standardized coefficient ± SE: 1.2 ± 0.26) together with 
the land use intensification index at segment scale (LUI500m; mean 
standardized coefficient ± SE: − 1.07 ± 0.29). Although weakly (weight 
≤ 0.08), channel shading generally showed negative associations with 
aquatic vascular plant biomass (mean standardized coefficient ± SE: 
− 0.62 ± 0.02). DIN also showed negative associations with vascular 
plant biomass (mean standardized coefficient ± SE: 1.1 ± 0.14). The 
best predictors (Fig. 5b) for aquatic vascular plant biomass were riparian 
density NDVI100m (mean explained variance: 16.4 %), followed by 
LUI100m (mean explained variance: 4.9 %), BUFF (mean explained 
variance: 2.7 %) and DIN (mean explained variance: 2.2 %). 

The habitat heterogeneity index showed positive associations with 
bryophyte biomass (mean standardized coefficient ± SE: 0.83 ± 0.15; 
Fig. 6a). Conversely, the percentage of fine sediments showed negative 
associations with bryophyte biomass (mean standardized coefficient ±
SE: − 0.67 ± 0.23) together with the river width (mean standardized 
coefficient ± SE: − 0.29 ± 0.02). Remote sensing metrics showed poor 
capacity to predict bryophyte biomass. The best predictors (Fig. 6b) for 
bryophyte biomass were the habitat heterogeneity index (mean 
explained variance: 13.3 %), followed by percentage of fine sediments 
(mean explained variance: 4.3 %) and channel width (mean explained 
variance: 1.1 %). 

4. Discussion 

Our results showed that remote sensing information based on 
Sentinel-2 and the latest freely available data can be used to support the 
assessment of riparian and river ecosystem health. This differs from 
conclusion in previous studies (Dias-Silva et al., 2021), probably due to 
the way in which remote sensing metrics were derived. For example, in 
our study we used Sentinel-2 products with higher spatial resolution (10 
m per pixel) comparing to Landsat 5 TM (30 m per pixel) used by Dias- 
Silva et al. (2021). Considering the high spatial heterogeneity of river 
landscape, the use of the new generation of satellites (e.g., Sentinel-2, 
Planet and Worldview), with higher spatial resolution, can be crucial 
for retrieving more accurate remote sensing indicators for the charac
terization of the riparian vegetation structure and complexity (Phiri 
et al., 2020; Cavender-Bares et al., 2022). The increasing use of high- 
resolution satellite-based indicators will extend our understanding to a 
much larger scale, allowing water managers to better keep track of all 
components of the water basins in river landscape (McVicar et al., 2017; 
Nagler et al., 2020). 

In our study area, the combination of the riparian forest buffer width 

G. Pace et al.                                                                                                                                                                                                                                    



Ecological Indicators 144 (2022) 109519

6

Fig. 3. Relationships between remote sensing variables and riparian quality or instream conditions. Buff: riparian forest buffer widths, NDVI: riparian density within 
100 × 100 m cell; LUI100m: Land Use Index within 100 × 100 m cell; LUI500m = Land Use intensification index within 500 × 500 m cell, QBR: riparian quality 
index, TMax = maximum daily temperature; FINE: percentage of fine sediments; SHADE: percentage of stream channel shading; DIN: dissolved inorganic nitrogen 
concentration; SRP: Soluble reactive phosphorus concentration). Pearson correlation coefficients between variables are in Table S2. 
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Fig. 4. Relative contribution of remote 
sensing metrics to explain riparian and 
instream conditions. Values represent 
weighted mean explained variances across 
retained models (ΔAICc ≤ 2) (Supporting 
information). Remote sensing metrics: Buff: 
riparian forest buffer widths, NDVI100m: ri
parian density within 100 × 100 m cell; 
LUI_100m: Land Use Intensification Index 
within 100 × 100 m cell; LUI_500m = Land 
Use index within 500 × 500 m cell. Riparian 
and instream habitat features: QBR: riparian 
quality index; Max Temp: maximum tem
perature within 24 h; FINE: percentage of 
fine sediments; Shadow: percentage of 
stream channel shading; DIN: dissolved 
inorganic nitrogen concentration; SRP: Sol
uble reactive phosphorus. Ranking of linear 
models between remote sensing variables 
and instream conditions are in Table S4. 
Results of 5-fold cross-validation process 
between remote sensing metrics and field 
measures (riparian and habitat features) are 
in Table S7.   

Fig. 5. (a) Relationship between riparian NDVI 
index and aquatic vascular plant biomass (mg Chl a 
m-2). (b) Relative contribution of predictors of 
aquatic vascular plant biomass. Values represent 
weighted mean explained variances across retained 
models (ΔAICc ≤ 2). (Buff = riparian forest buffer 
widths, NDVI100m = riparian density within 100 ×
100 m cell; LUI100m = Land Use Intensification 
Index within 100 × 100 m cell; LUI500m = Land Use 
Intensification index within 500 × 500 m cell; 
SHADE = percentage of stream channel shading; 
DIN = dissolved inorganic nitrogen concentration 
concentration. Coefficient predictors for aquatic 
vascular plant biomass are in Table S5.   

Fig. 6. (a) Relationship between the hydro
morphology index and bryophyte biomass (mg Chl a 
m-2). (b) Relative contribution of predictors of 
bryophyte biomass. Values represent weighted mean 
explained variances across retained models (ΔAICc 
≤ 2) (Supporting information). FINE: percentage of 
fine sediments; SHADE: percentage of stream chan
nel shading; DIN = dissolved inorganic nitrogen 
concentration; IHF: habitat heterogeneity index; 
rWid = river width). Coefficient predictors for 
bryophyte biomass are in Table S6.   
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(r2 = 0.51 and nRMSE = 0.38, Table S7) and the land use intensification 
index at the reach scale (r2 = 0.60 and nRMSE = 0.34, Table S7) showed 
the highest power for predicting the riparian vegetation quality. The 
riparian forest buffer width, considers the size of the area where hy
drological and ecological processes and functions take place. Therefore, 
it is directly related to the amount of available natural habitat within the 
riparian zone (del Tánago and de Jalón, 2006; Zaimes and Iakovoglou, 
2021). For example, as the width of riparian buffer increases, shrubland 
and woodland become the main land use variables (Song et al., 2021). In 
contrast, the loss of riparian forest cover is particularly notable in 
anthropogenic landscapes (Turunen et al., 2021) and major changes in 
the structure and continuity of the riparian vegetation are usually 
observed in areas where a large expansion of agricultural activity exists 
(Latsiou et al., 2021). Thus, from a monitoring point of view, our find
ings support that remote sensing techniques can have an added value 
over the traditional field-based approaches used for the assessment of 
the riparian vegetation, but do not replace them (Huylenbroeck et al., 
2020; Zaimes and Iakovoglou, 2021). Particularly, aerial images can be 
used for the assessment of generic riparian characteristics (e.g., width, 
continuity and connectivity), whereas land use information can assist to 
detect indirectly the major drivers of hydromorphological modifications 
within the riparian zone (e.g., bank and channel resectioning and rein
forcement). However, field-based protocols still remain important for 
specific local assessment (e.g., severity) of anthropogenic impacts (e.g., 
garbage dumping, grazing, bank conditions, erosion and channel 
features). 

Concerning stream water nutrients, we found that the combination 
of the riparian forest buffer width and the land use intensification index 
at segment scale (LUI500m) has a high power for predicting DIN con
centration. This was expected since measures of riparian buffer width 
reflect the ability of riparian lateral continuity to retain and transform 
nutrients and contaminants from terrestrial environments (Pärn et al., 
2012; Weissteiner et al., 2014; Sweeney and Newbold, 2014). Buffer 
zones composed of forest trees show a higher nutrient removal rate 
compared with areas of grass and shrub vegetation (Aguiar et al., 2015). 
For these reasons, planting trees either as buffers/riparian forests or 
replacing agricultural areas is increasingly considered an effective 
measure to enhance river ecosystem functions and services by contrib
uting, for instance, to nutrient retention and soil erosion control (Feld 
et al. 2018). This opens new opportunities to implement incentive-based 
policies for achieving environmental goals, namely the creation of cost- 
effective instruments for payments for ecosystem services (Valatin et al., 
2022). In addition, we suggest to integrate the buffer width information 
with the land use intensification index at the segment scale (LUI500m), 
since this index may add an indication of the nutrient loads in the area. 
Indeed, highest concentrations of water nutrients are usually observed 
in streams draining small catchments with high intensity of agriculture 
or urban land (Jarvie et al., 2010; Song et al., 2020). Surprisingly, we 
found a limited capacity to predict the concentrations of soluble reactive 
phosphorus (SRP) comparing to DIN. 

One possible explanation is related to the way nutrients enter in the 
water. On one hand, nitrogen is highly soluble and mobile and is often 
transported into river systems via subsurface flow paths (Weigelhofer 
et al., 2018). By contrast, SRP easily adsorbs to charged soil particles, 
and enter mainly via soil erosion (Withers and Jarvie, 2008). In this 
sense, soil features may play a key role in phosphorous retention that 
can limit our prediction ability. Thus, to increase the model accuracy for 
SRP, future modes should incorporate soil properties (e.g., gran
ulometry, infiltration, erodibility). 

Land use intensification indices, at both reach and segment scale 
(LUI100m and LUI500m), were also correlated to the percentage of 
instream fine sediments. This can be expected since land-use properties 
and practices (e.g., substitution of natural vegetation patches by agri
culture or pastures) have been often identified as drivers of natural fine 
sediment intrusion (e.g., Allan, 2004; Donovan and Monaghan, 2021). 
Considering that vegetation in the stream banks contributes to stream 

bank stability (Krzeminska et al., 2019), anthropogenic disturbances (e. 
g., the removal of riparian vegetation) can lead to higher bank erosion 
affecting fine sediment dynamics, with negative impacts on river eco
systems (Hauer et al., 2018). However, in our study we did not analyse 
the stream bank erosion at the reach scale, so such hypothesis needs to 
be confirmed in further research. 

One of the main novelties of this study is that we found that the ri
parian vegetation density, assessed by NDVI, was a good predictor only 
for aquatic vascular plant biomass. The riparian vegetation density re
flects both the structure and the phenology of the vegetation close to the 
water channel. Considering that riparian forests and shrubs on the river 
banks increase shading (Hrivnák et al., 2010), the riparian vegetation 
density can act as a proxy of light input, particularly in small forest 
streams (Garner et al., 2017; Savoy et al., 2021). This explains the high 
predictive power for aquatic vascular plant biomass in our study, also 
taking into account that light is considered the main limiting factor for 
photosynthesis and critical for the distribution of macrophyte commu
nity (Jusik and Staniszewski, 2019). Among aquatic vascular plants, 
amphiphytes, typical helophytes (i.e., emergent species) and grami
noids, are favored in open habitats and shallow littoral zones with 
minimum shading (Hrivnák et al., 2010; Turunen et al., 2021), which 
was the case in our study. 

However, considering the pivotal role of riparian vegetation in 
regulating thermal regimes and light inputs (Yirigui et al., 2019, Riis 
et al., 2020), we expected a stronger predictive power of the riparian 
vegetation density and the riparian forest buffer width for the maximum 
water temperature and the percentage of stream channel shading. One 
potential reason is that key factors, such as topography (e.g., channel 
orientation) and geomorphological characteristics (e.g., river type, 
stream width, channel features), were not included in our predictive 
models. For instance, concerning water temperature, topography and 
channel features, such as the channel orientation or the banks incision, 
can limit the time period that streams receive radiation inputs (Yard 
et al., 2005). In addition, light may be further attenuated by changes in 
water depth or clarity (Julian et al., 2013). Therefore, channel features, 
water depth and transparency can affect water temperature and should 
be considered in future studies. Concerning the percentage of stream 
channel shading, a minimum buffer width for sufficient shading would 
depend on stream orientation, differing from east–west, north–south 
orientated to meandering rivers (DeWalle, 2010). Also, the ratio of 
canopy height to stream width has been reported as a factor with high 
influence on stream channel shading (Kalny et al., 2017). 

Finally, we showed a stronger association between bryophyte 
biomass and local abiotic variables (habitat heterogeneity and per
centage of fine sediments) compared to remote sensing metrics. Indeed, 
sediments act as an anchoring substrate and source of nutrients for 
aquatic macrophytes that vary in their preference for sediment quality 
and type (Lacoul and Freedman, 2006). For example, aquatic bryophytes 
(e.g. Fontinalis spp. and Hygrohypnum ocraceum) may dominate moun
tain streams with abundant large boulders (Cattaneo and Fortin, 2000). 
Therefore, increasing sedimentation from forest management practices 
(e.g., due to logging and clearcutting) can be considered a key stressor 
inducing the loss of bryophyte biomass (Turunen et al., 2020) observed 
in our study. In this case, predicting bryophyte biomass requires in- 
channel features, such as channel substrate type (e.g., boulders and 
cobbles) and habitat heterogeneity. Such features are generally difficult 
to detect using remote sensing, based on satellite information, due to the 
physical properties of water and the related specificities of the electro
magnetic radiation’s reflection (Knehtl et al., 2018). Therefore, to bridge 
the existing scale gap, we suggest to assess stress in small-stature 
vegetation using ultra-high spatial resolution imagery (pixel size < 10 
cm) derived from unmanned aircraft systems (Husson et al., 2014; 
Malenovský et al., 2017). However, in small rivers, and especially when 
the riparian vegetation is too dense, the use of unmanned aircraft sys
tems cannot provide adequate information. 

For these reasons, the monitoring of physical habitat parameters 
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(substrata and habitat heterogeneity), based on field protocols, con
tinues to play an important and indispensable role in river health 
assessment. 

5. Conclusion 

Our results can be particularly important for environmental man
agers that need information about entire river networks to quickly 
detect ’hotspots’ of anthropogenic pressures. Although, our study rep
resents a first step to develop predictive models, it provides relevant 
insights on how a large and suitable asset of decision support informa
tion can be generated from the freely available remote sensing data 
helping to detect impacts on quality elements commonly used in river 
biomonitoring and to identify critical areas within river basins. Future 
efforts should test the predictive capacity of remote sensing metrics over 
larger spatio-temporal scales to reinforce the empirical support of our 
findings. 

However, we recognize that in situ measurements, with particular 
focus on banks (e.g., stability and erosions), and channel condition (e.g., 
substrate type and heterogeneity) are still needed to complement the 
overall view derived from satellite-based indicators and to get a more 
detailed picture of the local impacts. In addition, in situ measurements 
would be recommended when satellite indicators show values for 
concern, with the need to specify content and extent of damage. 

In further research, considering the high revisit frequency of 
satellite-based data, the derived multi temporal indicators would pro
vide interesting information for the analysis of riparian vegetation 
phenology and characteristics (e.g., presence of evergreen/deciduous 
species or presence of alien species), that would permit advances for the 
monitoring ecological processes under changing environmental or 
hydroclimatic conditions and for the development of early warnings 
systems. 
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Pérez-Silos, I., Álvarez-Martínez, J.M., Barquín, J., Rocchini, D., 2019. Modelling 
riparian forest distribution and composition to entire river networks. Appl. Veg. Sci. 
22 (4), 508–521. 

Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V.R., Muayama, Y., Ranagalage, M., 2020. 
Sentinel-2 data for land cover/use mapping: a review. Remote Sens. 12, 2291. 
https://doi.org/10.3390/rs12142291. 

G. Pace et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S1470-160X(22)00992-X/h0095
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0095
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0095
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0100
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0100
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0100
https://doi.org/10.1002/hyp.9916
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0110
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0110
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0110
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0110
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0115
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0115
https://doi.org/10.1016/j.ecolind.2014.09.010
https://doi.org/10.1016/j.ecolind.2014.09.010
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0135
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0135
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0135
https://doi.org/10.1023/B:HYDR.0000025259.01054.f2
https://doi.org/10.1023/B:HYDR.0000025259.01054.f2
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0145
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0145
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0145
https://doi.org/10.1016/j.landurbplan.2010.11.001
https://doi.org/10.1016/j.landurbplan.2010.11.001
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0155
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0155
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0155
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0155
https://doi.org/10.3389/fenvs.2021.709922
https://doi.org/10.3390/f12060674
https://doi.org/10.1016/j.jhydrol.2017.03.024
https://doi.org/10.1016/j.jhydrol.2017.03.024
https://doi.org/10.1111/j.14420-9101.2010.02210
https://doi.org/10.1111/j.14420-9101.2010.02210
https://doi.org/10.1002/1096-9837(200101)26:1<31::AID-ESP155>3.0.CO;2-Y
https://doi.org/10.1002/1096-9837(200101)26:1<31::AID-ESP155>3.0.CO;2-Y
https://doi.org/10.1186/s12859-016-1323-z
https://doi.org/10.1186/s12859-016-1323-z
https://doi.org/10.3390/rs10091365
https://doi.org/10.3390/rs10091365
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0205
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0205
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0205
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0210
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0210
https://doi.org/10.1016/j.jenvman.2020.110652
https://doi.org/10.1016/j.jenvman.2020.110652
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0220
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0220
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0220
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0220
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0225
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0225
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0225
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0225
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0225
https://doi.org/10.1016/S0015-3796(17)30778-3
https://doi.org/10.1016/S0015-3796(17)30778-3
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0235
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0235
https://doi.org/10.15244/pjoes/81559
https://doi.org/10.15244/pjoes/81559
https://doi.org/10.1051/kmae/2016037
https://doi.org/10.1051/kmae/2016037
https://doi.org/10.1002/eco.1924
https://doi.org/10.1002/eco.1924
https://doi.org/10.1016/j.catena.2018.08.014
https://doi.org/10.1139/a06-001
https://doi.org/10.3390/hydrology8010055
https://doi.org/10.3390/hydrology8010055
https://doi.org/10.1016/j.ecolind.2020.106940
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0275
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0275
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0275
https://doi.org/10.1016/j.jenvman.2017.02.034
https://doi.org/10.1016/j.jenvman.2017.02.034
https://doi.org/10.1016/j.watres.2012.02.035
https://doi.org/10.1051/limn/2014012
https://doi.org/10.1051/limn/2014012
https://doi.org/10.1002/aqc.529
https://doi.org/10.1002/aqc.529
https://doi.org/10.1002/hyp.10734
https://doi.org/10.1002/hyp.13911
https://doi.org/10.3390/ijgi8010043
https://doi.org/10.1016/j.scitotenv.2021.145526
https://doi.org/10.1016/j.scitotenv.2021.145526
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0325
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0325
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0325
https://doi.org/10.1016/j.ecolind.2011.10.002
https://doi.org/10.1016/j.ecolind.2011.10.002
https://cran.r-project.org/web/packages/lmvar/lmvar.pdf
https://doi.org/10.1016/J.ECOLIND.2011.08.011
https://doi.org/10.1016/J.ECOLIND.2011.08.011
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0345
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0345
http://refhub.elsevier.com/S1470-160X(22)00992-X/h0345
https://doi.org/10.3390/rs12142291


Ecological Indicators 144 (2022) 109519

11

Potapov, P.V., Turubanova, S.A., Tyukavina, A., Krylov, A.M., McCarty, J.L., Radeloff, V. 
C., Hansen, M.C., 2015. Eastern Europe’s forest cover dynamics from 1985 to 2012 
quantified from the full landsat archive. Remote Sens. Environ. 159, 28–43. 

Quantum GIS Development Team QGIS Geographic Information System Open Source 
Geospatial Foundation 2009 Available at: http://qgis.org. (Accessed 10 May 2022). 

R Core Team R: A language and environment for statistical computing 2020 R 
Foundation for Statistical Computing Vienna, Austria https://www.R-project.org/. 
(Accessed 10 May 2022. 
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